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Summary 
The dynamic effective properties of a random medium consisting in a uniform concentration of 
cylindrical scatterers in an ideal fluid are looked for, with special focus on low frequencies. The 
effective medium is described as an isotropic viscous fluid whose mass density and dilation 
viscosity depend on frequency, and whose shear viscosity is nil. An explicit expression of the 
reflection coefficient of a harmonic plane wave incident upon the interface between the ideal fluid 
and the random medium may be obtained at low frequency, using the Fikioris and Waterman's 
approach, in two ways. In the first one, the low frequency assumption is introduced from the very 
beginning, while in the second one, the same hypotheses than those used by Linton et al. [J. 
Acoust. Soc. Am. 117 6, 2005] to calculate the effective wavenumber are used first, and, then, the 
low frequency assumption. In both cases, comparison of this reflection coefficient with that at the 
interface between the ideal fluid and the effective viscous fluid provides the effective density, 
which, coupled to the effective wavenumber, provides the effective dilatation viscosity. In the first 
case, the effective parameters found are identical to those found by Mei et al. [Phys. Rev. B 76, 
2007] in a different way, while in the second case they are expressed in terms of form functions of 
the cylinders that reduce at low frequency to those found by Martin et al. [J. Acous. Soc. Am. 128, 
2010]. 
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1. Fikioris and Waterman theory 

We consider a random distribution of infinitely 
long identical cylindrical scatterers, areal density 
n0, enclosed in an ideal fluid half-space, x>0,and 
an incident harmonic plane wave propagating in 
the x direction. The multiple scattering theory of 
Fikioris and Waterman [1] is used to obtain both 
the effective wave number and the reflection 
coefficient of the random medium. Letting the 
radius of exclusion, in the hole correction, be b, 
the diagonal scattering matrix of the cylinders be T 
(diagonal elements Tn), the effective field in the 
random half-space is described as a damped plane 
wave propagating in the x direction, 
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with K the complex effective wavenumber, and 
the An obeying the Lorentz-Lorenz  law, 
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as well as the extinction theorem, 
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with k the wavenumber in the absence of 
scatterers.  
Eqs.(2,3) are valid at low frequency (low ka, kb) 
only, for boundary effects at the fluid/random 
medium interface, to be negligible[1,2]. In fact, 
there is a boundary layer of some depth denoted as 
ℓ in Ref.[2] where the average field is more 
complicated than the coherent field in Eq.(1). Its 
existence is due mathematically to the fact that the 
configurational average of the field due to 
multiple scattering involves an integration on the 
whole area accessible to the scatterers. The 
integration leads to Eqs.(2,3) on the condition that 
the boundary between the ideal fluid and the 
random medium does not cross any scatterer. The 
depth ℓ  increases thus with the radius a of the 
cylinders, in some complicated way that is not 
quite clear, so that the result of the integration is 
limited to small values of ka. This is the  reason 
why we consider, from now on, the low frequency 
approximation. In that case, the Np(Kb) function in 
Eq.(2), that involves Bessel functions of ka and 
Kb, reduces [2,3] to 
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Setting the determinant of the homogeneous linear 
system in Eq.(2) provides the dispersion equation 
[2,3] at low frequency, 
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with f(θ) the far-field scattering amplitude, 
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The reflection coefficient of the half-space is 
given by [4] 
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or, following the same procedure as in Ref.[5],  
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with Dn defined after Eq.(2) as  
*

0 0, n nn A D T A∀ ∈ =ℤ . (9) 
1 
2. Description of the effective medium 

(low frequency) 

In order to account for the imaginary part of the 
effective wavenumber, Eq.(5), the effective 
medium is supposed to be a non heat conducting 
viscous fluid in which only one type of wave (the 
coherent wave) may propagate, so that the shear 
mode is supposed to vanish, and the effective 
shear viscosity is set to zero. At low enough 
concentration indeed, contact between scatterers is 
highly improbable, inducing negligible shear 
effects. The viscous fluid is characterized then [6] 

by three bulk parameters, effective mass density ρ, 
coefficient of dilatation viscosity η, and adiabatic 
sound speed; in our case the latter is equal to that 
of the host (ideal) fluid. In a viscous fluid, the 
viscosity coefficient η characterizes the 
attenuation due to vibrating molecules. In the 
present case, it is related to the vibration of the 
cylinders, so that, contrary to the shear viscosity, it 
cannot be neglected, even at small concentrations.  
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The objective of the present paper is to determine 
ρ and η, given the nature of the cylinders, their 
concentration, as well as the characteristics (sound 
speed c0=ω/k and mass density ρ0) of  the host 
fluid. Two equations are thus needed. Equating at 
first the reflection coefficient R in Eq.(8) to that of 
the ideal fluid/viscous fluid interface provides the 
effective masse density, 

1

1
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−
,  (10) 

and equating the effective wavenumber K in 
Eq.(5) to that of the acoustic mode [6] provides 
the effective viscosity 

2

2 2
1

k
i

k K

ωη ρ  
= − 

 
. (11) 

As recalled in Ref.[3], the transition matrix T has 
only a finite number of  significant eigenvalues, so 
that the infinite series in Eqs.(2-8) extend in 
practice from  n=-N to n=+N, with the value of N 
depending on frequency.  
 
