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Abstract. We establish new upper bounds for the height of the S-integral points of

an elliptic curve. This bound is explicitly given in terms of the set S of places of the

number field K involved, but also in terms of the degree of K, as well as the rank,

the regulator and the height of a basis of the Mordell-Weil group of the curve. The

proof uses the elliptic analogue of Baker’s method, based on lower bounds for linear

forms in elliptic logarithms.

2010 Mathematics Subject Classification. Primary: 11G50; Secondary: 11G05, 11J86, 14G05.

1 Introduction

A fundamental problem in Diophantine Geometry is to get effective versions of known
qualitative results. For example the classical finiteness theorem of Siegel asserts that the
set of integral points of an affine algebraic curve of genus greater than one or of genus
zero with at least 3 points at infinity is finite. For that curves of genus greater than 2,
Siegel’s theorem is superseded by Faltings’ theorem which asserts that the set of rational
points is finite. These are qualitative statements, but not effective. To effectively find these
points, say, in a fixed number field, it would suffice to find an effective upper bound for
the height of the points. Nowadays, the results of this kind which are known come from
Baker’s method (based on non trivial lower bounds for linear forms in logarithms). They
all concern integral points. The method can be applied for certain classes of curves, in
particular, for elliptic curves ([BC70]). Generalizing an idea of Gel’fond, S. Lang [Lan78]
has shown that one can also bound the height of integral points of an elliptic curve E
using lower bounds for linear forms in elliptic logarithms, in a more natural way than
using classical logarithms.

Let E be an elliptic curve defined over a number field K0, let K/K0 be any finite
extension and let S be a finite set of finite places of K. In this paper we obtain new upper
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bounds for the height of the S-integral points of E(K), using lower bounds in linear forms
in elliptic logarithms (Theorem 3.1).

This method was first applied successfully by D. Masser [Mas75, Appendix IV] when
K = K0 = Q, the curve E has complex multiplication and S = ∅. To this end he used his
own lower bounds for usual (archimedean) elliptic logarithms. D. Bertrand [Ber78] then
established such lower bounds for p-adic elliptic logarithms, which allowed him to treat the
case K = K0 and S arbitrary (again for curves with complex multiplication). Applying
the explicit lower bounds for linear forms in elliptic logarithms of S. David [Dav95] in the
archimedean case, and of N. Hirata [Hir12] in the ultrametric one, we deal here with the
general case of an arbitrary elliptic curve defined over K0 and of an arbitrary field extension
K/K0. Our results improve the previous results of D. Bertrand. Moreover, contrary to
the previous works, the bound we obtain for the height of the S-integral points is not only
given in terms of the set S, but also in terms of the number field K. More precisely, the
“constant” which occurred in the previous works is here explicitly given in terms of the
degree [K : Q], the rank of the Mordell-Weil group E(K), the heights of generators of the
free part of E(K), and the regulator of E/K (but we do not make explicit the dependence
on E/K0). As mentioned at the end of Section 4.3, it is possible to derive from our main
result a conditional upper bound in terms only of the degree [K : Q], the discriminant of
K and the set of places S.

For convenience to the reader, we have gathered in Section 2 the notations which will
be used throughout the text. We state the main theorem in Section 3 and prove it in
Section 4.

2 Notations

Throughout the text, if x is a non negative real number, we set log+ x = max{1, log x}
(with the convention log+ 0 = 1).

If K is a number field, we will denote by OK its ring of integers, by DK the absolute
value of its discriminant, and by MK the set of places of K. The set of the archimedean
places will be denoted by M∞

K and the set of the ultrametric ones will be denoted by M0
K .

For each v in MK , we define an absolute value | · |v on K as follows. If v is archimedean,
then v corresponds to an embedding σ : K →֒ C (we will often identify the place v with
the embedding σ), and we set |x|v = |x|σ := |σ(x)|, where | · | is the usual absolute value
on C. If v is ultrametric, then v corresponds to a non zero prime ideal p of OK (we will
identify v and p), and we take for | · |v = | · |p the absolute value on K normalized by
|p|v = p−1, where p is the prime number such that p | p. We denote by Kv the completion
of K at v and use again the notation | · |v for the unique extension of | · |v to Kv. If v is an
ultrametric place associated to the prime ideal p, we denote by ep the ramification index
of p over p, by fp the residue class degree, and by ordp : K

∗
p → Z the valuation normalized

by ordp(p) = ep (hence ordp(x) = −ep logp |x|p for all x in K∗
p ).
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If S is a finite subset of M0
K , we denote by

OK,S = {x ∈ K; ∀v /∈ S ∪M∞
K , |x|v ≤ 1}

the ring of S-integers of K, and we set

ΣS =
∑

p∈S

logNK/Q(p).

