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Photometric Depth Super-Resolution
Bjoern Haefner∗, Songyou Peng∗, Alok Verma∗, Yvain Quéau, and Daniel Cremers

Abstract—This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for
upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot
variational approach is first put forward, which is effective as long as the target’s reflectance is piecewise-constant. It is then shown that
this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate
reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually
discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both
quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.

Index Terms—RGB-D cameras, depth super-resolution, shape-from-shading, photometric stereo, variational methods, deep learning.
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1 INTRODUCTION

RGB-D sensors have become very popular for 3D-
reconstruction, in view of their low cost and ease of

use. They deliver a colored point cloud in a single shot, but
the resulting shape often misses thin geometric structures.
This is due to noise, quantisation and, more importantly,
the coarse resolution of the depth map. In comparison, the
quality and resolution of the companion RGB image are
substantially better. For instance, the Asus Xtion Pro Live
device delivers 1280 × 1024 RGB images, but only up to
640× 480 depth maps. The depth map thus needs to be up-
sampled to the same resolution of the RGB image, and the
latter could be analysed photometrically to reveal fine-scale
details.

However, super-resolution of a solitary depth map with-
out additional contraints is an ill-posed problem, and re-
trieving geometry from either a single color image (shape-
from-shading) or from a sequence of color images acquired
under unknown, varying lighting (uncalibrated photometric
stereo) is another ill-posed problem. The present study
explores the resolution of both these ill-posedness issues by
jointly performing depth super-resolution and photometric
3D-reconstruction. We call this combined approach photo-
metric depth super-resolution.

The choice of jointly solving both these classic in-
verse problems is motivated by the observation that ill-
posedness in depth super-resolution and in photometric
3D-reconstruction have different peculiarities and origins.
In depth super-resolution, constraints on high-frequency
shape variations are missing (there exist infinitely many
ways to interpolate between two measurements), while low-
frequency (e.g., concave-convex or bas-relief) ambiguities
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arise in photometric 3D-reconstruction. Therefore, the low-
frequency geometric information necessary to disambiguate
photometric 3D-reconstruction should be extracted from the
low-resolution depth measurements and, symmetrically, the
high-resolution photometric clues in the RGB data should
provide the high-frequency information required to dis-
ambiguate depth super-resolution. One hand thus washes
the other: ill-posedness in depth super-resolution is fought
using photometric 3D-reconstruction, and vice-versa.

As we shall see in Section 2, the photometric depth
super-resolution problem comes down to simultaneously
inferring high-resolution depth and reflectance maps, given
the low-resolution depth and the high-resolution RGB im-
ages. As depicted in Figure 1, this study explores three
different strategies for such a task1. The rest of this paper
discusses them by increasing order of efficiency which,
unfortunately, is inversely proportional to the amount of
required resources. 1) If the available resources consist of
a single RGB-D frame, then a variational approach to shape-
from-shading can be followed. This approach, presented in
Section 3, has no particular requirement in terms of acquisi-
tion setup or offline processing, yet it is effective only as long
as the surface’s reflectance is piecewise-constant. 2) Section 4
then discusses a solution for eliminating this dependency
upon a specific reflectance model. Pre-training a neural
network for reflectance estimation allows to handle surfaces
with more complex reflectance within the same variational
framework. Yet, additional resources are required for offline
training and the target has to resemble the objects used in
the training phase (we thus focus in this section on human
faces). 3) If multiple pairs of images can be acquired from
the same viewing angle but under varying lighting, then
one can resort to uncalibrated photometric stereo. This last
strategy, discussed in Section 5, requires neither an assump-
tion on the reflectance, nor offline training for a specific
class of objects. However, it requires capturing more data
online. Section 6 eventually recalls the main conclusions of
this study and suggests future research directions.

