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We establish new upper bounds for the height of the S-integral points of an elliptic curve. This bound is explicitly given in terms of the set S of places of the number field K involved, but also in terms of the degree of K, as well as the rank, the regulator and the height of a basis of the Mordell-Weil group of the curve. The proof uses the elliptic analogue of Baker's method, based on lower bounds for linear forms in elliptic logarithms.

Introduction

A fundamental problem in Diophantine Geometry is to get effective versions of known qualitative results. For example the classical finiteness theorem of Siegel asserts that the set of integral points of an affine algebraic curve of genus greater than one or of genus zero with at least 3 points at infinity is finite. For that curves of genus greater than 2, Siegel's theorem is superseded by Faltings' theorem which asserts that the set of rational points is finite. These are qualitative statements, but not effective. To effectively find these points, say, in a fixed number field, it would suffice to find an effective upper bound for the height of the points. Nowadays, the results of this kind which are known come from Baker's method (based on non trivial lower bounds for linear forms in logarithms). They all concern integral points. The method can be applied for certain classes of curves, in particular, for elliptic curves ( [START_REF] Baker | Integer points on curves of genus 1[END_REF]). Generalizing an idea of Gel'fond, S. Lang [START_REF] Lang | Elliptic curves: Diophantine analysis, volume 231 of Grundlehren der Mathematischen Wissenschaften[END_REF] has shown that one can also bound the height of integral points of an elliptic curve E using lower bounds for linear forms in elliptic logarithms, in a more natural way than using classical logarithms.

Let E be an elliptic curve defined over a number field K 0 , let K/K 0 be any finite extension and let S be a finite set of finite places of K. In this paper we obtain new upper For convenience to the reader, we have gathered in Section 2 the notations which will be used throughout the text. We state the main theorem in Section 3 and prove it in Section 4.

Notations

Throughout the text, if x is a non negative real number, we set log + x = max{1, log x} (with the convention log + 0 = 1).

If K is a number field, we will denote by O K its ring of integers, by D K the absolute value of its discriminant, and by M K the set of places of K. The set of the archimedean places will be denoted by M ∞ K and the set of the ultrametric ones will be denoted by M 0 K . For each v in M K , we define an absolute value | • | v on K as follows. If v is archimedean, then v corresponds to an embedding σ : K ֒→ C (we will often identify the place v with the embedding σ), and we set If S is a finite subset of M 0 K , we denote by

|x| v = |x| σ := |σ(x)|,
O K,S = {x ∈ K; ∀v / ∈ S ∪ M ∞ K , |x| v ≤ 1}
the ring of S-integers of K, and we set

Σ S = p∈S log N K/Q (p).
Note that with our notation, the set S contains only non-archimedean places of K.

Throughout the text, we denote by h the absolute logarithmic Weil height on the projective space P n (Q), and we denote by h K := [K : Q]h the relative height on P n (K). Thus, if (α 0 : . . . : α n ) ∈ P n (K), we have:

h(α 0 : . . . : α n ) = 1 [K : Q] v∈M K [K v : Q v ] log max{|α 0 | v , . . . , |α n | v }. (1) 
Let E ⊂ P 2 be an elliptic curve defined over a number field K. The Mordell-Weil group E(K) of K-rational points of E is a finitely generated group:

E(K) ≃ E(K) tors ⊕ Z rk(E(K)) .
We will often simply write r = rk(E(K)) for its rank, and we will denote by (Q 1 , . . . , Q r ) a basis of its free part. We will also denote by O the zero element of E(K).

We further denote by ĥ : E(K) → R the Néron-Tate height on E. The "Néron-Tate pairing" < , > is defined by < P, Q >= 1 2 ( ĥ(P + Q) -ĥ(P ) -ĥ(Q)). The regulator Reg(E/K) of E/K is the determinant of the matrix H = (< Q i , Q j >) 1≤i,j≤r of the Néron-Tate pairing with respect to the chosen basis (Q 1 , . . . , Q r ), that is

Reg(E/K) = det(H).
If the elliptic curve is defined by a Weiertrass equation y 2 = x 3 + Ax + B with A, B in O K , then we have the origin O = (0 : 1 : 0). If Q = O is a point of E, we then denote its affine coordinates (in the above Weierstrass model) as usual by (

x(Q), y(Q)). For Q in E(K) we define h x (Q) := h(1 : x(Q)) if Q = O and h x (O) := 0.
Finally, we denote by E(O K,S ) the set of S-integral points of E(K) with respect to the x-coordinate, that is

E(O K,S ) = {Q ∈ E(K) \ {O}; x(Q) ∈ O K,S } ∪ {O}.
In the whole text, we will fix a number field K 0 and an elliptic curve E defined over K 0 . Since we do not explicit any dependence on E/K 0 , we will call "constant" any quantity depending on E/K 0 . This convention about constants will apply in particular to the implicit constant involved in the symbol ≪, where X ≪ Y means here that X ≤ c(E/K 0 )Y , where c(E/K 0 ) ≥ 1 is a number depending at most on E/K 0 .