Note that with our notation, the set S contains only non-archimedean places of K.
Throughout the text, we denote by h the absolute logarithmic Weil height on the pro-

jective space Pn(Q), and we denote by hK := [K : Q]h the relative height on Pn(K).
Thus, if (α0 : . . . : αn) ∈ Pn(K), we have:

h(α0 : . . . : αn) =
1

[K : Q]

∑

v∈MK

[Kv : Qv] logmax{|α0|v, . . . , |αn|v}. (1)

Let E ⊂ P2 be an elliptic curve defined over a number field K. The Mordell-Weil group
E(K) of K-rational points of E is a finitely generated group:

E(K) ≃ E(K)tors ⊕ Zrk(E(K)).

We will often simply write r = rk(E(K)) for its rank, and we will denote by (Q1, . . . , Qr)
a basis of its free part. We will also denote by O the zero element of E(K).

We further denote by ĥ : E(K) → R the Néron-Tate height on E. The “Néron-Tate
pairing” < , > is defined by < P,Q >= 1

2
(ĥ(P + Q) − ĥ(P ) − ĥ(Q)). The regulator

Reg(E/K) of E/K is the determinant of the matrix H = (< Qi, Qj >)1≤i,j≤r of the
Néron-Tate pairing with respect to the chosen basis (Q1, . . . , Qr), that is

Reg(E/K) = det(H).

If the elliptic curve is defined by a Weiertrass equation y2 = x3 + Ax+B with A,B in
OK , then we have the origin O = (0 : 1 : 0). If Q 6= O is a point of E, we then denote
its affine coordinates (in the above Weierstrass model) as usual by (x(Q), y(Q)). For Q in
E(K) we define hx(Q) := h(1 : x(Q)) if Q 6= O and hx(O) := 0. Finally, we denote by
E(OK,S) the set of S-integral points of E(K) with respect to the x-coordinate, that is

E(OK,S) = {Q ∈ E(K) \ {O}; x(Q) ∈ OK,S} ∪ {O}.

In the whole text, we will fix a number field K0 and an elliptic curve E defined over K0.
Since we do not explicit any dependence on E/K0, we will call “constant” any quantity
depending on E/K0. This convention about constants will apply in particular to the im-
plicit constant involved in the symbol ≪, where X ≪ Y means here that X ≤ c(E/K0)Y ,
where c(E/K0) ≥ 1 is a number depending at most on E/K0.
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3 Statement of the result

Let K0 be a fixed number field, and let E ⊂ P2 be an elliptic curve defined by a Weierstrass
equation

y2 = x3 + Ax+B (2)

with A,B ∈ OK0. Let K be a finite extension of K0 and S ⊂ M0
K a finite set of places of

K.
According to the notations of Section 2, we put r = rk(E(K)), we denote by (Q1, . . . , Qr)

any basis of the free part of the Mordell-Weil group E(K), and we write Reg(E/K) for
the regulator of E/K. We further set

d := [K : Q],

and we define the real number V by

log V := max{ĥ(Qi); 1 ≤ i ≤ r}.

The main result of this article is the following:

Theorem 3.1 In the above set up, let Q be a point in E(OK,S). Then there exist positive
effectively computable real numbers γ0, γ1 and γ2 depending only on A and B (that is, on
the curve E/K0), such that, if r = 0, then hx(Q) ≤ γ0, and, if r > 0, then

hx(Q) ≤ CE,Ke
(8r2+γ1dr)ΣS , (3)

where

CE,K = γr
2

2 r
2r2d9r+15(log+ d)r+6(log+ log V )r+7(log+ log+ log V )2

r∏

i=1

max{1, ĥ(Qi)}

× log+(Reg(E/K)−1)(log+log(Reg(E/K)−1))2(log+log+log(Reg(E/K)−1)). (4)

The bounds obtained by classical Baker’s method often depend on d, DK and ΣS.
The bound of Theorem 3.1 depends on d and ΣS, as well as on the rank rk(E(K)), the
heights ĥ(Qi) and the regulator of E/K. Because of the different nature of the parameters
involving K, it makes sense to compare our result with the results obtained by classical
Baker’s method only when the number field is fixed.

