
HAL Id: hal-02149941
https://normandie-univ.hal.science/hal-02149941

Submitted on 6 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DOUBLE CENTRALIZERS IN ARTIN-TITS GROUPS
Oussama Ajbal, Eddy Godelle

To cite this version:
Oussama Ajbal, Eddy Godelle. DOUBLE CENTRALIZERS IN ARTIN-TITS GROUPS. Bulletin of
the Belgian Mathematical Society - Simon Stevin, In press. �hal-02149941�

https://normandie-univ.hal.science/hal-02149941
https://hal.archives-ouvertes.fr


DOUBLE CENTRALIZERS IN ARTIN-TITS GROUPS

OUSSAMA AJBAL AND EDDY GODELLE

Abstract. We prove an analogue of the Centralizer Theorem in the context

of Artin-Tits groups.

Introduction

To obtain information on a group G, a standard approach consists in considering
subgroups and in studying how they behave in the group. In particular, one often
considers the centralizer ZG(H) of a subgroup H, which is defined by

ZG(H) = {g ∈ G | gh = hg for all h ∈ H}.

This general approach naturally extends to other contexts. This is the case in the
study of noncommutative algebras, where subgroups are replaced by subalgebras.
Clearly, for an algebra R and a subalgebra H, the centralizer ZR(H) is also a subal-
gebra. In this framework, the subalgebra ZR(ZR(H)), called the double centralizer
of H, has been considered [13, 28]. A classical result [13] is the so-called Central-
izer Theorem, which claims that for a finite dimensional central simple algebra R
over a field k and for a simple subalgebra H, one has ZR(ZR(H)) = H. Various
generalizations have been obtained leading to applications [29, 8].

Coming back to the group theory framework, one is naturally led to consider
the double-centralizer subgroup ZG(ZG(H)) of a subgroup H in a group G, and to
address the question of a similar Centralizer Theorem. Let us denote by DZG(H)
the double centralizer of H. Obviously, when the group G has a center Z(G) that is
not contained in the subgroup H, the equality DZG(H) = H can not hold. However,
one may wonder whether the subgroup DZG(H) is generated by Z(G) and H. More
precisely, if Z(G) ∩H is trivial, one may wonder whether the equality DZG(H) =
Z(G) × H holds. When the center of G is trivial, we recover the property of the
Centralizer Theorem, namely, that the equality DZG(H) = H holds.

As far as we know, the first Centralizer Theorem in the group theory framework
has been obtained in [15] by considering the braid group on n strands and its stan-
dard parabolic subgroups. Our objective here is to address the more general case
of an Artin-Tits group G and a standard parabolic subgroup H. Artin-Tits groups
are those torsion free groups that possess a presentation associated with a Coxeter
matrix. For a finite set S, a Coxeter matrix on S is a symmetric matrix (ms,t)s,t∈S
where ms,s = 1 for all s in S and ms,t is either a positive integer greater than 1
or ∞, for s 6= t. An Artin-Tits group associated with such a matrix is defined by
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the presentation

(1)

〈
S | sts . . .︸ ︷︷ ︸

ms,t terms

= tst . . .︸ ︷︷ ︸
ms,t terms

; ∀s, t ∈ S, s 6= t ;ms,t 6=∞

〉
.

For instance, if we consider S = {s1, . . . , sn} with msi,sj = 3 for |i − j| = 1
andmsi,sj = 2 otherwise, we obtain the classical presentation of the braid groupBn+1

on n+ 1 strings considered in [1]. A standard parabolic subgroup is a subgroup gen-
erated by a subset X of S. It turns out that such a subgroup is also an Artin-Tits
group in a natural way (see Proposition 1.1 below). Artin-Tits groups are badly
understood and most articles on the subject focus on particular subfamilies of Artin-
Tits groups, such as Artin-Tits groups of spherical type, of RAAG type, of FC type,
of large type, or of 2-dimensional type. Here again, we apply this strategy. We first
consider the family of spherical type Artin-Tits groups. Seminal examples of which
are braid groups. We refer to the next sections for definitions. We prove:

Theorem 0.1. Assume that AS is a spherical type irreducible Artin-Tits group
with S as standard generating set. Let X be a proper subset of S and AX be the
standard parabolic subgroup of A generated by X. Denote by ∆ the Garside element
of AS.

(i) If ∆ lies in DZAS
(AX) but not in Z(AS), then

DZAS
(AX) = AX oQZ(AS)

where QZ(AS) acts on AX by permutations on X.
(ii) if ∆ does not lie in DZAS

(AX) or lies in Z(AS), then

DZAS
(AX) = AX × Z(AS).

In the above result we do not consider the cases X = S and X = ∅. Indeed, for
any group G one has DZG(G) = G and DZG({1}) = Z(G) (the center of G). In
the case of spherical type Artin-Tits groups, centralizers and quasi-centralizers of
standard parabolic subgroups are well understood (see [14, 26, 18]). In particular,
the condition on ∆ is easy to check.

In the present article, we also consider Artin-Tits groups that are not of spherical
type. Let us state the following conjecture.

Conjecture 0.2. Assume that AS is an irreducible Artin-Tits group. Let AX
be a standard parabolic subgroup of AS generated by a subset X of S. Assume
that AX is irreducible. Let AT be the smallest standard parabolic subgroup of AS
that contains ZAS

(AX).

(i) Assume that AX is not of spherical type, then DZAS
(AX) = ZAS

(AT ).
(ii) Assume that AX is of spherical type.

(a) If AT is of spherical type, then

DZAS
(AX) = DZAT

(AX);

(b) if AT is not of spherical type, then

DZAS
(AX) = AX .

Remark 0.3. In the above conjecture (as in Theorem 0.4) we only consider the
case where AS is irreducible. Indeed, in the general case, if S1, · · · , Sk are the
irreducible components of S, then DZAS

(AX) is the direct product of the subgroups
DZASi

(AXi
) where Xi = Si ∩X (see the first part of the proof of Theorem 2.12).
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The conjecture is supported by the following result, that we prove in Section 3:

Theorem 0.4. (i) Conjecture 0.2 holds for all irreducible Artin-Tits groups
of FC type.

(ii) Conjecture 0.2 holds for all Artin-Tits groups of 2-dimensional type.
(iii) Conjecture 0.2 holds for all Artin-Tits groups of large type.

The reader may note in previous theorem that Point (iii) follows from Point (ii)
since Artin-Tits groups of large type are of 2-dimensional type. The centralizer of
a standard parabolic subgroup is well-understood in general. In particular, Con-
jectures 1,2 and 3 of [20] hold, for any given X in the case of the Artin-Tits groups
considered in Theorem 0.4. It follows that one can read on the Coxeter graph ΓS
(see the definition in the next section) whether or not the above group AT is of
spherical type.

The reader may note that in Theorem 0.1 there is no restriction on AX , whereas
in Conjecture 0.2 we assume that AX is irreducible. Indeed, We can extend the
above conjecture to the case where X not irreducible (see Conjecture 3.4) and
prove that this general conjecture holds for the same Artin-Tits groups than those
considered in Theorem 0.4. However, the statement is more technical. This is why
we postpone it and restrict here to the irreducible case. The remainder of this
article is organized as follows. In Section 1, we introduce the necessary definitions
and preliminaries. Section 2 is devoted to Artin-Tits groups of spherical type.
Finally, in Section 3, we turn to the none-spherical type cases.

1. Preliminaries

In this section we introduce the useful definitions and results on Artin-Tits groups
that we shall need when proving our theorems. For this whole section, we consider
an Artin-Tits group AS generated by a set S and defined by Presentation (1) given
in the introduction.