Statement of the result

Let K 0 be a fixed number field, and let E ⊂ P 2 be an elliptic curve defined by a Weierstrass equation

y 2 = x 3 + Ax + B (2) 
with A, B ∈ O K 0 . Let K be a finite extension of K 0 and S ⊂ M 0 K a finite set of places of K.

According to the notations of Section 2, we put r = rk(E(K)), we denote by (Q 1 , . . . , Q r ) any basis of the free part of the Mordell-Weil group E(K), and we write Reg(E/K) for the regulator of E/K. We further set

d := [K : Q],
and we define the real number V by log V := max{ ĥ(Q i ); 1 ≤ i ≤ r}.

The main result of this article is the following: Theorem 3.1 In the above set up, let Q be a point in E(O K,S ). Then there exist positive effectively computable real numbers γ 0 , γ 1 and γ 2 depending only on A and B (that is, on the curve E/K 0 ), such that, if r = 0, then h x (Q) ≤ γ 0 , and, if r > 0, then

h x (Q) ≤ C E,K e (8r 2 +γ 1 dr)Σ S , (3) 
where

C E,K = γ r 2 2 r 2r 2 d 9r+15 (log + d) r+6 (log + log V ) r+7 (log + log + log V ) 2 r i=1 max{1, ĥ(Q i )} × log + (Reg(E/K) -1 )(log + log(Reg(E/K) -1 )) 2 (log + log + log(Reg(E/K) -1 )). (4) 
The bounds obtained by classical Baker's method often depend on d, D K and Σ S . The bound of Theorem 3.1 depends on d and Σ S , as well as on the rank rk(E(K)), the heights ĥ(Q i ) and the regulator of E/K. Because of the different nature of the parameters involving K, it makes sense to compare our result with the results obtained by classical Baker's method only when the number field is fixed.

Denote by s the cardinal of S, by P (S) := {p prime | ∃v ∈ S, v|p} the residue characteristics of S, and by P its maximum. For K = Q, L. Hajdu and T. Herendi [START_REF] Hajdu | Explicit bounds for the solutions of elliptic equations with rational coefficients[END_REF] obtained the following result: max{h(x), h(y)} ≤ (κ 1 s + κ 2 ) 10 38 s+86 (s + 1) 20 s+35 P 24 (log + (P )) 4 s+2 , where κ 1 and κ 2 depend at most on A and B. For any K, the Corollary 6.9 of [START_REF] Surroca | Sur l'effectivité du théorème de Siegel et la conjecture abc[END_REF] gives:

h x (Q) ≤ k 0 c s+k 1 d s 20 s+k 2 P 4 d (log P ) 8 s+k 3 e γ(E,K,S) γ(E, K, S) 8d-2 ,
where the numbers k i depend only on E/K 0 , c d depends only on the degree d and γ(E, K, S) = 4 (log D K +Σ S +k 4 +4 log 4 d Σ S +k 5 log(Σ S +k 5 ) ). In order to compare these different bounds we may use the following inequalities (for the last one, one may use the Prime Number Theorem, see, for example [Sur07, Lemma 2.1]):

(d • cardP (S)) -1 Σ S ≤ log P ≤ Σ S , and card(S) ≤ d • cardP (S) ≤ 4d Σ S log Σ S .
One can see that, for a fixed K, the bounds of [Sur07, Corollary 6.9 ] and Theorem 3.1 are of the same order and that for K = Q the bound of [START_REF] Hajdu | Explicit bounds for the solutions of elliptic equations with rational coefficients[END_REF] is stronger.

Proof of Theorem 3.1

To prove Theorem 3.1, we will determine an upper bound for |x(Q)| v for each v ∈ M K and then sum over all the places v using the formula (1). The upper bound for |x(Q)| v will be obtained using the explicit lower bounds for linear forms in elliptic logarithms of [START_REF] Hirata | Minorations de formes linéaires de logarithmes elliptiques p-adiques[END_REF] and [START_REF] David | Minorations de formes linéaires de logarithmes elliptiques[END_REF]. In the next section, we first treat the case of an archimedean place v. Then, in Section 4.2, we handle the case where v is ultrametric. We can then prove Theorem 3.1 in Section 4.3.