1. Codes and data can be found in https://vision.in.tum.de/data/
datasets/photometricdepthsr.

 https://vision.in.tum.de/data/datasets/photometricdepthsr
 https://vision.in.tum.de/data/datasets/photometricdepthsr
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Approach SfS (Section 3) SfS + reflectance learning (Section 4) UPS (Section 5)
Required data 1 RGB-D frame 1 RGB-D frame + training dataset n ≥ 4 RGB-D frames
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Fig. 1: Photometric depth super-resolution of a low-resolution depth map z0 to the higher resolution of the companion
image I (first column, Rucksack and Face 1 datasets were acquired using an Intel Realsense D415, and Tabletcase using an
Asus Xtion Pro Live). Second column: shape-from-shading (SfS) recovers high-resolution albedo (ρ) and depth (z) from a
single RGB-D frame, assuming piecewise-constant albedo. If this assumption is not satisfied (e.g., Face 1 and Tabletcase),
shape estimation deteriorates. Third column: this can be circumvented by learning reflectance, an approach which is
efficient as long as the target resembles the training data (here, training was carried out on human faces). Fourth column:
uncalibrated photometric stereo (UPS) requires no training and handles arbitrary albedo, but it requires n ≥ 4 input frames
acquired under varying illumination. See Section 6 in the supplementary material for additional comparisons.

2 PROBLEM STATEMENT

A generic RGB-D sensor is considered, which consists of a
depth sensor and an RGB camera with parallel optical axes
and optical centers lying on a plane orthogonal to these axes
(see Figure 2). The images of the surface on the focal planes
of the depth and the color cameras are denoted respectively
by ΩLR ⊂ R2 and ΩHR ⊂ R2. In a single shot, the RGB-D
sensor provides two 2D-representations of the surface:

• A geometric one, taking the form of a mapping z0 :
ΩLR → R between pixels in ΩLR and the depth of
their conjugate 3D-points on the surface;

• A photometric one, taking the form of a mapping I :
ΩHR → R3 between pixels in ΩHR and the radiance
(relatively to the red, green and blue channels of the
color camera) of their conjugate 3D-point.

In real-world scenarios, the sets ΩLR and ΩHR are discrete,
and the cardinality |ΩLR| of ΩLR is lower than that |ΩHR|
of ΩHR. To obtain the richest surface representation, one
should thus project the depth measurements z0 from ΩLR
to ΩHR, i.e. estimate a new, high-resolution depth map
z : ΩHR → R. To this end, we next introduce constraints
arising from depth super-resolution and from photometric
3D-reconstruction.

z

z0

nz,∇z(p)

p
ΩLR ΩHRz(p)

Fig. 2: Geometric setup. Depth measurements z0 are avail-
able over a low-resolution set ΩLR, and color measurements
I over a high-resolution set ΩHR. Photometric depth super-
resolution consists in estimating a high-resolution depth
map z out of these geometric and photometric measure-
ments, which are connected through the surface normals
nz,∇z , see Equations (32) to (35).

2.1 Geometric and Photometric Constraints
Given the assumptions above on the alignment of the sen-
sors, and neglecting occlusions, the low-resolution depth
map z0 can be considered as a downsampled version of the
sought high-resolution one z, after warping and averaging:

z0 = Kz + ηz, (1)
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with ηz the realisation of a stochastic process represent-
ing measurement errors and quantisation, and K a non-
invertible injective linear operator combining warping, blur-
ring and downsampling [1], which can be calibrated before-
hand [2]. Solving (32) in terms of the high-resolution depth
map z constitutes the depth super-resolution problem, which
requires additional assumptions on the smoothness of the
observed surface. In this work, the latter is assumed regular,
i.e. the normal to the surface exists in every visible point.
Denoting by f > 0 the focal length of the color camera, and
by p : ΩHR → R2 the field of pixel coordinates with respect
to its principal point (blue reference coordinates system in
Figure 2), the surface normal is defined as the following
ΩHR → S2 ⊂ R3 field of unit-length vectors (see e.g., [3]):

nz,∇z =
1√

|f ∇z|2 + (−z − p>∇z)2

[
f ∇z

−z − p>∇z

]
. (2)