1.1. Parabolic subgroups. As explained in the previous section, the subgroups
that we consider in the article are the so-called standard parabolic subgroups, that is
those subgroups that are generated by a subset of S. One of the main reasons that
explain why these subgroups are considered is that they are themselves Artin-Tits
groups:

Proposition 1.1. [30] Let X be a subset of S. Consider the Artin-Tits group AX
associated with the Coxeter matrix (mst)s,t∈X . Then

(i) the canonical morphism from AX to AS that sends x to x is into. In
particular, AX is isomorphic to, and will be identified with, the subgroup
of AS generated by X.

(ii) If Y is another subset of S, then we have AX ∩AY = AX∩Y .

We have already defined the notion of the centralizer ZAS
(AX) of a subgroup AX .

We recall that we denote the center ZAS
(AS) of AS by Z(AS). More generally, for

a subset X of S, by Z(AX) we denote the center of the parabolic subgroup AX .
Along the way, we will also need the notions of the normalizer of a subgroup and
of the quasi-centralizer of a parabolic subgroup. We recall here their definitions.

Definition 1.2. Let X be a subset of S and AX be the associated standard para-
bolic subgroup.



4 OUSSAMA AJBAL AND EDDY GODELLE

(i) The normalizer of AX in AS , denoted by NAS
(AX), is the subgroup of AS

defined by

NAS
(AX) = {g ∈ AS | g−1AXg = AX};

(ii) the quasi-centralizer of AX in AS , denoted by QZAS
(AX), is the subgroup

of AS defined by

QZAS
(AX) = {g ∈ AS | g−1Xg = X}

In the sequel, we will write QZ(AS) for QZAS
(AS). There is an obvious sequence

of inclusions between these subgroups:

ZAS
(AX) ⊆ QZAS

(AX) ⊆ NAS
(AX).

But we can say more:

Theorem 1.3. [18, 19, 20] Let AS be an Artin-Tits group, and X be a subset of S.
If AS is of spherical type or of FC type or of 2-dimensional type, then

NAS
(AX) = QZAS

(AX) ·AX .

This result is one of the key arguments in our proof of Theorems 0.1 and 0.4.
Actually, it is conjectured in [16] that this property holds for any Artin-Tits groups.

1.2. Families of Artin-Tits groups. Our objective now is to introduce the var-
ious families of Artin-Tits groups that we considered in Theorems 0.1 and 0.4.

1.2.1. Irreducible Artin-Tits groups. First, we say that an Artin-Tits group is irre-
ducible when it is not the direct product of two of its standard parabolic subgroups.
Otherwise we say that it is reducible. Associated with the Coxeter matrix (ms,t)s,t∈S
is the Coxeter graph, which is the simple labelled graph defined as it follows. Its
vertex set is S and there is an edge between two distinct vertices s and t when ms,t

is not two. The edge has label ms,t when ms,t is not 3. When ms,t = 3, there is
no label. The reader should note that there is a natural one-to-one correspondance
between the standard parabolic subgroups of an Artin-Tits groups and the full
subgraphs of its associated Coxeter graph. Therefore, the group AS is irreducible
if and only if the Coxeter graph ΓS is connected. For instance the braid group
on n + 1 strings is irreducible whereas the free abelian group on two generators is
not. The irreducible components of S are the vertex sets of the maximal connected
full subgraphs of the Coxeter graph. Thus, AS is the direct product of its standard
parabolic subgroups generated by its irreducible components.

1.2.2. Spherical type Artin-Tits groups. Among Artin-Tits groups, those of spher-
ical type are the most studied and the best understood. From Presentation (1),
we obtain the presentation of the associated Coxeter group by adding the rela-
tions s2 = 1 for s in S. The Artin-Tits group is said to be of spherical type when
this associated Coxeter group is finite. For instance, braid groups are of spherical
type as their associated Coxeter groups are the symmetric groups. Actually there is
only a finite list of connected Coxeter graphs whose associated (irreducible) Artin-
Tits groups are of spherical type (see [9],[3]). An almost obvious result that is of
importance is that every standard parabolic subgroup of a spherical type Artin-Tits
group has to be of spherical type too.
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44

Figure 1. Coxeter graphs types B(4) and E(6).

1.2.3. FC type Artin-Tits groups. These Artin-Tits groups are built on those of
spherical type. An Artin-Tits group is of FC type when all its standard parabolic
subgroups whose Coxeter graphs have no edge labelled with∞ are of spherical type.
In particular, all spherical type Artin-Tits groups are of FC type. Alternatively,
the family of FC type Artin-Tits groups can be defined as the smallest family of
groups that contains all spherical type Artin-Tits groups and that is closed over
amalgamation above a standard parabolic subgroup. For instance, the Artin-Tits
group associated with the following Coxeter graph is of FC type.

4 4∞

Figure 2. A Coxeter graph of FC type.

Indeed, the Artin-Tits group in Figure 2 is the amalgamation of two spherical
type Artin-Tits groups of type B(5) (see [2]) above a common standard parabolic
subgroup, which is of type A(4), that is a braid group B5. For completeness, we
mention that to each Artin-Tits group can be associated an abstract complex, the
so-called Deligne complex. Artin-Tits groups of FC type are those for which the
links of the complex vertices are flag complexes (see [6]), hence the name.

1.2.4. 2-dimensional type Artin-Tits groups. An Artin-Tits group is of 2-dimensional
type when no standard parabolic subgroup generated by three, or more, generators
is of spherical type. These groups have been considered, for instance, in [5, 7, 20].

6

7
6

Figure 3. A 2-dimensional Coxeter graph

As for the family of FC type Artin-Tits groups, the name of this family arises
from a characterising property of the Deligne complex: an Artin-Tits group is of
2-dimensional type when its Deligne complex has dimension no greater than 2 (see
[5] for instance).
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1.2.5. Large type Artin-Tits groups. Contained in the family of 2-dimensional Artin-
Tits groups is the family of Artin-Tits groups of large type. An Artin-Tits group
is of large type when no ms,t is equal to 2. Some 2-dimensional Artin-Tits groups
are not of large type (see Figure 3).

5

Figure 4. Coxeter graphs of large types Ã(2) and I(5).

The reader may note that a large type Artin-Tits group has to be irreducible.

1.3. Artin-Tits monoids. As explained above, Theorem 1.3 is one of the main
ingredients in our proof. Another one is the positive monoid of an Artin-Tits group.
This monoid allows to apply Garside theory. Here, we introduce only the results
that we will need and refer to [10] for more details on this theory. We recall that
we fix an Artin-Tits group AS generated by a set S with Presentation (1).

Definition 1.4. The Artin-Tits monoid A+
S associated with AS is the submonoid

of AS generated by S. An element of AS that belongs to A+
S is called a positive

element. The inverse of a positive element is called a negative element.

We gather in the following proposition several properties of Artin-Tits monoids
that we will need in the sequel.

Proposition 1.5. (i) [27] Considered as a presentation of monoid, Presen-
tation (1) is a presentation of the monoid A+

S .
(ii) When AS is of spherical type, then

(a) [3, 4, 10] Every element g in AS can be decomposed in a unique way
as g = a−1b, with a, b positive, so that a and b have no nontrivial
common left-divisors in A+

S . Furthermore, if c ∈ A+
S is such that cg ∈

A+
S , then a right-divides c in A+

S .
(b) [3, 12] There is a unique positive element ∆ of minimal length so that

every element g in AS, can be decomposed as g = h∆−n where the
element h is positive and n ≥ 0. Moreover, ∆ belongs to QZ(AS)
and ∆2 belongs to Z(AS).

(c) [3, 12] When, moreover, AS is irreducible then QZ(AS) is an infi-
nite cyclic group generated by ∆. The group Z(AS) is infinite cyclic
generated by ∆ or by ∆2.

When AS is of spherical type, the decomposition g = a−1b in Point (ii)(a) is
called Charney’s (left) orthogonal splitting of g. Charney’s right orthogonal split-
ting g = ab−1 is defined in a similar way. The element ∆ is called the Garside
element of A+

S . For X ⊆ S, The submonoid A+
X of A+

S generated by X is also of
spherical type. Its Garside element will be denoted by ∆X in the remaining of the
article.

