Haeder Y Althoby

Mohamed Didi Biha
email: mohamed.didi-biha@unicaen.fr

André Sesboüé
email: andre.sesboue@unicaen.fr

Exact and heuristic methods for the vertex separator problem

Keywords: Graph partitioning, Vertex separator, Integer programming, Branch-and-Bound, Greedy algorithm

Given a connected undirected graph G = (V, E) with n vertices and a positive integer β(n), the vertex separator problem (VSP for short) is to find a partition of V into nonempty three classes A, B, C such that there is no edge between A and B, max{|A|, |B|} ≤ β(n) and |C| is minimum. In this paper, we propose a pratical and efficient methods to solve VSP, based on branch-and-bound procedure, which uses linear programming, and a greedy algorithm. We show, by computational experiments, that our approach is able to solve in short time large-scale instances from the literature to optimality or near optimality.

Introduction

The graphs we consider are finite, undirected and connected. We denote a graph by G = (V, E), where V is the node set and E is the edge set. Let G = (V, E) be a graph and β(n) be a positive integer, where n = |V |. The vertex separator problem (VSP for short) is to find a partition of V into three nonempty classes A, B, and C such that:

(i) There is no edge between A and B;

(ii) max{|A|, |B|} ≤ β(n);

(iii) |C| is minimum.

The subset C is called a separator. The subsets A and B are called shores of the separator C. For convenience, a partition {A, B, C} of V which satisfies (i) and (ii) will be also called a separator.

The VSP appears in wide range of applications. In the field of graph algorithms, the computation of balanced small-sized separators is very useful, especially for divide-and-conquer algorithms. In communication networks, a separator is seen as a bottleneck when a graph represents the network. To check the capacity and brittleness of a network, the separator is used to find bounds and brittle nodes. In bioinformatics and computational biology, separators are wanted in grid graphs providing a simplified representation of proteins.

The VSP is NP-hard [START_REF] Bui | Finding Good Approximate Vertex and Edge Partitions is NP-Hard[END_REF][START_REF] Garey | Computers and Intractabiliy[END_REF] and still NP-hard in planar graphs [START_REF] Fukuyama | NP-completeness of the planar separator problems[END_REF].

When β(n) = n -k for some positive constant k, the problem becomes polynomially solvable [START_REF] Balas | The vertex separator problem : a polyhedral investigation[END_REF]. As it was mentionned in [START_REF] Balas | The vertex separator problem : a polyhedral investigation[END_REF], the VSP is trivial if β(n) = 1 and it is polynomially solvable if β(n) ≥ n -1.

A few exact algorithms have been developped for VSP. They are based on branch-and-cut [START_REF] Balas | The vertex separator problem : a polyhedral investigation[END_REF][START_REF] Souza | The vertex separator problem : algorithms and computations[END_REF], branch-and-bound [START_REF] Zhang | An exact algorithm for solving the vertex separator problem[END_REF], lagrangian relaxation [START_REF] Cavalcante | Lagrangian relaxation and cutting planes for the vertex separator problem[END_REF][START_REF] Cavalcante | Exact algorithms for the vertex separator problem in graphs[END_REF]. Theses methods achieve good performance for instances with up 150 vertices, but fail to solve larger instances. Many heuristics have been proposed to obtain good solutions for large VSP instances. Benlic and Hao [START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF] and Zhang and Shao [START_REF] Zhang | An improved K-opt local search algorithm for the vertex separator problem[END_REF] used breakout local search BLS. Jesús, Juan and Abraham [START_REF] Jesú | Combing inteensification and diversification strategies in VSN.An application to the Vertex Separator problem[END_REF] used four shake algorithms and embed them into a Variable Neighborhood Search scheme. Sanchez-Oro et al. [START_REF] Sanchez-Oro | General variable neighborhood search for computing graph separators[END_REF] introduced several Variable Neighborhood Search(VNS) algorithms, which alternate between a local search phase and a shaking phase. Hager et al. [START_REF] Hager | Continuous quadratic programming formulations of optimization problems on graphs[END_REF] proposed a continuous optimization approach.