Denote by s the cardinal of S, by P (S) := {p prime | ∃v ∈ S, v|p} the residue char-
acteristics of S, and by P its maximum. For K = Q, L. Hajdu and T. Herendi [HH98]
obtained the following result:

max{h(x), h(y)} ≤ (κ1 s+ κ2) 10
38 s+86 (s+ 1)20 s+35 P 24 (log+(P ))4 s+2,

where κ1 and κ2 depend at most on A and B. For any K, the Corollary 6.9 of [Sur07]
gives:

hx(Q) ≤ k0c
s+k1
d s20 s+k2 P 4 d (logP )8 s+k3 eγ(E,K,S) γ(E,K, S)8d−2,

4



where the numbers ki depend only on E/K0, cd depends only on the degree d and γ(E,K, S) =
4 (logDK+ΣS+k4+4 log 4 d ΣS+k5

log(ΣS+k5)
). In order to compare these different bounds we may

use the following inequalities (for the last one, one may use the Prime Number Theorem,
see, for example [Sur07, Lemma 2.1]):

(d · cardP (S))−1ΣS ≤ logP ≤ ΣS, and

card(S) ≤ d · cardP (S) ≤ 4d
ΣS

log ΣS

.

One can see that, for a fixed K, the bounds of [Sur07, Corollary 6.9 ] and Theorem 3.1 are
of the same order and that for K = Q the bound of [HH98] is stronger.

4 Proof of Theorem 3.1

To prove Theorem 3.1, we will determine an upper bound for |x(Q)|v for each v ∈MK and
then sum over all the places v using the formula (1). The upper bound for |x(Q)|v will be
obtained using the explicit lower bounds for linear forms in elliptic logarithms of [Hir12]
and [Dav95]. In the next section, we first treat the case of an archimedean place v. Then,
in Section 4.2, we handle the case where v is ultrametric. We can then prove Theorem 3.1
in Section 4.3.

In the next sections, we denote by κ1, κ2, . . . , c1, c2, . . . positive real numbers (which we
will call “constants”) depending at most on A and B, i.e. on the curve E/K0. We use
the greek letters for the constants appearing in the statements and the latin letters for the
proofs. In each proof we start counting by c1.

4.1 The archimedean case

In this section we fix an archimedean place v of K, and we assume that the rank r of the
group E(K) is non zero. We denote by σ : K →֒ C the embedding corresponding to v,
and by Eσ the elliptic curve defined by

y2 = x3 + σ(A)x+ σ(B).

The homomorphism σ obviously induces a group isomorphism σ : E(K) ≃ Eσ(σ(K)).
Put g2,σ = −4σ(A) and g3,σ = −4σ(B). Then Eσ is isomorphic to the elliptic curve

defined by
Y 2 = 4X3 − g2,σX − g3,σ (5)

under the substitution X = x, Y = 2y. Let Λσ be the lattice of C with invariants g2,σ,
g3,σ. We will consider the exponential map of Eσ, which is given by

expσ : C → Eσ(C)

z 7→

{
(℘σ(z) : ℘

′
σ(z)/2 : 1) if z /∈ Λσ

(0 : 1 : 0) if z ∈ Λσ,
(6)
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where ℘σ is the Weierstrass function associated to the lattice Λσ. It induces a group
isomorphism C/Λσ ≃ Eσ(C). Let (ω1,σ, ω2,σ) be a basis of the lattice Λσ, and denote by Πσ

the associated fundamental parallelogram centered at zero. Then expσ |Πσ
: Πσ → Eσ(C)

is bijective and we will denote by ψσ : Eσ(C) → Πσ its inverse map (the elliptic logarithm).

Proposition 4.1 Let Q be a non-torsion point of E(K). Write Q = m1Q1+ · · ·+mrQr+
Qr+1, where Qr+1 ∈ E(K) is a torsion point and mi ∈ Z, 1 ≤ i ≤ r, and define M :=
max{|m1|, . . . , |mr|}. Recall that log V := max{ĥ(Qi); 1 ≤ i ≤ r}. Then we have

log |x(Q)|σ ≤ κr
2

1 r
2r2d2r+8(log+ d)r+5(log+M)(log+ logM)

× (log+ log V )r+5
r∏

i=1

max{1, ĥ(Qi)}.

To prove this we will use the following result, which is a consequence of Theorem 2.1 of
[Dav95] (in which we have chosen E = e).

Theorem 4.2 (S. David) Letm1, . . . , mr+1, n1, n2 be rational integers, and let γ1, . . . , γr+1

be elements of Eσ(σ(K)). Define ui = ψσ(γi), 1 ≤ i ≤ r + 1, and put

L = m1u1 + · · ·+mr+1ur+1 + n1ω1,σ + n2ω2,σ.

Set further B = max{|m1|, . . . , |mr+1|, |n1|, |n2|} and logW = max{ĥ(γi), 1 ≤ i ≤ r + 1}.
If L 6= 0, then

log |L| ≥ −κr
2

2 r
2r2d2r+8(log+ d)r+5(log+B)(log+ logB)

× (log+ logW )r+5

r+1∏

i=1

max{1, ĥ(γi)}.