We further assume that the surface is Lambertian and
lit by a collection of infinitely-distant point light sources.
Lighting can then be represented in a compact manner using
first-order spherical harmonics, see [4], [5] and Section 2.1
in the supplementary material. The irradiance in channel
? ∈ {R,G,B} then writes

I = l>
[
nz,∇z

1

]
︸ ︷︷ ︸
:=mz,∇z

ρ + ηI, (3)

with ηI : ΩHR → R3 the realisation of a stochastic process
standing for noise, quantisation and outliers, l ∈ R4 the
“light vector”, ρ : ΩHR → R3 the albedo (Lambertian
reflectance) map and mz,∇z : ΩHR → R4 a normal-
dependent vector field. Solving (35) in terms of the high-
resolution depth map z constitutes the photometric 3D-
reconstruction problem, where reflectance ρ and lighting l
represent hidden variables to estimate.

Photometric depth super-resolution aims at inferring z out
of z0 and I, while ensuring consistency with the super-
resolution constraint in (32) and with the photometric one
in (35). Before elaborating on three strategies for solving this
problem, let us first review related works.

2.2 Related Works
Single depth image super-resolution requires solving Equa-
tion (32) in terms of the high-resolution depth map z. Since
K is not invertible, this is an ill-posed problem: there exist
infinitely many choices for interpolating between observa-
tions, cf. Section 2.2 in the supplementary material. Disam-
biguation can be carried out by adding observations ob-
tained from different viewing angles [6], [7], [8]. In the more
challenging case of a single viewing angle, a smoothness
prior on the high-resolution depth map can be added and
a variational approach can be followed [1]. One may also
resort to machine learning techniques relying on a dictio-
nary of low- and high-resolution depth or edge patches [9],
[10]. Such a dictionary can even be constructed from a single
depth image by looking for self-similarities [11], [12]. Nev-
ertheless, learning-based depth super-resolution methods
remain prone to over-fitting [13], which can be avoided by
combining the respective merits of machine learning and
variational approaches [14], [15].

Shape-from-shading [16], [17], [18], [19] is another classic
inverse problem which aims at inferring shape from a single
image of a scene, by inverting an image formation model
such as (35). Common numerical strategies for this task
include variational [20], [21] and PDE methods [22], [23],
[24], [25]. However, even when reflectance and lighting
are known, shape-from-shading is still ill-posed due to the
underlying concave / convex ambiguity, cf. Section 2.2 in
the supplementary material. Obviously, even more ambi-
guities arise under more realistic lighting and reflectance
assumptions: any image can be explained by a flat shape
illuminated uniformly but painted in a complex manner, by
a white and frontally-lit surface with a complex geometry,
or by a white planar surface illuminated in a complex
manner [26]. Shape-from-shading under uniform reflectance
but natural lighting has been studied [27], [28], [29], [30], but
the case with unknown reflectance requires the introduction
of additional priors [31]. This can be avoided by actively
controlling the lighting, a variant of shape-from-shading
known as photometric stereo which allows to estimate both
shape and reflectance [32]. The problem with uncalibrated
lighting is however ill-posed: it can be solved only up
to a linear ambiguity [33] which, assuming integrability
of the normals, reduces to a generalised bas-relief (GBR)
one under directional lighting [34], and to a Lorentz one
under natural lighting [35]. Resolution of such ambiguities
by resorting to additional priors [36], [37], [38], extensions
to non-Lambertian reflectance [39] and natural illumina-
tion [40] remain active research topics for which public
benchmarks exist [41]. Recent developments in this field
include PDE-based variational methods [42] and machine
learning solutions [43], [44].