The article is organised as follows. In the next section, we present the mixed linear integer programming introduced by [START_REF] Balas | The vertex separator problem : a polyhedral investigation[END_REF] for VSP and we show how we can strengthen it's linear relaxation. In Section 3, we present a simple greedy algorithm to solve VSP. Our computational results are presented in Section 4, and finally some concluding remarks are given in Section 5.

Mixed integer linear programming formulation

Let G = (V, E) be an undirected graph and β(n) be a positive integer, where n = |V |. For every separator {A, B, C} we associate an incidence vector (x, y) ∈ R 2n defined by x v = 1 if v ∈ A and 0 otherwise, and y v = 1 if v ∈ B and 0 otherwise. In [START_REF] Balas | The vertex separator problem : a polyhedral investigation[END_REF], Balas and de Souza give the following mixed integer linear prrogram for VSP:

(M IP)                                  max v∈V (x v + y v) x u + y v ≤ 1 ∀(uv) ∈ E x v + y u ≤ 1 ∀(uv) ∈ E x v + y v ≤ 1 ∀v ∈ V 1 ≤ v∈V y v ≤ β(n) 1 ≤ v∈V x v ≤ β(n) x v ∈ {0, 1} ∀v ∈ V y v ≥ 0 ∀v ∈ V
First and second inequalities come from the fact that there is no edge between A and B. Third inequalities come from the fact that A ∩ B = ∅. Fourth and fifth inequalities come from the fact that A = ∅ = B and max{|A|, |B|} ≤ β(n).

In general, the linear relaxation of (MIP) is very weak and not appropriate to obtain a good upper bound for VSP. Let u and v be tow non-adjacent nodes. Denote by α uv the maximum number of node-disjoint paths between u and v. Define

α = min{α uv : u, v ∈ V, (uv) / ∈ E}.
We note that for any path between any two vertices a ∈ A and b ∈ B, then C have at least one vertex in common. Therefore |C| ≥ α. Thus, α min is as a lower bound of the cardinality of any separator. In order to strengthen the linear relaxation of (MIP), Didi Biha and Meurs [START_REF] Zhang | An exact algorithm for solving the vertex separator problem[END_REF] added the following valid inequality:

v∈V (x v + y v) ≤ n -α (2.1)
The calculation of α can be done by solving p max-flow problems, where p = |{(uv) : u, v ∈ V, (uv) / ∈ E}. For small and medium instances, with up 200 vertices, inequality (??) will plays an important role in the successful computational experiments reported in Section 4. For large instances, this inequality make a significant improvement in the quality of the upper bound obtained by the branch-and bound procedure based on the formulation (MIP). It is obvious that when α is small then the inequality (2.1) is weak. We can improve it by replacing α by ᾱ ≥ α. In the following, we will explain how we obtain such ᾱ. For every u ∈ V , define α u = min{α uv : v ∈ V, (uv) / ∈ E}. Without loss of generality, we suppose that V = {u 1 , . . . , u n } and

α u 1 ≤ α u 2 ≤ . . . ≤ α un . Remark 2.1 If (A, B, C) is a separator, then |C| ≥ max{α u : u ∈ A ∪ B}.
Let (A , B , C) be a solution of VSP, for example, the solution obtained from the greedy algorithm presented in the next section.

If (Ā, B, C) is a solution of VSP such that | C| < |C |, or in equivalent manner | Ā| + | B| > |A | + |B |, then we must have u k ∈ Ā ∪ B for some k ≥ |A | + |B | + 1. Thus, by Remark 2.1, | C| ≥ α k ≥ α |A |+|B |+1
. Thus, a suitable value of ᾱ is given by α |A |+|B |+1 and we can replace (2.1) by the following inequality :

v∈V (x v + y v) ≤ n -ᾱ (2.2)