Proof of Proposition 4.1. Let Q, Qr+1, m1, . . . , mr and M be as in the Proposition. We
set γi = σ(Qi) ∈ Eσ(C) and ui = ψσ(γi), 1 ≤ i ≤ r + 1. We have σ(Q) = m1γ1 + · · · +
mrγr + γr+1 and thus, by definition of ψσ there exist n1, n2 ∈ Z such that

ψσ(σ(Q)) = m1u1 + · · ·+mrur + ur+1 + n1ω1,σ + n2ω2,σ. (7)

Since the function ℘σ has a pole of order 2 at zero, there exists a constant c1,σ = c1(σ(A), σ(B)) >
0 such that |z2℘σ(z)| ≤ c1,σ for all z in Πσ. Applying this to z = ψσ(σ(Q)) and putting
c1 := maxσ{c1,σ} (which depends only on the restriction of σ to K0 hence on E/K0 only),
we find that

|x(Q)|σ ≤ c1 · |ψσ(σ(Q))|
−2

i.e.
log |x(Q)|σ ≤ log c1 − 2 log |ψσ(σ(Q))|. (8)

In order to use Theorem 4.2, observe that since all the norms on R2 are equivalent, there
exists a constant c2,σ = c2(σ(A), σ(B)) > 0 such that |xω1,σ + yω2,σ| ≥ c2,σ max{|x|, |y|}

6



for all real numbers x, y ∈ R. Therefore we have, using (7) and since obviously |u| ≤
(|ω1,σ|+ |ω2,σ|)/2 for every u belonging to the fundamental parallelogram Πσ,

c2,σ max{|n1|, |n2|} ≤ |ψσ(σ(Q))|+M(|u1|+ · · ·+ |ur+1|) ≤ c3,σ(1 + (r + 1)M) ≤ c4,σrM.

Hence
max{|n1|, |n2|} ≤ c2rM

with c2 = maxσ{c4,σ/c2,σ} (which depends only on E/K0 for the same reason as above),
and so

B := max{1, |m1|, . . . , |mr|, |n1|, |n2|} ≤ c3rM. (9)

Applying now Theorem 4.2 to the linear form (7) (which is not zero since Q is not torsion)
and taking into account (9), we deduce

log |ψσ(σ(Q))| ≥ −cr
2

4 r
2r2d2r+8(log+ d)r+5(log+M)(log+ logM)

× (log+ log V )r+5

r∏

i=1

max{1, ĥ(Qi)}.

This estimate, together with (8), yields the proposition. ✷

4.2 The ultrametric case

We fix here an ultrametric place v of K associated to a prime ideal p lying above the prime
number p, and we assume again that the rank r of the group E(K) is non zero. We will
prove :

Proposition 4.3 Let Q be a non-torsion point of E(K). Write Q = m1Q1+ · · ·+mrQr+
Qr+1, where Qr+1 ∈ E(K) is a torsion point and mi ∈ Z, 1 ≤ i ≤ r, and define M :=
max{|m1|, . . . , |mr|}. Recall that log V := max{ĥ(Qi); 1 ≤ i ≤ r}. Then we have

log |x(Q)|p ≤ κr
2

3 r
2r2p8r

2+κ4drd9r+14(log+ d)r+3(log+M)

× (log+ log V )r+3
r∏

i=1

max{1, ĥ(Qi)}.

To prove this Proposition we will use the v-adic exponential map of E, whose definition
and properties we now recall for reader’s convenience. By [Wei36] (see also [Lut37]), there
exists a unique function ψ(z) analytic in a neighbourhood of 0 in Kp which satisfies

ψ′(z) = (1 + Az4 +Bz6)−
1
2 ; ψ(0) = 0

(where we define of course (1 + t)−1/2 = 1− t/2 + · · · for t in Kp with |t|p small). It is not
difficult to see that this function ψ is analytic in the open disk

Cp = {z ∈ Kp; |z|p < p−λp},

7



where λp = (p − 1)−1 if p 6= 2 and λp = 1/2 if p = 2. Moreover, one can show that for
z ∈ Cp, z 6= 0, we have

ψ(z) = z +
∑

n≥2

ψnz
n

with |ψnz
n|p < |z|p for all n ≥ 2. It follows from results of non-archimedean analysis (see

e.g. [Gün66, Satz 2]) that ψ induces a bijection ψ : Cp → Cp, whose inverse map is also
analytic. Let ϕ = ψ−1 : Cp → Cp be this inverse map. Then ϕ is the unique solution on Cp
of the differential equation

y′ = (1 + Ay4 +By6)
1
2 ; y(0) = 0.

Moreover, |ϕ(z)|p = |z|p and ϕ(−z) = −ϕ(z) for all z ∈ Cp (note that the similar results
proved in [Lut37, p. 246] give a smaller disk than our Cp when p = 2).