Shape-from-shading has recently gained new life with
the emergence of RGB-D sensors. Indeed, the rough depth
map can be used as prior to “guide” shape-from-shading
and thus circumvent its ambiguities. This has been achieved
in both the multi-view [45], [46], [47] and the single-
shot [48], [49], [50], [51], [52], [53] cases. Still, the reso-
lutions of the input image and depth map are assumed
equal, and the same holds for approaches resorting to
photometric stereo instead of shape-from-shading [54], [55],
[56], [57]. In fact, depth super-resolution and photometric
3D-reconstruction have been widely studied, but rarely to-
gether. Several methods were proposed to coalign the depth
edges in the super-resolved depth map with edges in the
high-resolution color image [2], [58], [59], [60], [61], [62],
but such approaches only consider sparse color features
and may thus miss thin geometric structures. Some au-
thors super-resolve the photometric stereo results [63], and
others generate high-resolution images using photometric
stereo [64], but none employ low-resolution depth clues
except those of [65], who combine calibrated photometric
stereo with structured light sensing. However, this involves
a non-standard setup and careful lighting calibration, and
reflectance is assumed to be uniform. Such issues are cir-
cumvented in the building blocks [66] and [67] of this
study, which deal with photometric depth super-resolution
based on, respectively, shape-from-shading and photometric
stereo. Let us present the former approach, which is a single-
shot solution to photometric depth super-resolution based
on a variational approach to shape-from-shading.
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3 SINGLE-SHOT DEPTH SUPER-RESOLUTION US-
ING SHAPE-FROM-SHADING

In this section, the input data consists of a single RGB-D
frame, i.e. a high-resolution image I and a low-resolution
depth map z0. To obtain a high-resolution depth map z con-
sistent with both the geometric constraint (32) and the pho-
tometric one (35), we consider a variational approach which
comes down to solving the optimization problem (10). Fol-
lowing [68], such a variational formulation can be derived
from a Bayesian rationale.

3.1 Bayesian-to-Variational Rationale
Besides the high-resolution depth map z, neither the re-
flectance ρ nor the lighting vector l is known. We treat
the joint recovery of these three quantities as a maximum
a posteriori (MAP) estimation problem. To this end we aim
at maximising the posterior distribution of I and z0 which,
according to Bayes rule, writes

P(z,ρ, l|z0, I) =
P(z0, I|z,ρ, l)P(z,ρ, l)

P(z0, I)
. (4)

In (4), the denominator is the evidence, which is a constant
with respect to the variables z,ρ and l and can thus be ne-
glected during optimisation. The numerator is the product
of the likelihood P(z0, I|z,ρ, l) and the prior distribution
P(z,ρ, l), which both need to be further discussed.

The measurements of depth and image observations
being done using separate sensors, z0 and I are statis-
tically independent and thus the likelihood factors out
as P(z0, I|z,ρ, l) = P(z0|z,ρ, l)P(I|z, ρ, l). Furthermore,
we assume that the process of how the depth map z0

is acquired is depending neither on lighting l nor on re-
flectance ρ. Given this, the marginal likelihood for the
depth map z0 can be written as P(z0|z,ρ, l) = P(z0|z).
Assuming that noise ηz in (32) is homoskedastic, zero-
mean and Gaussian-distributed with variance σ2

z , we further

have P(z0|z) ∝ exp

{
−‖Kz−z

0‖2
2

2σ2
z

}
(here ‖·‖2 is the `2-

norm over ΩLR). Concerning the marginal likelihood of I,
we assume the random variable ηI in (35) follows a ho-
moskedastic Gaussian distribution with zero mean and co-
variance matrix diag(σ2

I , σ
2
I , σ

2
I ) ∈ R3×3, thus P(I|z,ρ, l) ∝

exp

{
−‖l

>mz,∇z ρ−I‖2
2

2σ2
I

}
(this time, ‖·‖2 is the `2-norm over

ΩHR). Therefore, the likelihood in (4) is given by

P(z0, I|z,ρ, l)∝exp

{
−
∥∥Kz−z0

∥∥2

2

2σ2
z

−
∥∥l>mz,∇z ρ−I

∥∥2

2

2σ2
I

}
. (5)