A simple greedy algorithm

Le G = (V, E) be a graphe. The neighborhood of a vertex u ∈ V , denoted by

N (u), is the set of vertices v ∈ V such that (uv) ∈ E. The neighborhood of a subset A ⊆ V , denoted by N (A), is the set of vertices v ∈ V \ A such that (uv) ∈ E for some u ∈ A.
We build a solution (A, B, C) of VSP as follows: to initialize the algorithm, choose a vertex a ∈ V with minimum degree in G, set

A = {a}, C = N (a) and B = V \ (A ∪ C). In the second step, choose a vertex i / ∈ A with minimum neighborhood in B \ {i} (i.e., |N (i) ∩ B| is minimum). Set A = A ∪ {i}, C = N (A) and B = V \ (A ∪ C)
, and so on until satisfy the condition |A| + |C| > n -β(n). The last condition guarantees that, at the end of the algorithm, (A, B, C) is a separator such that max{|A|, |B|} ≤ β(n). The following code specifies the algorithm more formally.

Algorithm 1 GA

1: choose a vertex a with minimum degree.

2: A = {a}; C = N (A); B = V \ (A ∪ C). 3: while |A| + |C| ≤ n -β do 4: Let i ∈ V \ A such that |N (i) ∩ B| is minimum . 5: A = A ∪ {i}; C = N (A); B = V \ (A ∪ C). 6:
End while

Computational results

Our numerical test were programmed in C++ and compiled with GNU g++ under GNU/Windows 7 running on a Dell laptop with an Intel Core i7-4800MQ with 2.70 GHz and 8 GB of RAM. In order to compare our approach with the state-of-the-art, they have been performed on the same instances considered by De Souza and Cavalcante [START_REF] Cavalcante | Exact algorithms for the vertex separator problem in graphs[END_REF] and Benlic and Hao [START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF]. De Souza and Cavalcante consider 62 instances with a number of vertices between 73 and 212. These instances can be download from [17]. Benlic and Hao consider 54 more challenging graphs generated by Helmberg and Rendl [START_REF] Helmberg | A spectral bundle method for semidefinite programming[END_REF]. This benchmark consists of toroidal, planar, and random graph instances ranging from 800 to 3000 vertices. These instances can be download from [19]. Based on the arguments for the development of efficient divide-and-conquer algorithms [START_REF] Lipton | A separator theorem for planar graphs[END_REF], the value of the parameter β(n) is set to 2n 3 , which is more used in literature. We apply branch-and-bound procedure (BB) and algorithm GA to the instances mentioned above. For instances with more than 250 vertices, branchand-bound procedure fails to obtain optimal solutions. However, it allows us ton obtain good upper bounds. The branch-and-bound procedure has been conducted in two steps. We first calculated the parameter α, the lower bound of any cardinality of any separator. This achived by calculating p max-flow problems, where p = |{(uv) : u, v ∈ V, (uv) / ∈ E}. We use the Lemon library [16] in order to solve the max-flow problems. After adding inequality (2.2), we then solve the mixed-integer program (MIP) introduced in Section 2 using Ilog- CPLEX 12.6 [18].

The results of our computational experiments are presented in Tables 1,2,3 and 4, where each line corresponds to one specific instance.

Table 1 summarizes our results compared with those obtained by Cavalcante and de Souza [START_REF] Cavalcante | Exact algorithms for the vertex separator problem in graphs[END_REF]. For every instance, we compare our results with the best one among the four algorithms developped by Cavalcante and de Souza.

The first column contains the instance name. The second column contains the number of vertices of the graph. The third column contains the value of the objective function obtained by the heuristic GA. The fourth column contains the value of the objective function obtained by the branch-and-bound procedure (BB), actually, the optimal solution. The fifth column gives the running time of BB in seconds. The two last columns contain respectively the best values of the objective function obtained by Cavalcante and de Souza and the corresponding running times. We didn't record the running time of the heuristic GA. In fact, for all instances, this time is less than 0.05 second.