By Proposition 1.5(ii)(b), the element ∆ induces a permutation τ : S → S,
which is either the identity or an involution, so that ∆s = τ(s)∆ for all s in S. By
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Proposition 1.5(ii)(c), QZ(AS) = Z(AS) if and only if τ is the identity map, that
is when ∆ belongs to Z(AS).

We end this section with notations and results that will be helpful in the remain-
ing of the article (see [11, 10] for instance). For a, b in A+

S , we write a � b when a

left-divides b in A+
S , that is when there exists c in A+

S so that b = ac. Similarly,

we write b � a when a right-divides b in A+
S . It should be noted that, when AX

is of spherical type, for X ⊆ S, the element ∆X is closely related to X. On the
one hand, ∆X is the lcm of X for the left-divisibility relation � in A+

S . It is also
the lcm of X for the right-divisibility relation. On the other hand the set X is
uniquely defined by ∆X because X is the set of elements of S that left-divide (and
right-divide) ∆X . Moreover, given any positive word representative of ∆X , the set
of elements of S that occur in this word is X.

2. Spherical type Artin-Tits groups

In this Section we focus on spherical type Artin-Tits groups and prove Theo-
rem 0.1.

2.1. Artin-Tits groups of type E(6) and D(2k + 1). In Theorems 0.1 the de-
scription of DZAS

(AX) depends on a technical condition. Here we investigate this
condition and characterize irreducible Coxeter graphs for which this condition is
satisfied. For the whole section we assume that AS is an irreducible spherical
type Artin-Tits group, and X is a proper subset of S. We recall that the fol-
lowing properties always hold: ∆ ∈ QZ(AS) ; ∆2 ∈ Z(AS); Z(AS) ⊆ QZ(AS) ;
Z(AS) ⊆ DZAS

(AS).

Proposition 2.1. The element ∆ does not belong to Z(AS) but lies in DZAS
(AX)

if and only if :

(a) either ΓS is of type D(2k + 1) and X ⊇ {s2, s2′ , s3} (see Figure 5).
(b) or ΓS is of type E6 and X = {s2, . . . , s6} (see Figure 6).

s2

s2′
s3 s2k+1

X
⊆

Figure 5. ΓS of type D(2k + 1) and X ⊇ {s2, s2′ , s3}

s2 s3 s4 s5 s6

s1

X

Figure 6. ΓS of type E6 and X = {s2, . . . , s6}
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When proving Proposition 2.1, we will need the following lemma.

Lemma 2.2. Assume that the element ∆ does not belong to Z(AS) but lies in DZAS
(AX).

Then:

(i) τ is the identity on S \X, that is ∆ lies in ZAS
(AS\X).

(ii) τ is not the identity on X, that is ∆ does not lie in ZAS
(AX).

(iii) ∆ stabilizes the irreducible components of X.

Proof. (i) Let s lie in S\X. Set Y = X∪{s}. The elements ∆2
X and ∆2

Y lie in Z(AX)
and Z(AY ), respectively by Proposition 1.5. So, they both belong to ZAS

(AX)
and, therefore, commute with ∆. Since ∆∆X = ∆τ(X)∆ and ∆∆Y = ∆τ(Y )∆, we
deduce that τ(X) = X and τ(Y ) = Y . Using that Y = X ∪{s}, we concluded that
τ(s) = s and ∆s = s∆. Thus, Point (i) holds. Since ∆ does not lie in Z(AS), the
map τ is not the identity on S and (i) implies (ii). Finally, Let X1 be an irreducible
component of X. The element ∆2

X1
lies in Z(AX). Indeed, it belongs to Z(AX1

)

and AX is equal to the direct product AX1
× AX\X1

. Therefore, ∆∆2
X1

= ∆2
X1

∆.
On the other hand the equality ∆X1 = τ(X1)∆ imposes that ∆∆X1 = ∆τ(X1)∆

holds. This imposes in turn that ∆2
X1

= ∆2
τ(X1)

and, finally, that X1 = τ(X1) (see

the end of Section 1.3 for these final assertions). �

Proof of Proposition 2.1. Assume that the element ∆ does not belong to the cen-
ter Z(AS) but lies in DZAS

(AX). Since ∆ is not in Z(AS), the permutation τ is not
the identity map on S. Using the classification of irreducible Artin-Tits groups [2]
and well-known results on ∆ [3, 12], we deduce that the type of ΓS is one of the
following:

• A(k) with k ≥ 2,
• D(2k + 1) with k ≥ 1,
• E6, or
• I2(2p+ 1) with p ≥ 1.

By assumption on ∆, the assertions (i)(ii) and (iii) in Lemma 2.2 hold. Assume
that ΓS is of type I2(2p + 1). In this case, the cardinality of S is two and τ ,
which is not the identity, has to exchange the two elements of S. This is not
possible since X is proper and the permutation τ fixes each element of S \ X,
by Lemma 2.2(i). Assume ΓS is of type A(k) with k ≥ 2, (so AS is the braid
group Bk+1). Since X is proper, by Lemma 2.2(i), the involution τ has to fix some
element of S. It follows that k is odd and the unique element of S fixed by τ
is s k+1

2
. This imposes that we have S \X = {s k+1

2
} and ∆ does not stabilize the

two irreducible components {s1, . . . , s k−1
2
} and {s k+3

2
, . . . , sk} of X, a contradiction

with Lemma 2.2(iii). So ΓS is not of type A(k). Assume that ΓS is of type D(2k+1).
Then τ switches s2 and s2′ and fixes the other elements. Therefore, s2 and s2′ have
to lie in the same irreducible component of X by Lemma 2.2(iii). Hence, s2, s2′ , s3
belong to X and we are in the case (a) of the proposition. Assume finally that ΓS
is of type E6. We have τ(s2) = s6. By Lemma 2.2(iii) they belong to the same
irreducible component of X. Therefore, s2, . . . , s6 lie in X. Since X is proper,
it must be equal to {s2, . . . , s6} and we are in the case (b) of the proposition.
Conversely, in the cases (a) and (b) of the proposition, one can verify that ∆ does
not belong to Z(AS) but lies in DZAS

(AX).
�
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2.2. Ribbons. The notion of a ribbon was introduced in [14] for the case of braid
groups, and generalized in [26, 17]. It will be crucial to us in order to calculate the
double-centralizer of a parabolic subgroup. Here we recall its definition and gather
some properties that we shall need. Here, we only consider the case of spherical type
Artin-Tits groups. We refer to the above references and to [10] for more details.
Given an Artin-Tits presentation (1), let us first introduce two notations. For any
subset X of S, we denote by X⊥ the set of elements of S that are not in X and
commute with all the elements of X. By ∂X we denote the set of elements of S
that are not in X and do not commute with at least one element of X.

X⊥ = {s ∈ S \X | ∀t ∈ X,mts = 2}
and

∂X = {s ∈ S \X | ∃t ∈ X,mts > 2}.

s2 s3 s4

s5

s6 s7 s8

s1

X⊥X

∂X

Figure 7. Example : ∂(X) and X⊥

Before reading the following definition, the reader should note that for subsets X, Y
with X ⊆ Y ⊆ S, the element ∆X right-divides (and also left-divides) the element
∆Y (see the last comment in Section 1.3). Therefore ∆Y ∆−1X is a positive element.

Definition 2.3. (i) Let t belong to S and X be included in S. Denote
by X(t) the irreducible component of X ∪ {t} containing t. If t lies in X,
we set dX,t = ∆X(t); otherwise, we set

dX,t = ∆X∪{t}∆
−1
X = ∆X(t)∆

−1
X(t)−{t}.

In both cases, there exist Y and t′ with Y ∪{t′} = X∪{t} and Y (t′) = X(t)
so that Y dX,t = dX,tX. The element dX,t is called a positive elemen-
tary (Y,X)-ribbon.