The prior distribution P(z,ρ, l) in (4) can be derived
in a similar manner. The Lambertian assumption implies
independence of reflectance from geometry and lighting,
and the distant-light assumption implies independence of
geometry and lighting. Therefore, z, ρ and l are statistically
independent and the prior distribution factors out as

P(z,ρ, l) = P(z)P(ρ)P(l). (6)

Regarding lighting, we do not want to favor any particular
situation and thus we opt for an improper prior:

P(l) = constant. (7)

The prior on z is slightly more evolved. As we want
to prevent oversmoothing (Sobolev regularisation) and/or
staircasing artefacts (total variation regularisation), we make
use of a minimal surface prior [69]. To this end, a parametri-
sation dAz,∇z : ΩHR → R mapping each pixel to the
corresponding area of the surface element is required. This

writes dAz,∇z = z
f2

√
|f ∇z|2 + (−z − p>∇z)2, and the

total surface area is then given by ‖dAz,∇z‖1 (here ‖·‖1 is
the `1-norm over ΩHR). Introducing a free parameter α > 0
to control the surface smoothness, the minimal surface prior
can then be stated as

P(z) ∝ exp

{
−
‖dAz,∇z‖1

α

}
. (8)

Following the Retinex theory [70], reflectance ρ can be
assumed piecewise-constant, resulting in a Potts prior

P(ρ) ∝ exp

{
−
‖∇ρ‖0
β

}
, (9)

with β > 0 controlling the degree of discontinuities in the
reflectance ρ. Note that ρ is a vector field, thus for each
pixel p, ∇ρ(p) = [∇ρR(p),∇ρG(p),∇ρB(p)]

> ∈ R3×2,
and we use the following definition of the `0-“norm”

over ΩHR: ‖∇ρ‖0 :=
∑

p∈ΩHR

{
0 if |∇ρ(p)|F = 0,

1 else
,

with |·|F the Frobenius norm over R3×2.
The MAP estimate for depth, reflectance and lighting is

eventually attained by maximising the posterior distribu-
tion (4) or, equivalently, minimising its negative logarithm.
Plugging Equations (5) to (9) into (4), and discarding all
additive constants, this comes down to solving the following
variational problem:

min
z,ρ,l

∥∥∥l>mz,∇z ρ−I
∥∥∥2

2
+µ

∥∥Kz−z0
∥∥2

2
+ν‖dAz,∇z‖1+λ‖∇ρ‖0 ,

(10)
where the trade-off parameters (µ, ν, λ) are given by

µ =
σ2
I

σ2
z

, ν =
σ2
I

α
, λ =

σ2
I

β
. (11)

3.2 Numerical Solving of (10)
The variational problem in (10) is not only nonconvex, but
also inherits a nonlinear dependency upon the gradient of
z, see (35) along with (33). Compared to other methods,
which overcome this issue by either following a two-step
approach via optimising over the normals and then fitting
an integrable surface to it [48] (a strategy which may fail
if the estimated normals are non-integrable), or by freezing
the nonlinearity [51] (which may yield convergence issues,
in view of the nonconvexity of the optimisation problem),
we solve for the depth directly and without any approx-
imation. To this end we follow [30] and turn the global-
and-nonlinear problem (10) into a sequence of global-yet-
linear and nonlinear-yet-local ones. This can be achieved by
introducing an auxiliary vector field θ : ΩHR → R3 with
θ := (z,∇z) and rewriting (10) as the following equivalent
constrained optimisation problem:

min
z,ρ,l,θ

∥∥∥l>mθ ρ− I
∥∥∥2

2
+ µ

∥∥Kz − z0
∥∥2

2
+ ν‖dAθ‖1+ λ‖∇ρ‖0

s.t. θ = (z,∇z). (12)
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To solve the nonconvex, non-smooth and constrained
optimisation problem (12) we make use of a multi-block
ADMM scheme [71], [72], [73]. This comes down to iterating
a sequence consisting of minimisations of the augmented
Lagrangian