Set now ℘ = 1/ϕ2. One has on Cp \ {0}

1

4
℘′2 = ℘3 + A℘+B.

The v-adic exponential map of E is then defined by

expp : Cp → E(Kp)

z 7→

{
(℘(z) : ℘′(z)/2 : 1) if z 6= 0
O if z = 0

or equivalently by
expp(z) = (ϕ(z) : −ϕ′(z) : ϕ3(z)) (10)

for all z ∈ Cp. This is an injective group homomorphism which is not surjective. Let
Up = expp(Cp) be the image of the exponential map. It is known that the group E(Kp)/Up

is finite. We will need an explicit upper bound for the exponent of this group.

Lemma 4.4 The exponent νp of the group E(Kp)/Up satisfies

νp ≤ pκ5d.

Proof. In what follows we will denote by Op = {z ∈ Kp; |z|p ≤ 1} the valuation ring of Kp,
by Mp = {z ∈ Kp; |z|p < 1} the maximal ideal of Op, by π a uniformizer (i.e. Mp = πOp),
and by k(p) = Op/Mp the residue field of Op.

Let Ep ⊂ P2 be a minimal Weierstrass model of E at p. We know that there is an
admissible change of coordinates

f : K2
p → K2

p , (x, y) 7→ (u2x+ r, u3y + u2sx+ t) (11)

with u, r, s, t ∈ Op, such that f induces a group isomorphism f : Ep(Kp) ≃ E(Kp). Thus,
it suffices to estimate the exponent of the group Ep(Kp)/Up, where Up := f−1(Up).

8



We now claim that the group Up is explicitly given by

Up = {(x : y : 1) ∈ E(Kp); |x|p > p2λp} ∪ {O}. (12)

Indeed, Up is clearly contained in the right-hand side of (12) since |ϕ(z)|p = |z|p for all
z ∈ Cp. Conversely, if (x : y : 1) ∈ E(Kp) satisfies |x|p > p2λp , then we can write

y2/x2 = x(1 +
A

x2
+
B

x3
) = x(1 + t)

with

|t|p = |
A

x2
+
B

x3
|p < p−4λp .

It follows that (1+ t) is a square in Kp since then the series (1+ t)1/2 = 1+ t/2− t2/8+ · · ·
converges in Kp (for p = 2 it converges as soon as |t|p < |2|2p), and thus x is also a square
in Kp, say x = α2. We then have α−1 in Cp, and it follows that there exists z in Cp such
that α−1 = ϕ(z), i.e. x = ϕ(z)−2. We have moreover y2 = x3 + Ax + B = ϕ′2(z)/ϕ6(z).
Hence, taking −z instead of z if necessary, we may choose z so that y = −ϕ′(z)/ϕ3(z).
Therefore, we have found z in Cp such that expp(z) = (x : y : 1). This proves (12).

Using the formulas (11) and the ultrametric inequality, we deduce from this

Up = {(x : y : 1) ∈ Ep(Kp); |x|p > |u|−2
p p2λp} ∪ {0}

= {(x : y : 1) ∈ Ep(Kp); ordp(x)/2 < −(epλp + ordp(u))} ∪ {0}.

In other words, if we denote the canonical p-adic filtration of Ep as in [Hus04], Chapter 14,
by

Ep(Kp) ⊃ E
(0)
p (Kp) ⊃ · · · ⊃ E

(n)
p (Kp) ⊃ · · · ,

we see that Up = E
(n)
p (Kp) with n = [epλp] + ordp(u) + 1.

Estimating the exponent of the group Ep(Kp)/Up = Ep(Kp)/E
(n)
p (Kp) now easily follows

from well-known properties of the p-adic filtration. Indeed, let ∆p ∈ Kp be the minimal
discriminant of the elliptic curve E at p. By the addendum to Theorem 3 of [Tat74] we
first have

[Ep(Kp) : E
(0)
p (Kp)] ≤ max{4, ordp(∆p)}, (13)

and by [Sil94, Proposition VII.2.1] we have

[E
(0)
p (Kp) : E

(1)
p (Kp)] ≤ 2card(k(p)) + 1 = 2pfp + 1 ≤

5

2
pfp. (14)

On the other hand, if we define M̂m
p for every m ≥ 1 as the set Mm

p endowed with the
group structure given by the formal group law associated to Ep, we know that the map

t : E
(m)
p (Kp) → M̂m

p defined by t(O) = 0 and t(Q) = −x(Q)/y(Q) if Q 6= O is a group
isomorphism (see e.g. the proof of Theorem 14.1.2 of [Hus04]). It follows, by [Sil94,
Proposition IV.3.2(a)], that we have for every m ≥ 1 group isomorphisms

E
(m)
p (Kp)/E

(m+1)
p (Kp) ≃ M̂m

p /M̂
m+1
p ≃ Mm

p /M
m+1
p ≃ k(p).