(ii) For X,Y ⊆ S, we say that g ∈ A+
S is a positive (Y,X)-ribbon if Y g = gX.

For instance, consider the Artin-Tits group AS of type E8, whose graph is con-
sidered in Figure 7. One has dX,s5 = s2s3s4s5, and for any t in X⊥ one has dX,t = t.
Moreover ∆ is a positive (X,X)-ribbon. In the sequel, we say that an element of A+

S

is a positive (·, X)-ribbon when it is a positive (Y,X)-ribbon, for some Y . Similarly
we say that an element is a positive (Y, ·)-ribbon when it is a positive (Y,X)-ribbon
for some X.

The connection between positive ribbons and elementary ones appears in the
following result:

Proposition 2.4. Assume that AS is a spherical type Artin-Tits group and g
lies in A+

S . The element g is a positive (Y,X)-ribbon if and only if g can be
decomposed as g = gn · · · g1 where each gi is a positive elementary (Xi, Xi−1)-
ribbon, with X0 = X and Xn = Y .
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In the remainder of the article, we need the notion of a reduced element. For
X ⊆ S, we say that a positive element g is (X, ·)-reduced when no element of X
left-divides g in A+

S . This is equivalent to say that no element of A+
X left-divides

g. Similarly we say that a positive element g is (·, X)-reduced when no element
of X right-divides g in A+

S . Finally, for X,Y ⊆ S, the element g is said to be
(X,Y )-reduced if it is both (X, ·)-reduced and (·, Y )-reduced.

Proposition 2.5. Assume that AS is a spherical type Artin-Tits group. Let X be
included in S and u lies in A+

S . Let ε ∈ {1, 2} be such that ∆ε
X lies in Z(AX).

(i) Assume that u is a positive (Y,X)-ribbon for some Y ⊆ S.
(a) ∆Y u = u∆X .
(b) Assume that t belongs to S. Then,

u � t ⇔ u � dX,t.
(ii) If u∆ε

Xu
−1 is a positive element, then there exists Y ⊆ S such that

(a) u∆ε
Xu
−1 = ∆ε

Y ; (b) uAXu
−1 = AY and (c) Coxeter graphs ΓX and

ΓY are isomorphic. Moreover, if u is (·, X)-reduced, then u is a positive
(Y,X)-ribbon, that is Y u = uX.

The above results are not all explicitly stated in [26, 17] but are variations of
results contained there. The second part of (ii) is stated in [17, Lemma 2.2] and
implies the first part of (ii)(see also [26, Lemma 5.6]). Point (i) is shown in the
proof of [17, Lemma 2.2] (see [26, Lemma 5.6] for details). For point (i)(b), see also
[21, Example 3.14].

The support of a word on S is the set of letters that are involved in this word.
It follows from the presentation of A+

S that two words on S representing the same

element in A+
S have the same support. So the support of an element of A+

S is well-

defined. In the sequel, by Supp(g) we denote the support of an element g in A+
S .

Lemma 2.6. Assume that AS is a spherical type Artin-Tits group. Let X ( S be
such that ΓX is connected. Let t lie in ∂X. Then

Supp(dX,t) = X ∪ {t}.

Proof. By assumption t is not in X, so dX,t = ∆X∪{t}∆
−1
X and Supp(dX,t) is

included in X ∪{t}. Let us show the converse inclusion. By Proposition 2.5 (i), we
have dX,t = v0t for some v0 in A+

S ; then t belongs to the support of dX,t. Let s be
in X. Set s0 = t. Since X is connected and t belongs to ∂X, there exists a finite
sequence s1, . . . , sn of X such that sn = s and msi,si+1

6= 2 for all i ≥ 0. We assume
that the sequence is chosen so that n is minimal. Assume that dX,t = visi · · · s0 for
some 0 ≤ i < n with vi in A+

S . Since Y dX,t = dX,tX for some Y ⊆ X ∪ {t}, we
can write visi · · · s0si+1 = s′i+1visi · · · s0 for some s′i+1 in X ∪ {t}. By minimality
of n, we have msj ,si+1

= 2 for any j < i. So visisi+1si−1 · · · s0 = s′i+1visi · · · s0
and visisi+1 = s′i+1visi. This imposes that visisi+1 = s′i+1visi = v′ · · · si+1sisi+1︸ ︷︷ ︸

m terms

with m = msi,si+1 and v′ in A+
S . Indeed, the element · · · si+1sisi+1︸ ︷︷ ︸

m terms

, which is equal

to · · · sisi+1si︸ ︷︷ ︸
m terms

, is the left lcm of si and si+1 for the right divisibility relation (see
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[12, 3, 10] for instance). This imposes in turn that we can write vi = vi+1si+1,
where vi+1 = v′ · · · si+1sisi+1︸ ︷︷ ︸

m−2 terms

, and dX,t = vi+1si+1si · · · s0. Then, we obtain step-

by-step that dX,t can be decomposed as vnsn · · · s0. Hence, s belongs to the support
of dX,t for any s in X. As a consequence, X ∪ {t} is included in Supp(dX,t). �

Lemma 2.7. Let u ∈ A+
S and s ∈ S. Denote by u−12 v1 the left orthogonal splitting

of the element u−1su. There exists u1 in A+
S and s1 in S so that u = u1u2,

v1 = s1u2. Moreover, u1 is a positive ({s}, {s1})-ribbon.

Proof. By [22, Theorem 1] there exists u1 in A+
S and s1 in S so that u = u1u2

and v1 = s1u2 . Moreover, applying [22, Lemma 2.3], a straightforward induction
on the length of u proves that u1 is a positive ({s}, {s1})-ribbon. �

2.3. The proof of Theorem 0.1. In this section we prove Theorem 0.1. The
proof needs two preliminary results, namely Lemma 2.9 and Proposition 2.8. The
latter is the main argument. Proposition 2.8 is proved here; the proof of Lemma 2.9
is postponed to the next section.

Proposition 2.8. Let AS be an irreducible Artin-Tits group of spherical type.
Let X be a proper subset of S. Let b 6= 1 be a positive (·, X ∪ X⊥)-ribbon that is

(·, X)-reduced. Suppose further that b∆
ε(Y )
Y b−1 is a positive element for all Y ⊆ S

containing X, where ε(Y ) ∈ {1, 2} is minimal such that ∆
ε(Y )
Y belongs to ZAS

(AX).
Then there exists n ∈ N∗ so that

b = ∆n∆−nX

Note that ∆X right-divides ∆ in A+
S and ∆∆X = ∆τ(X)∆ by Proposition 1.5.

So for any positive integer n the element ∆n∆−nX is a positive element.

Lemma 2.9. Under the assumptions of Proposition 2.8, all the elements of S \X
right-divide b.

Proof of Proposition 2.8. We have ∆X � s for all s ∈ X and, by Lemma 2.9, we
have b � s for all s ∈ S\X. Since, by assumption, b∆X � b, we get that b∆X � s for
all s ∈ S. Thus b∆X � ∆ and, therefore, ∆∆−1X right-divides b in A+

S . Let k ∈ N∗
be maximal such that ∆k∆−kX right-divides b. Write b = d∆k∆−kX with d ∈ A+

S .
We show that d = 1. This will prove the proposition. For the remainder of the
proof, for Z ⊆ S and j ∈ N, we set Zj = τ j(Z). Then ∆kX = Xk∆k and, by
Proposition 2.5, we have ∆k∆X = ∆Xk

∆k. Moreover, ∆X is a positive (X,X)-

ribbon. Then ∆k∆−kX is a positive (Xk, X)-ribbon. For the remainder of the proof,

when s lies in Xk, we denote by sX the element of X so that s∆k∆−kX = ∆k∆−kX sX .

Assume that d = us with s in Xk and u positive. Then b = us∆k∆−kX =

u∆k∆−kX sX . This is not possible, since b is (·, X)-reduced. Hence, d is (·, Xk)-
reduced. We now prove that d is a positive (·, Xk ∪X⊥k )-ribbon. Let s lie in Xk.