In the next sections, we denote by κ 1 , κ 2 , . . . , c 1 , c 2 , . . . positive real numbers (which we will call "constants") depending at most on A and B, i.e. on the curve E/K 0 . We use the greek letters for the constants appearing in the statements and the latin letters for the proofs. In each proof we start counting by c 1 .

The archimedean case

In this section we fix an archimedean place v of K, and we assume that the rank r of the group E(K) is non zero. We denote by σ : K ֒→ C the embedding corresponding to v, and by E σ the elliptic curve defined by

y 2 = x 3 + σ(A)x + σ(B).
The homomorphism σ obviously induces a group isomorphism σ :

E(K) ≃ E σ (σ(K)).
Put g 2,σ = -4σ(A) and g 3,σ = -4σ(B). Then E σ is isomorphic to the elliptic curve defined by

Y 2 = 4X 3 -g 2,σ X -g 3,σ (5) 
under the substitution X = x, Y = 2y. Let Λ σ be the lattice of C with invariants g 2,σ , g 3,σ . We will consider the exponential map of E σ , which is given by

exp σ : C → E σ (C) z → (℘ σ (z) : ℘ ′ σ (z)/2 : 1) if z / ∈ Λ σ (0 : 1 : 0) if z ∈ Λ σ , (6) 
where ℘ σ is the Weierstrass function associated to the lattice Λ σ . It induces a group isomorphism C/Λ σ ≃ E σ (C). Let (ω 1,σ , ω 2,σ ) be a basis of the lattice Λ σ , and denote by Π σ the associated fundamental parallelogram centered at zero. Then exp σ | Πσ : Π σ → E σ (C) is bijective and we will denote by ψ σ : E σ (C) → Π σ its inverse map (the elliptic logarithm).

Proposition 4.1 Let Q be a non-torsion point of E(K). Write Q = m 1 Q 1 + • • • + m r Q r + Q r+1 , where Q r+1 ∈ E(K) is a torsion point and m i ∈ Z, 1 ≤ i ≤ r, and define M := max{|m 1 |, . . . , |m r |}. Recall that log V := max{ ĥ(Q i ); 1 ≤ i ≤ r}. Then we have log |x(Q)| σ ≤ κ r 2 1 r 2r 2 d 2r+8 (log + d) r+5 (log + M)(log + log M) × (log + log V ) r+5 r i=1 max{1, ĥ(Q i )}.
To prove this we will use the following result, which is a consequence of Theorem 2.1 of [START_REF] David | Minorations de formes linéaires de logarithmes elliptiques[END_REF] (in which we have chosen E = e).

Theorem 4.2 (S. David) Let m 1 , . . . , m r+1 , n 1 , n 2 be rational integers, and let γ 1 , . . . , γ r+1 be elements of E σ (σ(K)). Define u i = ψ σ (γ i ), 1 ≤ i ≤ r + 1, and put

L = m 1 u 1 + • • • + m r+1 u r+1 + n 1 ω 1,σ + n 2 ω 2,σ . Set further B = max{|m 1 |, . . . , |m r+1 |, |n 1 |, |n 2 |} and log W = max{ ĥ(γ i ), 1 ≤ i ≤ r + 1}. If L = 0, then log |L| ≥ -κ r 2 2 r 2r 2 d 2r+8 (log + d) r+5 (log + B)(log + log B) × (log + log W ) r+5 r+1 i=1 max{1, ĥ(γ i )}.
Proof of Proposition 4.1. Let Q, Q r+1 , m 1 , . . . , m r and M be as in the Proposition. We set

γ i = σ(Q i ) ∈ E σ (C) and u i = ψ σ (γ i ), 1 ≤ i ≤ r + 1. We have σ(Q) = m 1 γ 1 + • • • + m r γ r + γ r+1
and thus, by definition of ψ σ there exist n 1 , n 2 ∈ Z such that