L(z,ρ, l,θ,u) =
∥∥∥l>mθ ρ− I

∥∥∥2

2
+µ
∥∥Kz−z0

∥∥2

2
+ν‖dAθ‖1

+ λ ‖∇ρ‖0 + (θ − (z,∇z))>u +
κ

2
‖θ − (z,∇z)‖22 (13)

over the primal variables z, ρ, l and θ, and one gradient
ascent step over the dual variable u : ΩHR → R3 (κ > 0 can
be viewed as a step size).

At iteration (k), one sweep of this scheme writes as:

ρ(k+1) = argmin
ρ

∥∥∥l(k)>mθ(k) ρ− I
∥∥∥2

2
+ λ ‖∇ρ‖0 , (14)

l(k+1) = argmin
l

∥∥∥l>mθ(k) ρ(k+1) − I
∥∥∥2

2
, (15)

θ(k+1) = argmin
θ

∥∥∥l(k+1)>mθ ρ
(k+1) − I

∥∥∥2

2
(16)

+ ν ‖dAθ‖1 +
κ

2

∥∥∥θ − (z,∇z)(k) + u(k)
∥∥∥2

2
,

z(k+1) = argmin
z

µ
∥∥Kz−z0

∥∥2

2
+
κ

2

∥∥∥θ(k+1)−(z,∇z)+u(k)
∥∥∥2

2
,

(17)

u(k+1) = u(k) + θ(k+1) − (z,∇z)(k+1). (18)

The albedo subproblem (14) is solved using the primal-dual
algorithm [74]. The lighting update step in (15) is done
using the pseudo-inverse. The θ-update (16) is a nonlinear
optimisation subproblem, yet free of neighboring pixel de-
pendency thanks to the proposed splitting. It can be solved
independently in each pixel using the implementation [75]
of the L-BFGS method [76]. Eventually, the conjugate gra-
dient method is applied on the normal equations of (17),
which is a sparse linear least squares problem.

Our initial values for (k) = (0) are chosen to be
ρ(0) = I, l(0) = [0, 0,−1, 0]>, z(0) an inpainted [77] and
smoothed [78] version of z0 followed by bicubic interpo-
lation to upsample to the image domain ΩHR, θ(0) =
(z,∇z)(0), u(0) = 0 and κ = 10−4. Due to the problem being
non-smooth and nonconvex, to date no convergence result
has been established and we leave this as future work. Nev-
ertheless, in our experiments we have never encountered
any problem reaching convergence, which we consider as
reached if the relative residual falls below some threshold:

rrel :=

∥∥∥z(k+1) − z(k)
∥∥∥

2∥∥z(0)
∥∥

2

< 10−5, (19)

and if the constraint θ = (z,∇z) is numerically satisfied, i.e.

rc :=
(
θ(k+1) − (z,∇z)(k+1)

)>
u(k+1)

+
κ

2

∥∥∥θ(k+1) − (z,∇z)(k+1)
∥∥∥2

2
< 5 · 10−6. (20)

To ensure the latter, the step size κ is multiplied by a factor
of 2 after each iteration.

The scheme is implemented in Matlab, except the albedo
update (14) which is implemented in CUDA. Depending on
the datasets, convergence is reached between 10s and 90s.

3.3 Experiments

Although the optimal value of each parameter can be de-
duced using (11), it can be difficult to estimate the noise
statistics in practice, thus we consider (µ, ν, λ) as tunable
hyperparameters. We first carried out a series of experi-
ments on synthetic datasets, which showed that the set
of parameters (µ, ν, λ) = (0.1, 0.7, 1) seems appropriate,
cf. Section 3.2 in the supplementary material. Using these
values, we then conducted qualitative and quantitative
comparison of our results against the state-of-the-art single-
shot approaches [10], [51], [60], on synthetic datasets and
publicly available real-world ones from [41], [46], [47]. The
proposed method appeared to represent the best compro-
mise between the recovery of high- and low-frequency
geometric information. These experimental results can be
found in Sections 3.3 to 3.6 in the supplementary material.