We have s∆k∆−kX = ∆k∆−kX sX . But, b is a positive (·, X)-ribbon. Therefore there

exists s′ in S so that bsX = s′b. Hence ds∆k∆−kX = d∆k∆−kX sX = s′d∆k∆−kX . We
deduce that the equality ds = s′d holds. As this is so for every element s of Xk, we
deduce that d is a positive (·, Xk)-ribbon. Let s lie in X⊥k . For every t in X, the
element τk(t) lies in Xk and, therefore, mτk(t),s = 2. But the involution τ induces
an automorphism of the Coxeter graph associated with the presentation of AS . It
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follows that for every t in X, we have mt,τk(s) = mτk(t),s = 2. Hence, τk(s) belongs

to X⊥. But b is a positive (·, X⊥)-ribbon, then bτk(s) = s′b for some s′ ∈ S. We

obtain that ds∆k∆−kX = d∆k∆−kX τk(s) = s′d∆k∆−kX , and, therefore, ds = s′d. As
this is so for every element of X⊥k , we deduce that d is a positive (·, X⊥k )-ribbon.
Gathering the two results we get that d is a positive (·, Xk ∪X⊥k )-ribbon.

Let Y be included in S and contain Xk. Consider the minimal positive inte-

ger η(Y ) such that ∆
η(Y )
Y belongs to ZAS

(AXk
). The involution τk exchanges X

and Xk and exchanges Y and Yk. It follows, firstly, that the inclusion Xk ⊆ Y
implies the inclusion X ⊆ Yk and, secondly, that τk sends AXk

and ∆Y to AX

and ∆Yk
, respectively, with η(Y ) = ε(Yk). Thus, ∆

η(Y )
Yk

belongs to ZAS
(AX)

with η(Y ) = ε(Yk). Then, by assumption, we have b∆
η(Y )
Yk

= ub, for some u in A+
S .

Since b∆
η(Y )
Yk

= d∆k∆−kX ∆
η(Y )
Yk

= d∆k∆
η(Y )
Yk

∆−kX = d∆
η(Y )
Y ∆k∆−kX and ub =

ud∆k∆−kX we obtain that d∆
η(Y )
Y = ud. As a consequence, replacing b and X by d

and Xk, respectively, we can repeat the first argument of the proof and deduce
that d = d1∆∆−1Xk

for some d1 in A+
S . But this leads to a contradiction to the

maximality of k, since we get b = d∆k∆−kX = d1∆∆−1Xk
∆k∆−kX = d1∆k+1∆

−(k+1)
X .

Hence d = 1 and b = ∆k∆−kX . �

We turn now to the proof of Theorem 0.1.

Proof of Theorem 0.1. Let u lie inDZAS
(AX). The inclusion ZAX

(AX) ⊆ ZAS
(AX)

obviously holds. We deduce the inclusion DZAS
(AX) ⊆ ZAS

(ZAX
(AX)) and that u

belongs to ZAS
(ZAX

(AX)). Thanks to Proposition 2.5 and Theorem 1.3, we can
write u = y · z, with yX = Xy and z ∈ AX . Write (see Proposition 1.5) y =
∆−2mh with h in A+

S , and decompose h as h = abc, with a, c ∈ A+
X and b be-

ing (X,X)–reduced. Since yX = Xy and ∆2 is in Z(AS), we have hX = Xh
and so h∆X = ∆Xh. Using that h = abc with a, c in A+

X and that ∆2
X lies in

Z(AX), we deduce that b∆2
X = ∆2

Xb . The element b is (·, X)-reduced, then by
Proposition 2.5, we have bX = Xb. It follows that there exists z′ ∈ AX such
that bcz = z′b. Set x = az′. Then, x belongs to AX and u = yz = ∆−2mhz =
∆−2mabcz = ∆−2maz′b = ∆−2mxb. If b = 1 then u lies in Z(AS) · AX , and
therefore in QZ(AS) ·AX . Suppose b 6= 1. By its definition, the set X⊥ is included
in ZAS

(AX). Therefore, for all s in X⊥ we have us = su and s∆−2mxb = ∆−2mxsb.
By cancellation, we obtain bs = sb for all s ∈ X⊥. So, b is a positive (·, X ∪X⊥)-
ribbon.

Now, let Y be included in S and containing X. Set ε(Y ) in {1, 2} be mini-

mal such that ∆
ε(Y )
Y lies in ZAS

(AX). Then, u∆
ε(Y )
Y = ∆

ε(Y )
Y u and, as before,

we get b∆
ε(Y )
Y = ∆

ε(Y )
Y b. As a consequence we have b∆

ε(Y )
Y b−1 is positive. By

Proposition 2.8, we deduce there exists n in N∗ so that b = ∆n∆−nX . Thus, we

get u = ∆−2mx∆n∆−nX .
Assume, first, that ∆ lies in DZAS

(AX) and does not belong to Z(AS). Then,
by Lemma 2.2, we have ∆X = X∆ and τn(x) belongs to AX . Therefore, we
can write u = ∆−2m+n · τn(x)∆−nX . Since ∆ belongs to QZ(AS) and τn(x) be-
longs to X, we deduce that u belongs to QZ(AS) · AX . So DZAS

(AX) is included
in QZ(AS) ·AX . Conversely, ∆ generates QZ(AS). So, if ∆ lies in DZAS

(AX) then
we have QZ(AS) · AX ⊆ DZAS

(AX). Therefore, the latter inclusion is actually
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an equality. Moreover we have QZ(AS) · AX = AX · QZ(AS), since ∆ belongs to
QZAS

(AX) by the above argument.
Assume, secondly, that either ∆ does not lie inDZAS

(AX) or ∆ belongs to Z(AS).
Since u lies in DZAS

(AX), for every w in ZAS
(AX) we have wu = uw and, there-

fore, ∆−2mxw∆n∆−nX = ∆−2mx∆nw∆−nX . This imposes ∆nw = w∆n for every w
in ZAS

(AX). In other words ∆n lies in DZAS
(AX) too. Since either ∆ does not lie

in DZAS
(AX) or ∆ belongs to Z(AS), we deduce that either n is even or ∆ belongs

to Z(AS). In any case, ∆n belongs to Z(AS). Since we have u = ∆−2m+nx∆−nX ,
we deduce that u lies in Z(AS) · AX . So the inclusion DZAS

(AX) ⊆ Z(AS) · AX
holds.

Since X 6= S and Supp(∆) = S, the element ∆m does not belong to AX except
if m = 0. We deduce that AX ∩QZ(AS) = AX ∩ Z(AS) = {1}. We get the semi-
direct product AX nQZ(AS) in the first case, and the direct product AX ×Z(AS)
in the second case. �

2.4. The proof of Lemma 2.9. Here we focus on the proof of Lemma 2.9. This
proof is technical and, to help the reader, we decompose it in 3 steps, namely
Lemma 2.10, Lemma 2.11 and the final argument.

Lemma 2.10. Under the assumptions of Proposition 2.8, if t lies in ∂X then

b � t ⇔ bt = t′b for some t′ ∈ S.

Proof. Assume that b � t. Set Y = X ∪ {t}. Under the assumptions of Propo-

sition 2.8, we have b∆
ε(Y )
Y � b. By Proposition 2.5, we deduce there exists some

subset Y ′ of S such that b∆
ε(Y )
Y b−1 = ∆

ε(Y )
Y ′ and bAY b

−1 = AY ′ . On the other
hand, the element b is a positive (X ′, X)-ribbon for some subset X ′ of S. It fol-
lows that X ′ is included in AY ′ and, therefore, in Y ′. Now, the sets X ′ and Y ′

have the same cardinality as X and Y , respectively. Then there exists t′ in Y ′ so
that Y ′ = X ′ ∪ {t′}. We are going to prove that bt = t′b. By Lemma 2.7, we can
decompose b as b = b1b2 with b2 in A+

S and b1 a positive ({t′}, {t′′})-ribbon for

some t′′ in S, so that the left orthogonal splitting of b−1t′b is b−12 t′′b2. By the above
argument b−1t′b lies in AY , so t′′ has to lie in Y and b2 has to lie in A+

Y . But b is
(·, Y )-reduced. Indeed, we assumed that b is (·, X)-reduced and that b � t . This
imposes b2 = 1, b = b1 and bt′′ = t′b for some t′′ in Y . Finally we already have
X ′b = bX. Since t′ does not belong to X ′, It follows that t′′ cannot lie in X. Thus
t′′ = t and we are done.