ψ σ (σ(Q)) = m 1 u 1 + • • • + m r u r + u r+1 + n 1 ω 1,σ + n 2 ω 2,σ . (7) 
Since the function ℘ σ has a pole of order 2 at zero, there exists a constant c 1,σ = c 1 (σ(A), σ(B)) > 0 such that |z 2 ℘ σ (z)| ≤ c 1,σ for all z in Π σ . Applying this to z = ψ σ (σ(Q)) and putting c 1 := max σ {c 1,σ } (which depends only on the restriction of σ to K 0 hence on E/K 0 only), we find that

|x(Q)| σ ≤ c 1 • |ψ σ (σ(Q))| -2 i.e. log |x(Q)| σ ≤ log c 1 -2 log |ψ σ (σ(Q))|. (8) 
In order to use Theorem 4.2, observe that since all the norms on R 2 are equivalent, there exists a constant c 2,σ = c 2 (σ(A), σ(B)) > 0 such that |xω 1,σ + yω 2,σ | ≥ c 2,σ max{|x|, |y|} for all real numbers x, y ∈ R. Therefore we have, using (7) and since obviously |u| ≤ (|ω 1,σ | + |ω 2,σ |)/2 for every u belonging to the fundamental parallelogram Π σ ,

c 2,σ max{|n 1 |, |n 2 |} ≤ |ψ σ (σ(Q))| + M(|u 1 | + • • • + |u r+1 |) ≤ c 3,σ (1 + (r + 1)M) ≤ c 4,σ rM. Hence max{|n 1 |, |n 2 |} ≤ c 2 rM
with c 2 = max σ {c 4,σ /c 2,σ } (which depends only on E/K 0 for the same reason as above), and so

B := max{1, |m 1 |, . . . , |m r |, |n 1 |, |n 2 |} ≤ c 3 rM. (9) 
Applying now Theorem 4.2 to the linear form (7) (which is not zero since Q is not torsion) and taking into account (9), we deduce

log |ψ σ (σ(Q))| ≥ -c r 2 4 r 2r 2 d 2r+8 (log + d) r+5 (log + M)(log + log M) × (log + log V ) r+5 r i=1 max{1, ĥ(Q i )}.
This estimate, together with (8), yields the proposition. ✷

The ultrametric case

We fix here an ultrametric place v of K associated to a prime ideal p lying above the prime number p, and we assume again that the rank r of the group E(K) is non zero. We will prove :

Proposition 4.3 Let Q be a non-torsion point of E(K). Write Q = m 1 Q 1 + • • • + m r Q r + Q r+1
, where Q r+1 ∈ E(K) is a torsion point and m i ∈ Z, 1 ≤ i ≤ r, and define M := max{|m 1 |, . . . , |m r |}. Recall that log V := max{ ĥ(Q i ); 1 ≤ i ≤ r}. Then we have

log |x(Q)| p ≤ κ r 2 3 r 2r 2 p 8r 2 +κ 4 dr d 9r+14 (log + d) r+3 (log + M) × (log + log V ) r+3 r i=1 max{1, ĥ(Q i )}.
To prove this Proposition we will use the v-adic exponential map of E, whose definition and properties we now recall for reader's convenience. By [START_REF] Weil | Sur les fonctions elliptiques p-adiques[END_REF] (see also [START_REF] Lutz | Sur l'équation y 2 = x 3 -ax-b dans les corps p-adiques[END_REF]), there exists a unique function ψ(z) analytic in a neighbourhood of 0 in K p which satisfies ψ ′ (z) = (1 + Az 4 + Bz 6 ) -1 2 ; ψ(0) = 0 (where we define of course (1 + t) -1/2 = 1t/2 + 

1 4 ℘ ′2 = ℘ 3 + A℘ + B.
The v-adic exponential map of E is then defined by

exp p : C p → E(K p ) z → (℘(z) : ℘ ′ (z)/2 : 1) if z = 0 O if z = 0
or equivalently by exp p (z) = (ϕ(z) : -ϕ ′ (z) :

ϕ 3 (z)) ( 10 
)
for all z ∈ C p . This is an injective group homomorphism which is not surjective. Let U p = exp p (C p ) be the image of the exponential map. It is known that the group E(K p )/U p is finite. We will need an explicit upper bound for the exponent of this group. Let E p ⊂ P 2 be a minimal Weierstrass model of E at p. We know that there is an admissible change of coordinates

f : K 2 p → K 2 p , (x, y) → (u 2 x + r, u 3 y + u 2 sx + t) (11) 
with u, r, s, t ∈ O p , such that f induces a group isomorphism f : E p (K p ) ≃ E(K p ). Thus, it suffices to estimate the exponent of the group E p (K p )/U p , where U p := f -1 (U p ).