Next, we qualitatively evaluated our approach on data
we captured ourselves with an Intel RealSense D415 (1280×
720 RGB and 320× 240 depth) and an Asus Xtion Pro Live
camera (1280 × 1024 RGB and 320 × 240 depth). Data was
captured indoor with an LED attached to the camera in
order to reinforce shading in the RGB images. The objects of
interest were manually segmented from background before
processing. Figure 3 shows the resulting estimates of ρ
and z (1D depth profiles highlighting the recovery of thin
structures can be found in Section 3.6 in the supplemen-
tary material). In the simplest “Android” experiment, all
shading information is explained with geometry since the
Potts prior prevents shading information being propagated
into reflectance. The “Basecap” experiment is slightly more
challenging due to the presence of areas with very low
intensity. However, in such cases minimal surface ensures
robustness, while fine details such as the stitches on the
peak or the rivet of the bottle opener can still be recovered.
The geometry of the 3-dimensional “GUINNESS” stitching
is also correctly explained in terms of geometric variations
and not as albedo. Although under- and over-segmentation
of reflectance can be observed in the “Minion” experiment
(cf. the eyes, the “Gru” logo in the center of the dungaree, or
the left foot), this does not seem to affect depth estimation
too much.

Another interesting qualitative result is the “Rucksack”
experiment in Figure 1, where the very thin wrinkles are
appropriately interpreted in terms of slight geometric vari-
ations. However, our method fails whenever the reflectance
of the pictured object does not fit the Potts prior, see for
instance the “Face 1” and “Tabletcase” experiments in Fig-
ure 1. For such objects with smoothly varying reflectance the
piecewise-constant albedo assumption induces bias which
propagates to the estimated depth. Indeed, the prior forbids
to explain thin brightness variations in terms of reflectance,
and thus the depth is forced to account for them, which
results in noisy high-resolution depth maps. These failure
cases illustrate the difficulty of designing a Bayesian prior
which would properly split geometry and albedo informa-
tion. The rest of this manuscript discusses two different
strategies to circumvent this issue: by replacing the albedo
estimation brick of the proposed variational framework
with a deep neural network, or by acquiring additional data.
The former approach is described in the next section.
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Fig. 3: Qualitative results obtained using the proposed
single-shot approach on three real-world datasets captured
with an Intel Realsense D415 camera. Even when inten-
sity is very low (second row), or when under- or over-
segmentation of reflectance happens (third row), the min-
imal surface prior prevents artefacts from arising while still
allowing the recovery of thin geometric structures.

4 DEPTH SUPER-RESOLUTION USING SHAPE-
FROM-SHADING AND REFLECTANCE LEARNING

The need for a strong prior on the target’s reflectance is
a serious bottleneck in single-shot depth super-resolution
using shape-from-shading. To circumvent this issue, we
investigate in this section the combination of a deep learning
strategy (to estimate reflectance) with a simplified version
of the proposed variational framework (to carry out depth
super-resolution, with pre-estimated reflectance).

4.1 Motivations and Construction of our Method

If we replace the assumption of a piecewise-constant albedo
by the much stronger assumption of known albedo, the
variational problem from the previous section comes down
to jointly achieving depth super-resolution and low-order
lighting estimation, and is thus substantially simplified.
Yet, the task of designing a reflectance prior which is both
realistic and numerically tractable is replaced with that of
designing an efficient method for estimating a reflectance
map out of a high-resolution RGB image. Luckily, this
problem has long been investigated in the computer vision
community: it is an intrinsic image decomposition problem.
Some variational solutions exist [31], [79], yet they rely on
explicit reflectance priors and thus suffer from the same

limitations as the previously proposed approach. One re-
cent alternative is to rather resort to convolutional neural
networks (CNNs), see for instance [80].