With the branch-and-bound procedure, we were able to find the optimal solution for all instances in small time. The only exception being instance dim.DSJC125.1 for wich the optimal solution was found after 61 minutes. These good results prove the importance of inequality (2.2). From Table 1, we see that 16 instances (the value in sixth column appears in bold) could not be solved by Cavalcante and de Souza. We recall that for every instance, to make a comparison with our result, we have choosen the best result obtained by Cavalcante and de Souza among the four algorithms they developped. If we consider every algorithm separately, we can observe in [START_REF] Cavalcante | Exact algorithms for the vertex separator problem in graphs[END_REF] that there is at least 27 instances for which their algorithm could not reach an optimal solution. We can observe also that they proved optimiality only for 4 instances. We note the good performance of our heuristic GA. It was able, in less than 0.05 second, to obtain an optimal solution for 34 instances (the value in third column is indicated with *) and quasi-optimal solution for the other instances. In table 2, we present our numerical tests on a subset of instances considered by Benlic and Hao [START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF]. In their experiments, the value of parameter β(n) is set to 2n 3 for 26 instances (presented in Table 2) and 1.05×n 2 for 28 instances (presented in table 3). Obviously, the value of β(n) plays a key role in the hardness or easiness of instances. The influence of this parameter is not the subject of this work and needs to be explored in further studies. Thus, we compare ours results with those obtained by Benlic and Hao only for instances for which the value of β(n) is set to 2n 3 . Benlic and Hao proposed an nondertministic heuristic based on Breakout Local Seearch (BLS). For evey instance, they their over runs. The results are presented in Table 2. The first column contains the name of the instance. The second column contains the number of vertices of the graph. The third column contains the values of objective function obtained by our heuristic GA. The fourth column contains the running time of GA in seconds. The fifth and sixth columns contain respectively the values of objective function obtained by Benlic and Hao and the corresponding running time. In order to evaluate the quality of solutions obtained we calculate for every instance an upper bound. This is done by applying the branch-and-bound procedure within 3 hours. The upper bounds are reported in seventh column. We see in Table 2 that the heuristic GA has a similare performance to BLS with less computation time. It was able to obtain an optimal solution for 13 instances (the value in third column is indicated with *). For the rest of instances, the percentage of optimality reached by the heuristic GA is more than 92% for 8 instances and more than 78% for 5 instances. In table 3, we present our computational results on the second class of graphs generated by Helmberg and Rendt. The first column contains the name of the instances. The second column contains the number of vertices of the graph. The third and forth columns contains respectively the results obtained by heuristic GA and the corresponding running times in seconds. The last column contains the values of upper bounds obtained as mentioned above. It appears from Table 3 that 6 instances have been solved to optimality (the value in third column is indicated with *). For the others instances, we can see that the percentage of otimality reached by the heuristic is more than 83%.

In table 4, we present computational results on the set of 11 new instances which can serve as reference for future works. These instance come from the DIMACS challenge on graph coloring. The first column contains the instance name where all instances have 450 vertices. In order to illustrate that inequality (2.2) is an interesting improvement of inequality (2.1), the values of α and ᾱ are respectively given in the second and third column. The fourth and fifth column contain respectively the values of objective function obtained by heuristic GA and the corresponding running times. The last column contains the upper bounds of the optimal solutions. We can see in Table 4 that one instance is solved to optimality (le450-25a) and for the other instances, the percentage of optimality reached by the heuristic is more than 96%.

Conclusions

In this article, we have considered the vertex separator problem. To resolve this problem, we have proposed a simple greedy heuristic and a branch-and-bound procedure based on the linear integer programming model introduced in [START_REF] Balas | The vertex separator problem : a polyhedral investigation[END_REF]. We strengthen the relaxation of this model by adding an efficient inequality which is obtained by exploiting the solution given by the greedy heuristic. Our computational results show that our methods were able to solve, in very small time, to optimality all the instances considered in [START_REF] Cavalcante | Exact algorithms for the vertex separator problem in graphs[END_REF] and to optimality or near optimality all instances considered in [START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF]. Furthmore, we solved to optimality, for the first time, many benchmark instances.