We now claim that the group U p is explicitly given by

U p = {(x : y : 1) ∈ E(K p ); |x| p > p 2λp } ∪ {O}. ( 12 
)
Indeed, U p is clearly contained in the right-hand side of (12) since |ϕ(z)| p = |z| p for all z ∈ C p . Conversely, if (x : y : 1) ∈ E(K p ) satisfies |x| p > p 2λp , then we can write

y 2 /x 2 = x(1 + A x 2 + B x 3 ) = x(1 + t) with |t| p = | A x 2 + B x 3 | p < p -4λp . It follows that (1 + t) is a square in K p since then the series (1 + t) 1/2 = 1 + t/2 -t 2 /8 + • • • converges in K p (for p = 2 it converges as soon as |t| p < |2| 2 p )
, and thus x is also a square in K p , say x = α 2 . We then have α -1 in C p , and it follows that there exists z in C p such that α -1 = ϕ(z), i.e. x = ϕ(z) -2 . We have moreover y 2 = x 3 + Ax + B = ϕ ′2 (z)/ϕ 6 (z). Hence, taking -z instead of z if necessary, we may choose z so that y = -ϕ ′ (z)/ϕ 3 (z). Therefore, we have found z in C p such that exp p (z) = (x : y : 1). This proves (12).

Using the formulas (11) and the ultrametric inequality, we deduce from this

U p = {(x : y : 1) ∈ E p (K p ); |x| p > |u| -2 p p 2λp } ∪ {0} = {(x : y : 1) ∈ E p (K p ); ord p (x)/2 < -(e p λ p + ord p (u))} ∪ {0}.
In other words, if we denote the canonical p-adic filtration of E p as in [START_REF] Husemöller | Elliptic curves, volume 111 of Graduate Texts in Mathematics[END_REF], Chapter 14, by

E p (K p ) ⊃ E (0) p (K p ) ⊃ • • • ⊃ E (n) p (K p ) ⊃ • • • , we see that U p = E (n) p (K p ) with n = [e p λ p ] + ord p (u) + 1. Estimating the exponent of the group E p (K p )/U p = E p (K p )/E (n)
p (K p ) now easily follows from well-known properties of the p-adic filtration. Indeed, let ∆ p ∈ K p be the minimal discriminant of the elliptic curve E at p. By the addendum to Theorem 3 of [START_REF] Tate | The arithmetic of elliptic curves[END_REF] we first have

[E p (K p ) : E (0) p (K p )] ≤ max{4, ord p (∆ p )}, (13) 
and by [Sil94, Proposition VII.2.1] we have

[E (0) p (K p ) : E (1) p (K p )] ≤ 2card(k(p)) + 1 = 2p fp + 1 ≤ 5 2 p fp . (14) 
On the other hand, if we define M m p for every m ≥ 1 as the set M m p endowed with the group structure given by the formal group law associated to E p , we know that the map t :

E (m) p (K p ) → M m p defined by t(O) = 0 and t(Q) = -x(Q)/y(Q) if Q = O is
a group isomorphism (see e.g. the proof of Theorem 14.1.2 of [START_REF] Husemöller | Elliptic curves, volume 111 of Graduate Texts in Mathematics[END_REF]). It follows, by [Sil94, Proposition IV.3.2(a)], that we have for every m ≥ 1 group isomorphisms

E (m) p (K p )/E (m+1) p (K p ) ≃ M m p / M m+1 p ≃ M m p /M m+1 p ≃ k(p).
Since the characteristic of the field k(p) is equal to p, we thus get that the exponent of the group E (m)

p (K p )/E (m+1) p
(K p ) is equal to p for all m ≥ 1. Hence we deduce, using (13) and ( 14), that the exponent of the group

E p (K p )/E (n) p (K p ) is at most 5 2 max{4, ord p (∆ p )}p fp+n-1 .
Let ∆ = -16(4A Proof. Let

E(K p ) ⊃ E (0) (K p ) ⊃ • • • ⊃ E (n) (K p ) ⊃ • • •
denote the canonical p-adic filtration of E (see for instance [START_REF] Husemöller | Elliptic curves, volume 111 of Graduate Texts in Mathematics[END_REF], Section 14.1). We recall that for n ≥ 1 we have

E (n) (K p ) = {Q ∈ E(K p ); ord p (x(Q)) ≤ -2n}. (15) 
Let Q = O be a point of E(K p ) as in the lemma. We know that ord p (x(Q)) is even and thus

Q belongs to E (n) (K p ) with n := -ord p (x(Q))/2 ≥ 1. Since mQ also belongs to E (n) (K p ) (E (n) (K p
) is a group), it follows at once from (15) that ord p (x(mQ)) ≤ -2n = ord p (x(Q)).

