David B Blumenthal

Sébastien Bougleux

Johann Gamper

Luc Brun

GEDLIB: A C++ Library for Graph Edit Distance Computation

Keywords: Graph Edit Distance, Open Source Library, C++

The graph edit distance (GED) is a flexible graph dissimilarity measure widely used within the structural pattern recognition field. In this paper, we present GEDLIB, a C++ library for exactly or approximately computing GED. Many existing algorithms for GED are already implemented in GEDLIB. Moreover, GEDLIB is designed to be easily extensible: for implementing new edit cost functions and GED algorithms, it suffices to implement abstract classes contained in the library. For implementing these extensions, the user has access to a wide range of utilities, such as deep neural networks, support vector machines, mixed integer linear programming solvers, a blackbox optimizer, and solvers for the linear sum assignment problem with and without error-correction.

Introduction

Because of their expressiveness and versatility, labeled graphs are widely used to model various kinds of objects such as molecules, street networks, and images. Many pattern recognition problems defined over these domains presuppose the availability of a (dis-)similarity measure for labeled graphs. Despite the fact that its exact computation is N P-hard [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF], one of the most widely used measures is the graph edit distance (GED). Given two labeled graphs G and H, it is defined as GED(G, H) := min P ∈Ψ (G,H) c(P), where Ψ is the set of all edit paths between G and H and c(P) denotes the cost of an edit path P . An edit path is a sequence of edit operations that transforms G into H. There are six edit operations: substituting a node or an edge in G by a node or an edge in H, deleting an edge or an isolated node from G, and inserting an edge or an isolated node into H. Each edit operation comes with an associated non-negative edit cost defined in terms of the node or edge labels involved in the operation; and the cost of an edit path is defined as the sum over the costs of its edit operations.

Over the past years, some exact and a lot of approximate algorithms for computing GED have been suggested. As the hardness of GED does not allow for a theoretical evaluation of approximate algorithms (the existence of any αapproximation algorithm for GED would imply that the graph isomorphism problem, a prime candidate for an N P-intermediate problem, is in P), these algorithms are typically evaluated empirically. In order for such a comparison to be fair, it is highly desirable that the compared algorithms be implemented within the same environment. However, to the best of our knowledge, no software is available that can be used for this purpose.

In this paper, we present the C++ template library GEDLIB which is intended to fill this gap. GEDLIB is available on GitHub: https://github.com/dbblumenthal/gedlib

In its current version, GEDLIB contains implementations of 24 different GED algorithms and 9 different edit cost functions. Further algorithms and edit costs can be implemented easily by implementing abstract classes contained in GEDLIB. For this, the user has access to standard libraries for blackbox optimization, mixed integer linear programming, the linear sum assignment problem with and without error-correction, deep neural networks, and support vector machines. GEDLIB provides a parser to load graphs given in the GXL file format. Alternatively, graphs with user-specified node ID, node, and edge label types can be constructed from within GEDLIB. Internally, GEDLIB uses the Boost Graph Library [START_REF] Lee | The Boost Graph Library: User Guide and Reference Manual[END_REF] for representing the graphs and Eigen [START_REF] Guennebaud | [END_REF] for matrix operations.

The remainder of this paper is organized as follows: In Section 2, the overall architecture of GEDLIB is sketched. In Section 3, the user interface is presented. In Section 4 and Section 5, the abstract classes for implementing GED algorithms and edit cost functions are described. Section 6 concludes the paper. Details, examples, and installation instructions can be found in the documentation.

Overall Architecture

Figure 1 shows the overall architecture of GEDLIB in a UML diagram. The entire library is contained in the namespace ged. The template parameters UserNodeID, UserNodeLabel, and UserEdgeLabel correspond to the types of the node IDs, the node labels, and the edge labels of the graphs provided by the user.