9



Since the characteristic of the field k(p) is equal to p, we thus get that the exponent of the

group E
(m)
p (Kp)/E

(m+1)
p (Kp) is equal to p for all m ≥ 1. Hence we deduce, using (13) and

(14), that the exponent of the group Ep(Kp)/E
(n)
p (Kp) is at most

5

2
max{4, ordp(∆p)}p

fp+n−1.

Let ∆ = −16(4A3+27B2) be the discriminant of the equation (2). Write now ∆ = u12∆p.
We have

n− 1 = [epλp] + (ordp(∆)− ordp(∆p))/12 ≤ [epλp] + ordp(∆)/12,

hence

νp ≤
5

2
max{4, ordp(∆p)}p

fp+[epλp]+ordp(∆)/12.

Noticing now that ordp(∆p) ≤ ordp(∆) ≤ c1ep (with c1 = max
v∈M0

Q(A,B)

{ordv(∆)}) and since

λp ≤ 1/2, we find
νp ≤ c2epp

fp+ep/2+c1ep/12 ≤ c2dp
c3d.

✷

We will also need the following lemma (where we set x(O) = ∞):

Lemma 4.5 Let Q be a point of E(Kp) such that |x(Q)|p > 1. Then, for any positive
integer m, we have |x(mQ)|p ≥ |x(Q)|p.

Proof. Let
E(Kp) ⊃ E(0)(Kp) ⊃ · · · ⊃ E(n)(Kp) ⊃ · · ·

denote the canonical p-adic filtration of E (see for instance [Hus04], Section 14.1). We
recall that for n ≥ 1 we have

E(n)(Kp) = {Q ∈ E(Kp); ordp(x(Q)) ≤ −2n}. (15)

Let Q 6= O be a point of E(Kp) as in the lemma. We know that ordp(x(Q)) is even and thus
Q belongs to E(n)(Kp) with n := −ordp(x(Q))/2 ≥ 1. Since mQ also belongs to E(n)(Kp)
(E(n)(Kp) is a group), it follows at once from (15) that ordp(x(mQ)) ≤ −2n = ordp(x(Q)).
✷

The following Theorem was kindly communicated to us by N. Hirata (see [Hir12]) :

Theorem 4.6 (N. Hirata) Let β1, . . . , βn be elements of K, and let γ1, . . . , γn be n ele-
ments of E(K) ∩ Up. Define ui = exp−1

p (γi), 1 ≤ i ≤ n, and let

L = β1u1 + · · ·+ βnun.

Define the following parameters :

logB = max{1, h(β1), . . . , h(βn)}
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hE = max{1, h(1 : A : B)}

E =
p−λp

max
1≤i≤n

{|ui|p}

δ = max{1,
d

log E
}

g = max
1≤i≤n

{1, log δ, hE , log ĥ(γi)}

If L 6= 0, then

log |L|p ≥ −κn
2

6 (n+ 1)2n(n+8)p8n(n+1)δ2n+2(log E)−2n−1(logB + g + log(δE))

× (g + log(δE))n+1
n∏

i=1

(hE +max{1, ĥ(γi)}), (16)

where κ6 > 0 is an absolute constant.

Corollary 4.7 Let m1, . . . , mr+1 be rational integers, and let γ1, . . . , γr+1 be r+1 elements
of E(K) ∩ Up. Define ui = exp−1

p (γi), 1 ≤ i ≤ r + 1, and put

L = m1u1 + · · ·+mr+1ur+1.

Set further M = max{|m1|, . . . , |mr+1|} and logW = max{ĥ(γi), 1 ≤ i ≤ r + 1}. If L 6= 0,
then

log |L|p ≥ −κr
2

7 r
2r2p8r

2+28r+23(log p)−3r−4 d6r+11 (log+ d)r+3

× (log+M) (log+ logW )r+3
r+1∏

i=1

max{1, ĥ(γi)}. (17)

Proof. In the following proof, we use the notation of Theorem 4.6. Let us begin by bounding
from below the parameter E . Let ni be the integer such that |ui|p = p−ni/ep. Since ui ∈ Cp
we have |ui|p < p−λp, hence ni/ep − λp > 0. If p 6= 2 (hence λp = 1/(p− 1)), we have

ni

ep
− λp ≥

1

(p− 1)ep
≥

1

pep
,

and if p = 2 one easily checks that the same bound holds. It follows from this and the
definition of E that we have

log E ≥
log p

pep
≥

log p

pd
. (18)

Suppose first that d ≥ log E . Then δ = d/ log E , and a rough estimate gives (noticing that
log(δE) ≥ 1 and since hE is a constant)

g + log(δE) ≪ (log+ logW ) log(δE). (19)

11



Now, using (18) we get :

log(δE) = log d+ log E − log log E
≤ 2 log d+ log p− log log p+ log E
≪ (log p) (log+ d) (log+ E).