✷

The following Theorem was kindly communicated to us by N. Hirata (see [START_REF] Hirata | Minorations de formes linéaires de logarithmes elliptiques p-adiques[END_REF]) :

Theorem 4.6 (N. Hirata) Let β 1 , . . . , β n be elements of K, and let γ 1 , . . . , γ n be n elements of E(K) ∩ U p . Define u i = exp -1 p (γ i ), 1 ≤ i ≤ n, and let

L = β 1 u 1 + • • • + β n u n .
Define the following parameters :

log B = max{1, h(β 1 ), . . . , h(β n )} h E = max{1, h(1 : A : B)} E = p -λp max 1≤i≤n {|u i | p } δ = max{1, d log E } g = max 1≤i≤n
{1, log δ, h E , log ĥ(γ i )}

If L = 0, then log |L| p ≥ -κ n 2 6 (n + 1) 2n(n+8) p 8n(n+1) δ 2n+2 (log E) -2n-1 (log B + g + log(δE)) × (g + log(δE)) n+1 n i=1
(h E + max{1, ĥ(γ i )}), ( 16)

where κ 6 > 0 is an absolute constant.

Corollary 4.7 Let m 1 , . . . , m r+1 be rational integers, and let γ 1 , . . . , γ r+1 be r +1 elements of E(K) ∩ U p . Define

u i = exp -1 p (γ i ), 1 ≤ i ≤ r + 1, and put L = m 1 u 1 + • • • + m r+1 u r+1 .
Set further M = max{|m 1 |, . . . , |m r+1 |} and log W = max{ ĥ(γ i ), 1 ≤ i ≤ r + 1}. If L = 0, then log |L| p ≥ -κ r 2 7 r 2r 2 p 8r 2 +28r+23 (log p) 

places p ∈ S and Proposition 4.1 to all archimedean places σ, and adding all the inequalities obtained, we get (recall that Q is S-integral, so the places v / ∈ S ∪ M ∞ K do not contribute to the height)

h x (Q) = 1 [K : Q] v∈S [K v : Q v ] log max{1, |x(Q)| v } ≤ c r 2 1 C(E, K) (log + M)(log + log M) × 1 [K : Q] v∈S [K v : Q v ]p 8r 2 +κ 4 dr ,
where

C(E, K) = r 2r 2 d 9r+14 (log + d) r+5 (log + log V ) r+5 r i=1 max{1, ĥ(Q i )}. (21) 
Now, introducing the set P (S) := {p prime | ∃v ∈ S, v|p}, we have :

1 [K : Q] v∈S [K v : Q v ]p 8r 2 +κ 4 dr ≤ 1 [K : Q] p∈P (S) v|p [K v : Q v ] p 8r 2 +κ 4 dr = p∈P (S) p 8r 2 +κ 4 dr ≤ p∈P (S)
p 8r 2 +κ 4 dr = exp{(8r 2 + κ 4 dr) p∈P (S) log p} ≤ e (8r 2 +κ 4 dr)Σ S .

Hence we deduce

h x (Q) ≤ c r 2 1 C(E, K) (log + M) (log + log M) e (8r 2 +κ 4 dr)Σ S . (22) 
Lemma 4.9 yields log + ĥ(Q) ≪ log + h x (Q) and log + log ĥ(Q) ≪ log + log h x (Q), and so, by Lemma 4.8 :

log + M ≤ 1 2 log + ĥ(Q) + log + λ -1 min ) ≪ (log + h x (Q)).(log + λ -1 min )
and log + log M ≪ (log + log h x (Q)).(log + log λ -1 min ). Substituting these estimates in (22), we get

h x (Q) (log + h x (Q))(log + log h x (Q)) ≤ U (23) 
with U = c r 2 2 C(E, K) (log + λ -1 min ) (log + log λ -1 min ) e (8r 2 +κ 4 dr)Σ S .

We now have λ max ≤ trace(H) = r i=1 ĥ(Q i ) ≤ r log V, hence Reg(E/K) = det(H) ≤ λ min λ r-1 max ≤ λ min r r-1 (log V ) r-1 , from which we obtain λ -1 min ≤ r r-1 (log V ) r-1 Reg(E/K) .