Table 1 :

 1 Comparison of our results with those obtained by Cavalcante and de Souza (62 instances)

	Instances	|V |	Heuristic GA	BB	time BB	CS	time CS
	dim.DSJC125.1	125	89	91	3666	89	4.12
	dim.games120	120	99	102	5.23	99	1.67
	dim.myciel7	191	156*	156	4.91	155	3.71
	dim.myciel6	95	76*	76	0.58	75	1.18
	dim.queenl2 12	144	97*	97	6.47	97	6.69
	dim.Queenl1 11	121	81*	81	3.18	81	5.56
	dim.Queenl0 10	100	67*	67	1.45	67	4.04
	dim.queen8 12	96	65*	65	2.93	65	3.69
	dim.Queen9 9	81	55*	55	0.9	55	2.73
	dim.Queen8 8	64	43*	43	0.08	43	1.67
	miles1000	128	110*	110	1.87	109	8.23
	dim.Queen7 7	49	31*	31	0.06	31	0.9
	dim.DSJC125.5	125	74*	74	3.29	74	5.11
	dim.DSJC125.9	125	22*	22	0.58	22	5.73
	mat.can96	96	72*	72	0.69	72	1.78
	mat.can73	73	53*	53	0.53	53	1.60
	mat.rw136	136	120	121	1.06	120	2.49
	mat.gre 115	115	95*	95	0.87	93	3.45
	mat.L125.gre 185	125	104*	104	1.45	104	4.64
	mat can144	144	126*	126	0.12	126	5.60
	mat.L125.can 161	125	95	97	8.42	97	4.10
	mat.lund a	147	115	118	1.05	116	4.83
	mat.L125.bcsstk05	125	99	101	1.08	101	3.48
	mat.L125.dwt 193	125	94	95	1.30	95	3.49
	mat.L125.fs-183-1	125	92	98	1.89	98	2.70
	mat.bcsstk04	132	83	84	0.45	84	4.63
	mat.arc130	130	88*	88	0.47	88	7.51
	mat.L100.steam2	100	75	76	0.39	76	2.84
	mat.L120.fidap025	120	100	102	0.25	102	2.57
	mat.L120.cavity01	120	95	99	0.41	99	2.60
	mat.L120.fidap021	120	93	98	0.34	98	2.84
	mat.L120.rbs480a	120	87	88	0.75	88	3.40
	mat.L120.wm2	120	96	98	2.67	92	1.73
	mat.L100.rbs480a	100	72	73	0.45	73	2.26
	mat.L80.wm2	80	60	61	1.09	61	1.96
	mat.L100.wm3	100	75	77	13.79	77	2.43
	mat.L120.e05r0000	120	85	90	0.19	90	2.39
	mat.L100.wm1	100	74*	74	2.21	73	2.30
	mat.L120.fidap022	120	84*	84	0.39	84	3.87
	mat.L100.fidapm02	100	69*	69	0.77	69	2.28
	mat.L120.fidap001	120	82*	82	0.48	82	4.08
	mat.L100.e05r0000	100	69	70	0.16	70	1.92
	mat.L80.fidapm02	80	53*	53	0.22	53	1.54
	mat.L120.fidapm02	120	85	86	0.98	86	3.44
	mat.L100.fidap001	100	64*	64	0.17	64	2.76
	mat.L80.fdap001	80	52	54	0.16	54	1.40
	mat.L100.fidap022	100	62*	62	0.33	62	2.83
	mat.L80.fidap022	80	41*	41	0.09	41	1.65
	mat.L100.fidap027	100	69*	69	1.69	69	2.48
	mat.L100.fidap002	100	66*	66	1.19	66	1.91
	mat.L120.fidap002	120	67	68	0.30	68	3.58
	mat.L120.fidap027	120	83*	83	0.47	83	2.33
	miplib.noswot.p	182	166	167	2.07	146	2.77
	miplib.khb05250.p	100	75*	75	1.54	75	1.20
	miplib.stein27r.p	118	62*	62	3.49	62	3.78
	miplib.10teams.p	210	119	120	13.04	120	10.55
	miplib.mod010.p	146	90*	90	61.84	88	3.99
	miplib.1152lav.p	97	60	61	2.34	60	1.73
	miplib.lp41.p	85	50*	50	3.28	49	4.32
	miplib.air03.p	124	73	75	6.21	74	5.83
	miplib.misc03.p	96	52*	52	3.70	52	2.81
	miplib.misc07.p	212	113	116	43.9	115	20.19