Replacing this estimate in (19), we obtain :

g + log(δE) ≪ (log p) (log+ d) (log+ logW ) (log+ E).

Using now Hirata’s bound (16), we find :

log |L|p ≥ −cr
2

1 r
2r2p8(r+1)(r+2) (log p)r+3 d2r+4 (log+ d)r+3 (log+M)

× (log+ logW )r+3 (log+ E)r+3 (log E)−4r−7
r+1∏

i=1

max{1, ĥ(γi)}.

Writing finally

(log+ E)r+3 (log E)−4r−7 = max{1, (log E)−1}r+3 (log E)−3r−4

and using the lower bound (18) to estimate from above this latter quantity, we obtain (17)
as required.

Suppose now that d < log E . Then δ = 1 and we get in this case

g + log(δE) ≪ (log+ logW ) (log+ E).

Using (16) and (18) as before, we find now

log |L|p ≥ −cr
2

2 r
2r2 p8r

2+26r+19(log p)−2r−3 d2r+3 (log+M)

× (log+ logW )r+3
r+1∏

i=1

max{1, ĥ(γi)},

which again implies the bound (17). ✷

Proof of Proposition 4.3. Let Q, Qr+1, m1, . . . , mr and M be as in the Proposition. We
note that since Q is a non-torsion point we have M ≥ 1. Denote by νp the exponent of the
group E(Kp)/Up. Then νpQ, νpQ1, . . . , νpQr+1 belong to Up, and the following linear form
in p-adic elliptic logarithms is well-defined (and non zero since νpQ 6= O):

L := exp−1
p (νpQ) = m1 exp

−1
p (νpQ1) + · · ·+mr exp

−1
p (νpQr) + exp−1

p (νpQr+1).

Since ϕ : Cp → Cp is an isometry, the formula (10) gives

|L|−2
p = |ϕ(L)|−2

p = |x(expp(L))|p = |x(νpQ)|p. (20)
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Observe that |x(Q)|p ≤ |x(νpQ)|p. Indeed, this is clearly true if |x(Q)|p ≤ 1 since
|x(νpQ)|p > 1 by (12), and this is also true if |x(Q)|p > 1 by Lemma 4.5. This remark to-
gether with (20) yields log |x(Q)|p ≤ −2 log |L|p. Applying Corollary 4.7, we get an upper

bound for log |x(Q)|p involving ĥ(νpQi) (1 ≤ i ≤ r + 1). Noticing that ĥ(νpQi) = ν2p ĥ(Qi)

and that ĥ(Qr+1) = 0, we get

log |x(Q)|p ≤ 2κr
2

7 r
2r2p8r

2+28r+23ν2rp (log p)−3r−4 d6r+11 (log+ d)r+3

× (log+M) (2 log νp + log+ log V )r+3
r∏

i=1

max{1, ĥ(Qi)}.

But by Lemma 4.4, we have

νp ≤ pκ5d hence log νp ≪ d log p.

Proposition 4.3 follows from these estimates. ✷

4.3 Proof of Theorem 3.1

We prove here Theorem 3.1. According to the notation of Section 2, we write H = (<
Qi, Qj >)1≤i,j≤r for the matrix of the Néron-Tate pairing with respect to the chosen basis
(Q1, . . . , Qr).

Lemma 4.8 Suppose that r ≥ 1. Let us denote by λmin the smallest eigenvalue of the
matrix H, and by λmax its largest eigenvalue. Let Q be a point of E(K) of the form
Q = m1Q1 + · · · + mrQr + Qr+1, where m1, . . . , mr ∈ Z and Qr+1 is a torsion point of
E(K). Define further M = max{|m1|, . . . , |mr|}. Then we have

λminM
2 ≤ ĥ(Q) ≤ rλmaxM

2.

Proof. It follows for example from [ST94, § 3, inequality 1] and from its proof. ✷

Lemma 4.9 For all Q in E(K) we have

∣∣∣∣ĥ(Q)−
1

2
hx(Q)

∣∣∣∣ ≤ κ8.