-The class template ged::GEDEnv provides the user interface. Via its public member functions, graphs can be constructed or loaded from GXL files, edit costs can be set, the algorithms implemented in GEDLIB can be run, and the results of the runs can be obtained. For users who do not want to provide extensions for GEDLIB, it suffices to get familiar with this class template. -The abstract class template ged::GEDMethod provides a generic interface for implementing algorithms that exactly or approximately compute GED. -The abstract class templates ged::LSBasedMethod , ged::MIPBasedMethod , and ged::LSAPEBasedMethod are derived from the generic interface provided by ged::GEDMethod . They yield more specialized interfaces for implementing methods using local search, mixed integer linear programming, and transformations to the linear sum assignment problem with error-correction. -The abstract class template ged::MLBasedMethod is derived from the interface ged::LSAPEBasedMethod . It can be used to implement algorithms that use deep neural networks or support vector machines for transforming GED to the linear sum assignment problem with error-correction. -The class template ged::GEDData contains the normalized input data on which all GED algorithms contained in GEDLIB operate. Via the public member functions of ged::GEDData, derived classes of ged::GEDMethod have access to the graphs that have been added to the environment and to the edit cost functions selected by the user. -The abstract class template ged::EditCosts provides a generic interface for implementing edit cost functions.

User Interface

In Figure 2, the class template ged::GEDEnv, which constitutes the user interface of GEDLIB, is displayed in detail. By calling add graph(), add node(), and add edge(), the user can add labeled graphs to the environment. Alternatively, load gxl graphs() can be used to load graphs given in the GXL file format. For this, the template parameter UserNodeID must be set to ged::GXLNodeID a. k. a. std::string, and the template parameters UserNodeLabel and UserEdgeLabel must be set to ged::GXLLabel a. k. a. std::map<std::string,std::string>.

Calls to set edit costs() add edit cost functions to the environment. The user can either select one of the predefined edit cost functions or use her own implementation of ged::EditCosts . Calls to init() initialize the environment eagerly or lazily. If eager initialization is chosen, all edit costs between graphs contained in the environment are precomputed. Otherwise, the edit cost functions are evaluated on the fly. The member function set method() selects one of the GED algorithms available in GEDLIB. Some algorithms accept options, which can be passed to set method() as a string of the form "[--<option> <arg>] [...]". Calls to init method() initialize the selected method for runs between graphs contained in the environment, and calls to run method() run the method between two specified graphs. The results of the runs (lower and upper bounds, runtimes, etc.) can be accessed via various getter member function.

= (c i,k) ∈ R (n+1)×(m+1) ≥0
. The task is to compute a mapping π from rows to columns, such that each row except for n + 1 and each column expect for m + 1 is covered exactly once and C(π) := (i,k)∈π c i,k is minimized. LSAPE can be solved optimally in cubic time [START_REF] Bougleux | Fast linear sum assignment with error-correction and no cost constraints[END_REF]; in GEDLIB, we use the LSAPE toolbox [START_REF] Bougleux | Linear sum assignment with edition[END_REF] for solving LSAPE.

If LSAPE is used for approximating GED(G, H), n and m are set to |V G | and |V H |, the first |V G | rows of C are associated with the nodes of G, the first |V H | columns of C are associated with the nodes of H, and the last rows and columns are associated with dummy nodes used for codifying node insertions and deletions. With this setup, each LSAPE solution π corresponds to a node map between G and H, which, in turn, induces an edit path and hence an upper bound for GED(G, H) [START_REF] Blumenthal | On the exact computation of the graph edit distance[END_REF]. LSAPE based heuristics for GED try to achieve tight upper bounds by encoding structural information of the input graphs into C. Moreover, some of them construct C such that min π C(π) lower bounds GED.

Figure 4 shows the abstract class template ged::LSAPEBasedMethod , which provides the interface for implementing heuristics of this kind. The interface is defined by the virtual member functions starting with the prefix lsape . The most important one is lsape populate instance () , which populates the LSAPE instance C. The following algorithms implemented in GEDLIB are directly derived classes of ged::LSAPEBasedMethod : ged::Bipartite [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF], ged::Branch [2], ged::BranchFast [2], ged::Node [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF], ged::BranchUniform [START_REF] Zheng | Efficient graph similarity search over large graph databases[END_REF], ged::Ring [3], ged::Subgraph [START_REF] Carletti | Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance[END_REF], ged::Walks [START_REF] Gauzère | Approximate graph edit distance guided by bipartite matching of bags of walks[END_REF]. Additionally, all derived classes of ged::LSAPEBasedMethod can be run with the node centralities suggested in [START_REF] Riesen | Improving graph edit distance approximation by centrality measures[END_REF].