Conversely, Assume that btb−1 is positive, then b is a positive (·, {t})-ribbon.
Since it is a positive (·, X)-ribbon, it is also a positive (·, Y )-ribbon. By Y (t) denote
the irreducible component of Y that contains t. Since t lies in ∂(X), the set Y (t)
contains some element of X. By Proposition 2.5 (i)(b), if t is a right-divisor of b
then dY,t is a right-divisor of b too. but t lies in Y , therefore dY,t = ∆Y (t). So all
the elements of Y (t) are right-divisors of b. But b is (·, X)-reduced, a contradiction.
Thus t does not right-divide b. �

Note that we showed the above result without using that b is a positive (·, X⊥)-
ribbon. This hypothesis is then useless for Lemma 2.10.

Lemma 2.11. Under the assumptions of proposition 2.8, we have

Supp(b) = S.
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Proof. By assumption b 6= 1, so its support is not empty. Assume by contradiction
that Supp(b) 6= S. Let U be an irreducible component of Supp(b). Fix u in ∂U and
set V = Supp(b) \ U . By hypothesis u does not lie in Supp(b). Then, u does not
right-divide b. The element b is a positive (·, X ∪X⊥)-ribbon. So, if u belongs to
X ∪X⊥, then bub−1 lies in A+

S . Otherwise u lies in ∂X and, by Lemma 2.10, bub−1

lies in A+
S too. Now, the set U is an irreducible component of Supp(b), and V is the

union of the other components of Supp(b). Then, each element of U commutes with
each element of V and we can write b = b2b1 with b1 ∈ A+

U , and b2 ∈ A+
V . Since U

is included in Supp(b), we have b1 6= 1. Write b1 = b′1s with s ∈ U . Since U ∪{u} is
irreducible, there exists u1, . . . , un ∈ U such that u0 = u, un = s and mui,ui+1

> 2.
Up to replacing s by some ui with i < n, we can assume that b has no right-divisor
among u1, . . . , un−1.

u u1 U
un = s

Set U ′ = {u, u1, . . . , un−1}. Let ui lie in U ′. If ui does not lie in X ∪X⊥, then ui
belongs to ∂X and, by Lemma 2.10, buib

−1 lies in S. On the other hand b is a
positive (·, X∪X⊥)-ribbon. Therefore b is a positive (·, U ′)-ribbon. By its definition
the graph ΓU ′ is connected, the element un lies in ∂U ′ and right-divides b. Then
by Proposition 2.5, the positive elementary ribbon dU ′,un

right-divides b. Applying
Lemma 2.6, we get that U ′ is contained in the support of b. Therefore, u belongs
to Supp(b), a contradiction. Hence, Supp(b) = S. �

We are now ready to prove Lemma 2.9.

proof of Lemma 2.9. Let s lie in S \X, and set Y = S \{s}. Write b = b1b2 with b2
in A+

Y and b1 (·, Y )-reduced. By Lemma 2.11, we have Supp(b) = S. Since b2
lies in A+

Y , it follows that b1 6= 1. In addition, b1 is (·, Y )-reduced. Then, s has

to right-divide b1. We have b∆2
Y b
−1 = b1∆2

Y b
−1
1 . According to the assumptions

of Proposition 2.8, we have b∆2
Y = zb for some z in A+

S . Indeed, if ε(Y ) = 1

then b∆Y = z1b for some z1 ∈ A+
S . Therefore b∆2

Y = z1b∆Y = z21b. By Proposi-
tion 2.5, we deduce that b1 is a (Y ′, Y )-ribbon for some Y ′ ⊆ S and b = b1b2 = b′2b1
with b′2 ∈ A+

Y ′ . Since s right-divides b1, it also has to right-divide b. �

2.5. When ΓS is not connected. In Theorem 0.1 we consider irreducible Artin-
Tits groups of spherical type. Here we extend the theorem to any spherical type
Artin-Tits group.

Theorem 2.12. Let AS be an Artin-Tits group of spherical type. Denote the
irreducible components of S by S1, . . . , Sn. Let AX be a standard parabolic subgroup
of AS and set Xi = X ∩ Si for all i. Set

I = {1 ≤ i ≤ n | Xi 6= Si,∆Si
∈ DZASi

(AXi
) and ∆Si

/∈ Z(ASi
)}.

J = {1 ≤ i ≤ n | Xi 6= Si, and i 6∈ I}.
Finally, set SI =

⋃
i∈I Si and SJ =

⋃
i∈J Si. Then we have

DZAS
(AX) = (AX oQZ(ASI

))× Z(ASJ
).
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Proof. Consider a direct product of groups G = G1×· · ·×Gn and a subgroup H of
G that is the direct product H1×· · ·×Hn of its subgroups Hi, where Hi = H ∩Gi
for i in 1, · · · , n. We have

ZG(H) = ZG1
(H1)× · · · × ZGn

(Hn)

Since we again have a direct product of subgroups of each Gi we get

DZG(H) = DZG1
(H1)× · · · ×DZGn

(Hn)

Here, AS = AS1 × · · ·×ASn and AX = AX1 × · · ·×AXn , with AX ∩ASi = AXi , by
Proposition 1.1. By Theorem 0.1, if i lies in I, then DZASi

(AXi) = AXioQZ(ASi);

if i lies in J then DZASi
(AXi

) = AXi
×Z(ASi

). In addition, if i is neither in I nor

in J , then Xi = Si and DZASi
(AXi

) = AXi
. So, we deduce that

DZAS
(AX) =

n∏
i=1

DZASi
(AXi) =

∏
i∈I

(AXi oQZ(ASi))×
∏
j∈J

(AXj × Z(ASj ))×
∏

k 6∈I∪J

AXk
=

(
n∏
k=1

AXk
o
∏
i∈I

QZ(ASi
)

)
×
∏
j∈J

Z(ASj
).

But
∏n
k=1AXk

= AX ,
∏
i∈I QZ(ASi

) = QZ(ASI
) and

∏
j∈J Z(ASj

) = QZ(ASJ
).
�

2.6. Application to the subgroup conjugacy problem. Given a group G and
a subgroup H of G, the subgroup conjugacy problem for H is solved by finding an
algorithm that determines whether any two given elements of G are conjugated by
an element of H. In this section, we focus on Artin-Tits groups of type B or D and
use Theorem 0.1 and [25, Theorem 1.1] to reduce the subgroup conjugacy problem
for their irreducible standard parabolic subgroups to an instance of the simultane-
ous conjugacy problem. We follow the strategy used in [15] to solve the subgroup
conjugacy problem for irreducible standard parabolic subgroups of an Artin-Tits
group of type A. The simultaneous conjugacy problem is solved for Artin-Tits
groups of type A in [23] (see also [24]), but the result and its proof can be general-
ized verbatim to all Artin-Tits groups of spherical type, in particular to Artin-Tits
groups of type B or type D . Hence, we obtain a solution to the subgroup conjugacy
problem for irreducible standard parabolic subgroups of Artin-Tits groups of type
B and D.

Let us recall [25, Theorem 1.1] and [15, Theorem 2.13].