Proof. See [Sil90, Theorem 1.1]. One can take for instance κ8 = h(∆)/12 + h(j(E))/8 +
1.07, where ∆ = −16(4A3 + 27B2) is the discriminant of the equation (2) and j(E) =
−1728(4A)3/∆ is the j-invariant of E. ✷

Proof of Theorem 3.1. Let Q be an S-integral point of E(K). If ĥ(Q) = 0 then the bound
(3) of Theorem 3.1 is clearly true, since then hx(Q) ≤ 2κ8 by Lemma 4.9. So we will
assume in the following that ĥ(Q) > 0. Thus Q is non-torsion and we have r ≥ 1. Write
Q = m1Q1+ · · ·+mrQr +Qr+1, where m1, . . . , mr are integers and Qr+1 is a torsion point
of E(K). Define M := max{|m1|, . . . , |mr|}. Applying Proposition 4.3 to all ultrametric

13



places p ∈ S and Proposition 4.1 to all archimedean places σ, and adding all the inequalities
obtained, we get (recall that Q is S-integral, so the places v /∈ S ∪M∞

K do not contribute
to the height)

hx(Q) =
1

[K : Q]

∑

v∈S

[Kv : Qv] logmax{1, |x(Q)|v}

≤ cr
2

1 C(E,K) (log+M)(log+ logM)×
1

[K : Q]

(∑

v∈S

[Kv : Qv]p
8r2+κ4dr

)
,

where

C(E,K) = r2r
2

d9r+14(log+ d)r+5(log+log V )r+5
r∏

i=1

max{1, ĥ(Qi)}. (21)

Now, introducing the set P (S) := {p prime | ∃v ∈ S, v|p}, we have :

1

[K : Q]

(∑

v∈S

[Kv : Qv]p
8r2+κ4dr

)
≤

1

[K : Q]

∑

p∈P (S)

(∑

v|p

[Kv : Qv]
)
p8r

2+κ4dr

=
∑

p∈P (S)

p8r
2+κ4dr ≤

∏

p∈P (S)

p8r
2+κ4dr

= exp{(8r2 + κ4dr)
∑

p∈P (S)

log p} ≤ e(8r
2+κ4dr)ΣS .

Hence we deduce

hx(Q) ≤ cr
2

1 C(E,K) (log+M) (log+ logM) e(8r
2+κ4dr)ΣS . (22)

Lemma 4.9 yields

log+ ĥ(Q) ≪ log+ hx(Q) and log+ log ĥ(Q) ≪ log+ log hx(Q),

and so, by Lemma 4.8 :

log+M ≤
1

2

(
log+ ĥ(Q) + log+ λ−1

min)
)
≪ (log+hx(Q)).(log

+ λ−1
min)

and
log+ logM ≪ (log+ log hx(Q)).(log

+ log λ−1
min).

Substituting these estimates in (22), we get

hx(Q)

(log+hx(Q))(log
+log hx(Q))

≤ U (23)

with
U = cr

2

2 C(E,K) (log+ λ−1
min) (log

+ log λ−1
min) e

(8r2+κ4dr)ΣS . (24)
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We now have

λmax ≤ trace(H) =
r∑

i=1

ĥ(Qi) ≤ r log V,

hence
Reg(E/K) = det(H) ≤ λminλ

r−1
max ≤ λminr

r−1(log V )r−1,

from which we obtain

λ−1
min ≤

rr−1(log V )r−1

Reg(E/K)
.

It follows
log+ λ−1

min ≪ r(log+r) (log+log V ) (log+Reg(E/K)−1)

and
log+ log λ−1

min ≪ (log+r) (log+log+log V ) (log+log Reg(E/K)−1).

Substituting these inequalities in (24) and noticing that (23) implies

hx(Q) ≪ U(logU)(log logU),

we get the upper bound (3). ✷

Remark : One would like to bound explicitly the height of the S-integral points of E(K)
in terms of more manageable objects, as the set of places S, the degree and the discriminant
of the number field K. In a forthcoming paper, we show that it is possible to deduce from
Theorem 3.1 a conditional bound of this kind, relying on the conjecture of B. J. Birch and
H. P. F. Swinnerton-Dyer [BSD65]. We quote here the result that we obtain.

Proposition 4.10 Let K0 be a number field, and let E be an elliptic curve given by a
Weierstrass equation y2 = x3 +Ax+B with A,B ∈ OK0. Let K/K0 be a finite extension,
S a finite set of finite places of K, and denote by d the degree [K : Q] and DK the absolute
value of the discriminant of K.

Suppose that the L-series of E satisfies a Hasse-Weil functional equation and that the
Birch and Swinnerton-Dyer Conjecture holds for E/K.

Then, there exist positive numbers κ10 and κ11 (depending on E/K0 only) such that, for
every point Q in E(OK,S), we have

hx(Q) ≤ exp{κd10 + κ11 d
6(log+DK)

2
(
ΣS + log(d log+DK)

)
}.

Following [Sur07], we deduce from this bound a (weak exponential) inequality of the
type of the abc-conjecture of D. Masser and J. Oesterlé.
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[Dav95] S. David. Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc.
Math. France (N.S.), (62):iv+143, 1995.
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