Interface for Methods Based on Machine Learning. Recently, it has been suggested to use deep neural networks or support vector machines for carrying out the transformation from GED to LSAPE. Given two graphs G and H, feature vectors are constructed for all node substitutions, deletions, and insertions, and the matrix C is defined as c i,k := 1 -p (i, k). Here, p (i, k) is the confidence of a machine learning framework (either a deep neural network or a support vector machine) that the feature vector associated to the node edit operation corresponding to row i and column k is contained in an optimal node map. Figure 5 details the abstract class template ged::MLBasedMethod , which provides the interface for algorithm adopting this paradigm. For implementing the interface, it suffices to override the virtual member functions starting with the prefix ml . The most important ones are the three virtual member functions of the form ml populate * feature vector () , which construct the feature vectors associated to the node edit operations. Derived classes of ged::MLBasedMethod do not have to implement the machine learning frameworks, as ged::MLBasedMethod offers support for artificial deep neural networks (using FANN [START_REF] Nissen | Implementation of a fast artificial neural network library (FANN)[END_REF]) and support vector machines (using LIBSVM [START_REF] Chang | LIBSVM: A library for support vector machines[END_REF]). The following algorithms implemented in GEDLIB are directly derived classes of ged::MLBasedMethod : ged::BipartiteML [START_REF] Riesen | Predicting the correctness of node assignments in bipartite graph matching[END_REF], ged::RingML [START_REF] Blumenthal | Upper bounding GED via transformations to LSAPE based on rings and machine learning[END_REF].

ged::MLBasedMethod ... // misc. variables -ml populate substitution feature vector () // substitution features -ml populate deletion feature vector () // deletion features -ml populate insertion feature vector () // insertion features ... // misc. member functions UserNodeLabel,UserEdgeLabel Interface for Methods Based on Mixed Integer Programming. Another approach for exactly or approximately computing GED is to rephrase the problem of computing GED(G, H) as a mixed integer programming (MIP) problem. GED(G, H) can then be computed exactly by calling an MIP solver. Alternatively, lower bounds for GED(G, H) can be obtained by solving the linear programming (LP) relaxations of the MIP formulations.

Figure 6 shows the abstract class template ged::MIPBasedMethod , which provides the interface for GED algorithms that use MIP formulations. The virtual member functions that define the interface start with the prefix mip . The most important one is mip populate model () , which constructs the employed MIP formulation and must be overridden by all derived classes. In GEDLIB, we use Gurobi [START_REF]LLC: Gurobi optimizer reference manual[END_REF] as our MIP and LP solver. Gurobi is commercial software but offers a free academic license. For users who cannot obtain a license for Gurobi, the installation script distributed with GEDLIB offers the option to install GEDLIB without ged::MIPBasedMethod and its derived classes. The following algorithms implemented in GEDLIB are directly derived classes of ged::MIPBasedMethod : ged::F1 [Interface for Methods Based on Local Search. Another popular approach for upper bounding GED is to use variants of local search to systematically vary a previously computed or randomly generated node map, such that the cost of the induced edit path decreases. Figure 7 shows the abstract class template ged::LSBasedMethod , which provides the interface for algorithms using local search. The prefix ls marks the virtual member functions defining the interface. The most important one is ls run from initial solution () , which runs the local search from an initial node map. The following algorithms implemented in GEDLIB are directly derived classes of ged::LSBasedMethod : ged::IPFP [START_REF] Blumenthal | Quasimetric graph edit distance as a compact quadratic assignment problem[END_REF][START_REF] Bougleux | Graph edit distance as a quadratic assignment problem[END_REF][START_REF] Bougleux | Graph edit distance as a quadratic program[END_REF], ged::BPBeam [START_REF] Ferrer | A first step towards exact graph edit distance using bipartite graph matching[END_REF][START_REF] Riesen | Combining bipartite graph matching and beam search for graph edit distance approximation[END_REF], ged::Refine [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF]. Moreover, ged::LSBasedMethod provides support for running all derived classes with parallel multi-start as suggested in [START_REF] Daller | Approximate graph edit distance by several local searches in parallel[END_REF], and stochastic generators as suggested in [START_REF] Boria | Approximating GED using a stochastic generator and multistart IPFP[END_REF]. edge. The functions vectorize * label() return vector representations of the node and the edge labels, which are required by some methods. In GEDLIB, edit costs are available for the datasets aids, fingerprint, grec, letter, mutagenicity, and protein from the IAM Graph Database [START_REF] Riesen | IAM graph database repository for graph based pattern recognition and machine learning[END_REF], for the datasets acyclic, alkane, pah, and mao from GREYC's Chemistry Dataset (available at https://brunl01.users.greyc.fr/CHEMISTRY/), and for the dataset cmu-ged from the Graph Data Repository for Graph Edit Distance [START_REF] Abu-Aisheh | A graph database repository and performance evaluation metrics for graph edit distance[END_REF]. We also provide constant edit cost functions that can be used with any data.