Theorem 2.13 ([25], Theorem 1.1). Let AS be an Artin-Tits group of spherical
type such that ΓS = Ak (k ≥ 1), ΓS = Bk (k ≥ 2) or ΓS = Dk (k ≥ 4). Let X ⊆ S
such that ΓX is connected. Then ZAS

(AX) is generated by

X⊥ ∪ {∆Y ∈ ZAS
(AX) | X ⊆ Y } ∪ {∆Y ∆Y ′ ∈ ZAS

(AX) | X ⊆ Y,X ⊆ Y ′}.

Note that in the third set, we can restrict the pair (Y, Y ′) to those so that neither
∆Y nor ∆Y ′ belong to ZAS

(AX). In the sequel, we denote the obtained generating
set by Ξ(X).
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Example 2.14. Consider S = {s1, s2, s3} with AS of type B3 as below. Set
X = {s2}.

s1 s2 s3
4

X

We haveX⊥ = ∅ and ZAS
(AX) is generated by Ξ(X) = {s2,∆{s1,s2},∆S ,∆

2
{s2,s3}}.

Theorem 2.15 ([15], Theorem 2.13). Let G be a group and H be a subgroup
such that DZG(H) = Z(G) · H. Suppose further that ZG(H) is generated by a
set {g1, . . . , gn}. Then for x, y ∈ G, the following are equivalent:

(i) there exists c ∈ H such that y = c−1xc.
(ii) there exists z ∈ G such that

(a) y = z−1xz, and
(bi) gi = z−1giz for all 1 ≤ i ≤ n.

Corollary 2.16. Let AS be an Artin-Tits group of type Bk (k ≥ 2) or Dk (k ≥ 4).
Let X ⊆ S be such that ΓX is connected. In case ΓS is of type D2k+1, assume
that {s2, s2′ , s3} is not included in X with the notations of Figure 5. For any
pair (x, y) of elements of AS, the following are equivalents:

(i) there exists c ∈ AX such that y = c−1xc.
(ii) there exists z ∈ AS such that

(a) y = z−1xz,
(b) g = z−1gz for all g in Ξ(X).

Proof. By Theorem 0.1 and Proposition 2.1 we have DZG(AX)) = Z(AS) × AX .
So we are in position to apply Theorem 2.15. �

3. The non spherical type cases

We turn now to the proof of Theorem 0.4 that is concerned with Artin-Tits
groups that are not of spherical type. Our main argument is Proposition 3.3.
In [20], the second author stated several conjectures, that are proved to hold for
Artin-Tits groups of various types (see [18, 19, 20]) as a consequence of a stronger
property called Property (~) in [20]. This is the case for Artin-Tits groups of
spherical type, of FC type, of large type or of 2-dimensional type. then, AS satisfies
Property (~) stated in [20]. Property (~) is too involved to be explicitly included
here. So, we only mention its relevant consequences that will be used in the proof
of Proposition 3.3 and refer to [20] for more details.

Proposition 3.1. [20, Proposition 4.3] Let AS be an Artin-Tits group. Assume
that AS satisfies Property (~). Then NAS

(AX) = AX ·QZAS
(AX) and QZAS

(AX)
is the subgroup of AS generated by the set of positive (X,X)-ribbons.

Remark 3.2. Let AS be an Artin-Tits group and X be included in S. An ele-
mentary positive ribbons dX,t is defined (see Definition 2.3) only when X(t) is of
spherical type. Therefore,

(i) when AX is irreducible and not of spherical type, this is the case if and
only if t belongs to X⊥. In this latter case, dX,t is equal to t and is a
(X,X)-ribbon. So, for an irreducible and not of spherical type parabolic
subgroup AX , the set of elementary positive (·, X)-ribbons is equal to X⊥;
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(ii) when AX is of spherical type and not contained in any proper spherical
type parabolic subgroup then dX,t is defined only for t in X and in this
case dX,t is equal to ∆X(t) (see Definition 2.3).

Proposition 3.3. Let AS be an Artin-Tits group. Assume that AS satisfies Prop-
erty (~). Then for any X included in S one has

(i) if AX is of spherical type, then for any positive integer k,

ZAS
(∆2k

X ) = NAS
(AX);

(ii) if AX is of spherical type and there is no AY of spherical type with Y
strictly containing X, then

QZAS
(AX) = QZ(AX) and NAS

(AX) = AX ;

(iii) if AX is irreducible and not of spherical type, then

QZAS
(AX) = AX⊥ and NAS

(AX) = AX∪X⊥ .

Proof. Assume AX is irreducible and not of spherical type. By Proposition 3.1,
NAS

(AX) = AX · QZAS
(AX) and QZAS

(AX) is generated by the set of positive
ribbons, which is, in turn, generated by the set of positive elementary ribbons. By
Remark 3.2, this latter set is X⊥. So, QZAS

(AX) = AX⊥ and Point (iii) holds.
Assume now that AX is of spherical type. Fix a positive integer k. If g lies in
ZAS

(∆2k
X ), then in particular g−1∆2k

X g belongs to AX . Property (~) says that,
in this case, g belongs to AX · QZAS

(AX), that is to NAS
(AX) (see Implication

(2) ⇒ (3) of the definition of Property (~) [20, Definition 4.1]). Conversely, AX ·
QZAS

(AX) is included in ZAS
(∆2k

X ) because both AX and QZAS
(AX) have to fix

the center of AX , which contains ∆2
X . So Point (i) holds. Finally, if there is no

AY of spherical type with X ( Y , then the elementary positive ribbons dX,t are
the elements ∆X(t) with t in X (see Remark 3.2 and Definition 2.3). It follows
that QZAS

(AX) is included in AX and is, therefore, equal to QZ(AX). Since
NAS

(AX) = AX · QZAS
(AX), we deduce that NAS

(AX) = AX . Hence Point (ii)
holds. �

In the sequel we first extend Conjecture 0.2 to the context of non irreducible par-
abolic subgroups (see Conjecture 3.4). Then we prove that Conjecture 3.4 holds for
any Artin-Tits group which satisfies Property (~) (see Theorem 3.6). Considering
Proposition 3.3 (ii), this will prove Theorem 0.4.

Conjecture 3.4. Let AS be an irreducible Artin-Tits group and X be included in
S. Let Xs be the union of the irreducible components of AX that are of spherical
type, and Xas be the union of the other irreducible components of X. Then,

DZAS
(AX) = ZAS

(ZA
X⊥as

(AXs))

(i) Assume that Xs is empty. Then

DZAS
(AX) = ZAS

(AX⊥).

(ii) Assume that AX is of spherical type. Let AT be the smallest standard
parabolic subgroup of AS that contains ZAS

(AX).
(a) If AT is of spherical type then

DZAS
(AX) = DZAT

(AX).
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(b) If AT is not of spherical type then

DZAS
(AX) = AX .

Proposition 3.5. Let AS be an irreducible Artin-Tits group and X be included in
S. Assume that AS satisfies Property (~). Conjecture 3.4 implies Conjecture 0.2.

Proof. Consider the notations of Conjecture 0.2. Assume that X is irreducible.
If AX is not of spherical type, then X = Xas and Xs is empty. By Proposition 3.3,
ZAS

(AX) ⊆ QZAS
(AX) = AX⊥ ⊆ ZAS

(AX). Therefore AX⊥ = ZAS
(AX) and

T = X⊥. Thus, Conjecture 3.4(i) implies Conjecture 0.2(i). In the case AX is of
spherical type, there is nothing to prove. �

Theorem 3.6. Let AS be an irreducible Artin-Tits group. If AS satisfies Property
(~) stated in [20], then Conjecture 3.4 holds.

In order to prove Theorem 3.6, we need some preliminary results. In the sequel,
we assume that AS is an irreducible Artin-Tits group that satisfies Property (~)
stated in [20]. We fix a standard parabolic subgroup AX with X ⊆ S. By Xs we
denote the union of the irreducible components of AX that are of spherical type. By
Xas we denote the union of the other irreducible components of X. By definition,
Xs is included in X⊥as. We set

Υ = {Y ⊆ S | Xs ⊆ Y ; and AY is of spherical type.}
By AT we denote the smallest standard parabolic subgroup of AS that contains
ZAS

(AXs).