It follows log + λ -1 min ≪ r(log + r) (log + log V ) (log + Reg(E/K) -1 ) and log + log λ -1 min ≪ (log + r) (log + log + log V ) (log + log Reg(E/K) -1 ). Substituting these inequalities in (24) and noticing that (23) implies

h x (Q) ≪ U(log U)(log log U),
we get the upper bound (3). ✷

Remark : One would like to bound explicitly the height of the S-integral points of E(K) in terms of more manageable objects, as the set of places S, the degree and the discriminant of the number field K. In a forthcoming paper, we show that it is possible to deduce from Theorem 3.1 a conditional bound of this kind, relying on the conjecture of B. J. Birch and H. P. F. Swinnerton-Dyer [START_REF] Birch | Notes on elliptic curves[END_REF]. We quote here the result that we obtain.

Proposition 4.10 Let K 0 be a number field, and let E be an elliptic curve given by a Weierstrass equation y 2 = x 3 + Ax + B with A, B ∈ O K 0 . Let K/K 0 be a finite extension, S a finite set of finite places of K, and denote by d the degree [K : Q] and D K the absolute value of the discriminant of K. Suppose that the L-series of E satisfies a Hasse-Weil functional equation and that the Birch and Swinnerton-Dyer Conjecture holds for E/K.

Then, there exist positive numbers κ 10 and κ 11 (depending on E/K 0 only) such that, for every point Q in E(O K,S ), we have Following [START_REF] Surroca | Sur l'effectivité du théorème de Siegel et la conjecture abc[END_REF], we deduce from this bound a (weak exponential) inequality of the type of the abc-conjecture of D. Masser and J. Oesterlé.

  where | • | is the usual absolute value on C. If v is ultrametric, then v corresponds to a non zero prime ideal p of O K (we will identify v and p), and we take for | • | v = | • | p the absolute value on K normalized by |p| v = p -1 , where p is the prime number such that p | p. We denote by K v the completion of K at v and use again the notation | • | v for the unique extension of | • | v to K v . If v is an ultrametric place associated to the prime ideal p, we denote by e p the ramification index of p over p, by f p the residue class degree, and by ord p : K * p → Z the valuation normalized by ord p (p) = e p (hence ord p (x) = -e p log p |x| p for all x in K * p ).

Lemma 4. 4

 4 The exponent ν p of the group E(K p )/U p satisfies ν p ≤ p κ 5 d . Proof. In what follows we will denote by O p = {z ∈ K p ; |z| p ≤ 1} the valuation ring of K p , by M p = {z ∈ K p ; |z| p < 1} the maximal ideal of O p , by π a uniformizer (i.e. M p = πO p ), and by k(p) = O p /M p the residue field of O p .

  {ord v (∆)}) and sinceλ p ≤ 1/2, we find ν p ≤ c 2 e p p fp+ep/2+c 1 ep/12 ≤ c 2 dp c 3 d .✷We will also need the following lemma (where we set x(O) = ∞): Lemma 4.5 Let Q be a point of E(K p ) such that |x(Q)| p > 1. Then, for any positive integer m, we have |x(mQ)| p ≥ |x(Q)| p .

  h x (Q) ≤ exp{κ d 10 + κ 11 d 6 (log + D K ) 2 Σ S + log(d log + D K ) }.

  with |ψ n z n | p < |z| p for all n ≥ 2. It follows from results of non-archimedean analysis (see e.g. [Gün66, Satz 2]) that ψ induces a bijection ψ : C p → C p , whose inverse map is also analytic. Let ϕ = ψ -1 : C p → C p be this inverse map. Then ϕ is the unique solution on C p of the differential equation y ′ = (1 + Ay 4 + By 6 )

	1 2 ; y(0) = 0.

• • • for t in K p with |t| p small). It is not difficult to see that this function ψ is analytic in the open disk

C p = {z ∈ K p ; |z| p < p -λp },

where λ p = (p -1) -1 if p = 2 and λ p = 1/2 if p = 2. Moreover, one can show that for z ∈ C p , z = 0, we have

ψ(z) = z + n≥2 ψ n z n

Moreover, |ϕ(z)| p = |z| p and ϕ(-z) = -ϕ(z) for all z ∈ C p (note that the similar results proved in

[START_REF] Lutz | Sur l'équation y 2 = x 3 -ax-b dans les corps p-adiques[END_REF] p. 246] 

give a smaller disk than our C p when p = 2). Set now ℘ = 1/ϕ 2 . One has on C p \ {0}