Abstract Class for Implementing Edit Costs

Conclusions and Future Work

In this paper, we have presented GEDLIB, a C++ library for GED computations. GEDLIB currently implements 24 different GED algorithms and 9 different edit cost functions designed for datasets which are widely used in the research community. In the future, we will provide Python and MATLAB bindings for better usability. Moreover, we would like to encourage authors of algorithms and edit costs that are not implemented in GEDLIB to commit their work to GEDLIB.

Fig. 1 .

 1 Fig. 1. The overall architecture of GEDLIB shown in a UML class diagram.

-Fig. 4 .

 4 Fig. 4. The interface ged::LSAPEBasedMethod for methods based on LSAPE.

Fig. 5 .

 5 Fig. 5. The interface ged::MLBasedMethod for LSAPE based methods that use machine learning techniques for populating their LSAPE instances.

Fig. 6 .

 6 Fig. 6. The interface ged::MIPBasedMethod for methods based on MIP.

Figure 8 Fig. 7 .

 87 Figure8shows the abstract class template ged::EditCosts , which provided the interface for implementing edit cost functions. The virtual member functions * del cost fun() compute the cost of deleting a node or an edge with a given label, the functions * ins cost fun() compute the insertions costs, and the functions * rel cost fun() compute the costs for relabeling a node or an

Fig. 8 .

 8 Fig. 8. The interface ged::EditCosts for implementing edit costs.

 Figure 3 details the abstract class template ged::GEDMethod , which provides the generic interface for implementing GED. The interface is defined by the virtual member functions starting with the prefix ged . We here describe only the most important virtual member functions; the remaining ones are detailed in the documentation: ged run () runs the method between two input graphs, ged init () initializes the methods for the graphs that have been added to the environment, and ged parse option () parses the options of the method. The following existing algorithms already implemented in GEDLIB are directly derived classes of ged::GEDMethod : ged::BranchTight [2], ged::HED [17], ged::Partition [32], ged::Hybrid [32], ged::SimulatedAnnealing [30], ged::BranchCompact [32], ged::AnchorAwareGED [14].

		UserNodeLabel,UserEdgeLabel
		ged::GEDMethod
	...	// misc. variables
	-ged run ()	// runs the method between two graphs
	-ged init ()	// initializes the method for the graphs in ged data
	-ged parse option () // parses the options
	...	// misc. member functions
	Fig. 3. The generic interface ged::GEDMethod .
		UserNodeID,UserNodeLabel,UserEdgeLabel
		ged::GEDEnv
	...	// misc. variables
	+ add graph()	// adds a graph to the environment
	+ add node()	// adds a node to a previously added graph
	+ add edge()	// adds an edge to a previously added graph
	+ load gxl graphs() // loads graphs given as GXL files
	+ set edit costs() // selects the edit costs
	+ init()	// initializes the environment
	+ set method()	// selects the GED method
	+ init method()	// initializes the selected GED method
	+ run method()	// runs the selected GED method
	...	// misc. member functions

Fig. 2. The user interface ged::GEDEnv. 4 Abstract Classes for Implementing GED Algorithms Generic Interface.

Interface for Methods Based on the Linear Sum Assignment Problem with Error-Correction. A popular approach for approximating GED is to use transformations to the linear sum assignment problem with error-correction (LSAPE). An instance of LSAPE consists of a cost matrix C

 23], ged::F2 [23], ged::CompactMIP [6], ged::BLPNoEdgeLabels [21].

		UserNodeLabel,UserEdgeLabel
		ged::MIPBasedMethod
	...	// misc. variables
	-mip populate model () // constructs the MIP formulation
	...	// misc. member functions