Lemma 3.7. ZAS
(AX) = ZA

X⊥as
(AXs

).

Proof. Let X1, · · · , Xk be the distinct irreducible components of Xas. Then we
have X⊥as = X⊥1 ∩ · · · ∩ X⊥k . On the other hand, we have AXas

= AX1
× · · · ×

AXk
and ZAS

(AXas
) = ZAS

(AX1
) ∩ · · · ∩ ZAS

(AXk
). By Proposition 3.3, the

equality ZAS
(AXi

) = QZAS
(AXi

) = AX⊥i holds for each component Xi. Therefore

ZAS
(AXas

) = AX⊥1 ∩· · ·∩AX⊥k = AX⊥1 ∩···∩X⊥k = AX⊥as
. But AX = AXs

×AXas
and

AXs
is included in AX⊥as

. Thus, ZAS
(AX) = ZAS

(AXs
)∩ZAS

(AXas
) = ZA

X⊥as
(AXs

).

�

Lemma 3.8. The set Υ is not empty and all its elements are contained in T .
Moreover, T belongs to Υ if and only if AT is of spherical type. In this case, T is
the unique maximal element of Υ.

Proof. Xs is contained in Υ, so the latter is not empty. Moreover, Xs is included in
T . Therefore the latter belong to Υ if and only if AT is of spherical type. Finally if
Y belongs to Υ, then ∆2

Y belongs to ZAS
(AY ), and therefore to ZAS

(AX). Thus,
Y is included in T . Hence, if T belongs to Υ, it is its unique maximal element. �

Lemma 3.9. Assume that Y is maximal in Υ for the inclusion. Then,

DZAS
(AXs

) ⊆ DZAY
(AXs

)

Proof. Assume that g belongs to DZAS
(AXs). The element ∆2

Y lies in Z(AY ). Since
Xs is included in Y , it follows that ∆2

Y lies in ZAS
(AXs

), and g∆2
Y g
−1 = ∆2

Y . By
Proposition 3.3(i)(a), g belongs to the subgroup NAS

(AY ). But Y is maximal in Υ.
By Proposition 3.3(i)(b), NAS

(AY ) = AY . Thus DZAS
(AXs

) = ZAS
(ZAS

(AXs
)) ∩

AY = ZAY
(ZAS

(AXs)) ⊆ ZAY
(ZAY

(AXs)) = DZAY
(AXs). �
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We can now prove Theorem 3.6

Proof of Theorem 3.6. By Lemma 3.7, we have ZAS
(AX) = ZA

X⊥as
(AXs

). It follows

that DZAS
(AX) = ZAS

(ZA
X⊥as

(AXs
)). When Xs is empty, we have Xas = X and

AXs
= {1}. So ZA

X⊥as
(AXs

) = ZA
X⊥

({1}) = AX⊥ . Therefore, DZAS
(AX) =

ZAS
(AX⊥). Assume that for the remaining of the proof that AX is of spherical

type. Assume, first, that AT is of spherical type. By Lemma 3.8, T is maximal
in Υ and, by Lemma 3.9, DZAS

(AX) ⊆ DZAT
(AX). On the other hand, by the

definition of T we have ZAS
(AX) ⊆ AT . Therefore, ZAT

(AX) = ZAS
(AX) ∩AT =

ZAS
(AX). We deduce that DZAT

(AX) = ZAT
(ZAS

(AX)) ⊆ DZAS
(AX). Hence,

DZAS
(AX) = DZAT

(AX). Assume, finally, that T does not lie in Υ. Let Y be
maximal in Υ. By Lemma 3.9, we get DZAS

(AX) ⊆ DZAY
(AX). If Y = X,

then AX ⊆ DZAS
(AX) ⊆ DZAX

(AX) = AX and we are done. So, assume that
X ( Y . The group AY is of spherical type. Applying Theorem 0.1, we get that
DZAY

(AX) ⊆ QZ(AY ) n AX . Since AX is included in DZAS
(AX), the group AX

is equal to DZAS
(AX) if and only if DZAS

(AX) ∩ QZ(AY ) = {1}. Assume this
is not the case. Then, there exists k > 0 so that ∆k

Y lies in DZAS
(AX). We can

assume without restriction that k is even. Since Y lies in Υ and T does not, they
are distinct. It follows from the definition of T that there exists g in ZAS

(AX)
which is not in AY . But ∆k

Y lies in DZAS
(AX). So we have ∆k

Y g(∆k
Y )−1 = g,

and equivalently g∆k
Y g
−1 = ∆k

Y . The latter equality imposes that g belongs to
NAS

(AY ) by Proposition 3.3(i)(a). But NAS
(AY ) = AY by Proposition 3.3(i)(b),

a contradiction. Hence, DZAS
(AX) = AX . �

Corollary 3.10. Let AS be an irreducible Artin-Tits group of FC type, or of large
type, or of 2-dimensional type. Then, Conjecture 0.2 holds.

Proof. Under the assumption, Conjecture 3.4 holds and implies Conjecture 0.2. �

Remark 3.11. In an (irreducible) Artin-Tits group that is of large type, all stan-
dard parabolic subgroups are irreducible. So, Corollary 3.10 provides a complete
description of the double centralizer of any standard parabolic subgroups. How-
ever, for the other non-spherical types in the case both Xs and Xas are not empty,
the answer is not completely satisfactory. Indeed the double centralizer is not
as simple as in the cases where either Xs or Xas is empty. For instance, in
the two following examples, the reader may verify that ZAS

(AX) = Z(AXs) and
DZAS

(AX) = NAS
(AXs) = QZAS

(AXs) ·AXs

s2

s3 s4
∞ 7

s1

Xs

Xas

Figure 8. An Artin-Tits groups of 2-dimensional type.
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s2 s3

s4

s5 s6 s7

s1

Xs

Xas

Figure 9. An Artin-Tits groups of small type (ms,t ≤ 3 for all s, t).
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[2] N. Bourbaki. Groupes et Algèbres de Lie chapitres 4,5,6. Hermann, 1968.

[3] E. Brieskorn and K. Saito. Artin Gruppen und Coxeter Gruppen. Invent. Math., 17:245–271,
1972.

[4] R. Charney. Geodesic automation and growth function for Artin groups of finite type. Math.

Ann., 301:307–324, 1995.
[5] R. Charney. Injectivity of the positive monoid for some infinite type Artin groups. In J. Cossey,

C. Miller, W. Neumann, and M. Shapiro, editors, Geometric Group Theory Down Under.

Walter de Gruyter, Berlin, 1996.
[6] R. Charney and M.W. Davis. the K(π, 1)-problem for hyperplane complements associated to

infinite reflection groups. J. of Amer. Math. Soc., 8:597–627, 1995.
[7] A. Chermak. Locally non-spherical Artin groups. J. Algebra, 200:56–98, 1998.

[8] C. Chuang and T. Lee. The double centralizer theorem for semiprime algebras. Algebr. Rep-

resent. Theory, 17:1277–1288, 2014.
[9] H. S. M. Coxeter. The complete enumeration of finite groups of the form R2

i = (RiRj)kij = 1.

J. London Math. Soc, 10:21–25, 1935.

[10] P. Dehornoy, F. Digne, E. Godelle, D. Krammer, and J. Michel. Foundations of Garside
Theory. European Mathematical Society, EMS Tracts in Mathematics, volume 22, 2015.

[11] P. Dehornoy and L. Paris. Gaussian groups and Garside groups, two generalisations of Artin

groups. Proc. London Math Soc., 79(3):569–604, 1999.
[12] P. Deligne. Les immeubles des groupes de tresses généralisés. Invent. Math., 17:273–302, 1972.
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