3. The effective mass density and 

viscosity 

We look here for expansions of the effective mass 
density and viscosity in powers of n0. 

3.1 The low frequency Rayleigh limit 

In the Rayleigh limit only three terms  are needed 
in the infinite sums over n (N=1). Using Eq.(3), 
Eqs.(2,3,9) provide  
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and Eqs.(10,11) yield 
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along with  
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These results are the same as those found by Mei 
[7] by means of the Coherent Potential 

Approximation that lies upon the assumption that 
forward scattering in the effective medium should 
be nil. As this provides one equation only, Mei 
replaced the latter condition with two equations, 
obtained by the assumption that the first two terms 
of the forward scattering series in the effective 
medium vanish independently. This section shows 
that the only assumption needed, when using the 
Fikioris and Waterman theory, is that the 
frequency is low enough to enter the Rayleigh 
limit. 
The static limit of Eq.(13) may be obtained 
from the expansion [8] of both T0 and T1 up to 
order 2 in ka, 
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with ρc the mass density of the cylinders, cL and cS 
the phase velocities of the longitudinal and shear 
waves in them. Using these expressions and 
introducing the concentration of cylinders ϕ=πn0a

2 
leads to a static effective mass density, 

 
( )
( )

0 0

0 0 0

C C

C C

ρ ρ ϕ ρ ρρ
ρ ρ ρ ϕ ρ ρ

+ + −
=

+ − −
,  (16) 

that is different from the volume averaged mass 
density, 

( ) 01VA Cρ ϕρ ϕ ρ= + − ,   (17) 

as explained long ago by Berryman [9]. 
In Ref.[10], Torrent et al. have derived the static 
limit of the effective mass density of a cluster of N 
cylinders located at given positions in an ideal 
fluid by equating the scattering of the N cylinders 
to that of an effective cylinder of mass density 
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with ∆ a function of the positions of the cylinders 
given in Eqs.(31,9,A14) of Ref.[10]. Taking the 
configurational average of Eq.(18) provides again 
Berryman's static effective density, Eq.(16). 
 
 

3.2 Intermediate (low) frequency and low 
concentration 

We are interested here in higher frequencies than 
in the Rayleigh limit, that are still low enough for 
Eqs.(2,3) to hold. Meanwhile, the concentration is 
supposed low enough for ( )( )2

0 /
q

O n k  terms 
with q>2 to be negligible, so that we can expand 
all functions of the effective wavenumber in the 
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same way as Linton and Martin [2] did  to obtain 
the first three terms of Eq.(5). Doing so provides 
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The reflection coefficient is found to be 
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and Eqs.(10,11) finally give 
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and 
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Up to first order in n0/k

2, the effective density in 
Eq.(22) is identical to that derived from either 
Waterman and Truell's (WT) [11] or Twersky's 
[12] formalism. The second order term allows to 
account for higher concentrations, which is not 
possible by use of WT and Twersky's formalisms.  
In the Rayleigh limit, Eqs.(22,23) provide the low 
concentration approximation of Eq.(13) that, in 
turn, gives what Martin et al. [13] defined as the 
small-ϕ Ament estimate of the static parameters, 
when the scattering coefficients T0 and T1 are 
approximated by Eqs.(15). 
 
4. Summary and conclusion 

Use of the Fikioris and Waterman's approach has 
allowed us to confirm the Rayleigh limit, whatever 
the concentration, of the effective mass density 
and viscosity that had been found by Mei et al. 
under seemingly stronger assumptions.  
We have also obtained the second order correction 
in n0/k

2 of the effective mass density of Aristegui 
et al., as well as the expansion, up to the same 
order, of the effective viscosity. Performing 
expansions in powers of n0/k

2  have allowed us to 
obtain the effective parameters in terms of the far-
field scattering amplitudes of the cylinders. While 
a priori limited to low frequency, they may be 
valid on a wider frequency range than the 
Rayleigh limits. 
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