  3 + 27B 2 ) be the discriminant of the equation (2). Write now ∆ = u 12 ∆ p . We have n -1 = [e p λ p ] + (ord p (∆)ord p (∆ p ))/12 ≤ [e p λ p ] + ord p (∆)/12, Noticing now that ord p (∆ p ) ≤ ord p (∆) ≤ c 1 e p (with c 1 = max

	hence	ν p ≤	5 2	max{4, ord p (∆ p )}p fp+[epλp]+ordp(∆)/12 .
				v∈M 0 Q(A,B)

  In the following proof, we use the notation of Theorem 4.6. Let us begin by bounding from below the parameter E. Let n i be the integer such that |u i | p = p -n i /ep . Since u i ∈ C p we have |u i | p < p -λp , hence n i /e pλ p > 0. If p = 2 (hence λ p = 1/(p -1)), we have

	n i e p	-λ p ≥	1 (p -1)e p	≥	1 pe p	,
	and if p = 2 one easily checks that the same bound holds. It follows from this and the
	definition of E that we have	log E ≥	log p pe p	≥	log p pd	.	(18)

-3r-4 d 6r+11 (log + d) r+3 × (log + M) (log + log W ) r+3 r+1 i=1 max{1, ĥ(γ i )}. (17) Proof.

Suppose first that d ≥ log E. Then δ = d/ log E, and a rough estimate gives (noticing that log(δE) ≥ 1 and since h E is a constant) g + log(δE) ≪ (log + log W ) log(δE).

* Supported by the contract ANR "HAMOT", BLAN-0115-01. † Supported by an Ambizione fund PZ00P2 121962 of the Swiss National Science Foundation and the Marie Curie IEF 025499 of the European Community.
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Now, using (18) we get : log(δE) = log d + log Elog log E ≤ 2 log d + log plog log p + log E ≪ (log p) (log + d) (log + E).

Replacing this estimate in (19), we obtain :

Using now Hirata's bound (16), we find :

max{1, ĥ(γ i )}.

Writing finally

and using the lower bound (18) to estimate from above this latter quantity, we obtain (17) as required. Suppose now that d < log E. Then δ = 1 and we get in this case g + log(δE) ≪ (log + log W ) (log + E).

Using ( 16) and (18) as before, we find now log |L| p ≥ -c r 2 2 r 2r 2 p 8r 2 +26r+19 (log p) -2r-3 d 2r+3 (log + M)

. . , m r and M be as in the Proposition. We note that since Q is a non-torsion point we have M ≥ 1. Denote by ν p the exponent of the group E(K p )/U p . Then ν p Q, ν p Q 1 , . . . , ν p Q r+1 belong to U p , and the following linear form in p-adic elliptic logarithms is well-defined (and non zero since ν p Q = O):

Since ϕ : C p → C p is an isometry, the formula (10) gives 

). Noticing that ĥ(ν p Q i ) = ν 2 p ĥ(Q i ) and that ĥ(Q r+1 ) = 0, we get

But by Lemma 4.4, we have

Proposition 4.3 follows from these estimates. ✷

Proof of Theorem 3.1

We prove here Theorem 3.1. According to the notation of Section 2, we write H = (< Q i , Q j >) 1≤i,j≤r for the matrix of the Néron-Tate pairing with respect to the chosen basis (Q 1 , . . . , Q r ).

Lemma 4.8 Suppose that r ≥ 1. Let us denote by λ min the smallest eigenvalue of the matrix H, and by λ max its largest eigenvalue. Let Q be a point of E(K) of the form

, where m 1 , . . . , m r ∈ Z and Q r+1 is a torsion point of E(K). Define further M = max{|m 1 |, . . . , |m r |}. Then we have

Proof. It follows for example from [ST94, § 3, inequality 1] and from its proof. ✷ Lemma 4.9 For all Q in E(K) we have

Proof. See [Sil90, Theorem 1.1]. One can take for instance κ 8 = h(∆)/12 + h(j(E))/8 + 1.07, where ∆ = -16(4A 3 + 27B 2 ) is the discriminant of the equation (2) and j(E) = -1728(4A) 3 /∆ is the j-invariant of E. ✷

Proof of Theorem 3.1. Let Q be an S-integral point of E(K). If ĥ(Q) = 0 then the bound (3) of Theorem 3.1 is clearly true, since then h x (Q) ≤ 2κ 8 by Lemma 4.9. So we will assume in the following that ĥ(Q) > 0. Thus Q is non-torsion and we have r ≥ 1. Write