Table 2 :

 2 Comparision of GA with BLS algorithm on graphs generated by Helmberg and Rendl (26 instances).

	Instances	|V |	GA	time	BLS	time BLS	UB
	g1	800	543*	0.96	543	7.2	543
	g2	800	543*	0.66	543	8.7	543
	g3	800	543*	0.23	543	66.3	543
	g5	800	543*	0.19	543	65.9	543
	g6	800	543*	0.25	543	8.5	543
	g7	800	543*	0.26	543	10.0	543
	g8	800	543*	0.26	543	69.6	543
	g9	800	543*	0.15	543	34.0	543
	g10	800	543*	0.21	543	70.7	543
	g11	800	784**	2.68	784	0.0	784
	g12	800	768*	1.48	768	0.0	768
	g13	800	755*	1.43	755	0.2	755
	g14	800	628	1.22	654	768.7	680
	g15	800	633	1.22	656	856.7	680
	g16	800	626	1.17	656	188.6	680
	g17	800	633	1.10	656	401.1	680
	g18	800	628	1.18	654	623.5	680
	g19	800	633	1.17	656	1085.8	680
	g20	800	626	1.09	656	353.2	680
	g21	800	634	1.11	656	552.5	680
	g22	2000	1412	10.71	1412	657.7	1800
	g23	2000	1410	10.40	1410	310.4	1800
	g24	2000	1411	10.68	1411	371.5	1800
	g25	2000	1411	10.56	1411	832.5	1800
	g26	2000	1413	10.70	1413	313.9	1800
	g33	2000 1950* 39.59	1950	0.2	1950

Table 3 :

 3 Computational results for the second group of instances generated by Helmberg and Rendl (28 instances)

	Instances	|V |	GA	time	UB
	g4	800	543*	0.34	543
	g27	2000	1412	10.18	1700
	g28	2000	1410	10.29	1700
	g29	2000	1410	10.52	1700
	g30	2000	1410	10.60	1700
	g31	2000	1411	10.36	1700
	g32	2000 1960* 38.60	1960
	g34	2000 1920* 38.09	1920
	g35	2000	1580	32.12	1700
	g36	2000	1580	32.32	1700
	g37	2000	1576	31.91	1700
	g38	2000		31.60	1700
	g39	2000	1580	32.74	1700
	g40	2000	1580	32.74	1700
	g41	2000	1576	31.6	1700
	g42	2000	1578	31.66	1700
	g43	1000	705	0.97	750
	g44	1000	705	1.02	750
	g45	1000	706	1.03	750
	g46	1000	703	0.97	750
	g47	1000	704	0.97	750
	g48	3000 2900* 143.8	2900
	g49	3000 2940* 145.7	2940
	g50	3000 2950* 149.5	2950
	g51	1000	788	2.92	850
	g52	1000	783	2.88	850
	g53	1000	789	2.93	850
	g54	1000	786	2.77	850

Table 4 :

 4 DIMACS instances(11 instances)

	Instances	α	ᾱ	GA	time GA UB
	le450-5a	13	16	317	0.10	326
	le450-5b	12	16	316	0.11	326
	le450-5c	27	31	308	0.20	318
	le450-5d	29	32	309	0.61	319
	le450-15b	1	12	326	0.72	336
	le450-15c	18	32	307	0.10	317
	le450-15d	18	33	308	0.14	318
	le450-25a	2	6	340*	0.62	340
	le450-25b	2	8	337	0.14	347
	le450-25c	7	21	311	0.20	322
	le450-25d	11	23	311	0.41	321