One important issue pertaining to CNN-based albedo es-
timation techniques is the lack of inter-class generalisation.
Nevertheless, as long as the object to be analysed resembles
those used during the training stage, the albedo estimates
are satisfactory (see Section 2.3 in the supplementary ma-
terial). Therefore, our proposal is to replace our man-made
reflectance prior (piecewise-constantness) by a less explicit
prior on the class of objects that the target belongs to. In this
section, we focus on the class of human faces, as e.g., in [81],
in view of both the richness of geometric details to recover
and the complexity of the reflectance.

Let us emphasise that we resort to CNNs only for
reflectance estimation and not for geometry refinement,
although several deep learning strategies are able to provide
shape clues [82], [83], [84], [85], [86]. Indeed, such methods
have shown commendable results yet they are fraught with
good-to-the-eye but possibly physically-incorrect geometry
estimates, probably because during testing time they are
unfettered by any concrete physics-based model and prior.
Given that we do already have a physics-based depth refine-
ment framework at hand, which furthermore makes use of
the available low-resolution geometric clues from the depth
sensor, we believe it is more sound to pick the best from
both worlds - deep learning and variational methods. The
solution we advocate thus contains two building blocks: a
deep neural network prior-lessly learns the mapping from
the input RGB image to reflectance for a particular class of
objects (here, human faces), and then our variational frame-
work based on shape-from-shading provides a physically-
sound numerical framework for depth super-resolution.

4.2 Reflectance Learning

To train a CNN for the estimation of the human face’s
reflectance, one needs at his disposal hundreds of facial
images in vivid lighting and viewing conditions, along
with the corresponding albedo maps (see Figure 4). This
could be achieved using photometric stereo, yet the process
would be very tedious. Training a neural network using
synthetic images is a much simpler alternative: for instance,
the approach from [87] resorts to the ShapeNet 3D-model
library for estimating the albedo of inanimate objects. We
follow a similar approach, but dedicated to human faces.

Fig. 4: Examples of human faces rendered under varying
viewing and lighting conditions (top), along with the corre-
sponding albedo maps (bottom).
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We consider for this purpose the ICT-3DRFE database
[88], [89], which comprises of 3D meshes of human faces,
reflectance maps and normal maps. These databases were
captured using a Light Stage, which provides fine-detailed
shape and reflectance. Using a rendering software like
Blender, one can then relight the faces and change viewing
angles in order to obtain hundreds of shaded RGB images
along with ground-truth albedo maps. Our training dataset
consists of 21 faces, each enacting 15 different expressions.
For each face and each expression, several images are ac-
quired under varying lighting conditions induced by com-
bining ten extended light sources. In practice, eight different
lighting conditions are simulated by modulating the inten-
sity of each light source, in accordance to the usual lighting
in homes and offices e.g., light sources on the ceiling, walls,
windows etc. Furthermore, rendering of the faces is done
from three different viewing angles, i.e. center, slight left
and slight right. Eventually, the images are generated using
the Lambertian reflectance model. In total, after pruning the
dataset and augmenting the faces for lighting, viewpoint
and specularity, the training set comprises of 5175 images.
Figure 4 shows some rendering examples, along with the
corresponding ground-truth albedo maps.

A CNN is then trained to learn the mapping from
the rendered face images to the corresponding ground-
truth reflectance. Our network architecture is based on U-
Net [90]. Generally, U-Net comprises of convolution and
nonlinear layers which downsample the input to a 1D array
and then upsample to the same input size using trans-
pose convolution and nonlinear layers. Apart from these
layers, an important architectural nuance of U-Net is the
skip connections between downsampling and upsampling
layers. This allows U-Net to produce sharp results, which
is crucial for albedo estimation. Let us emphasise that the
architecture of this network is remarkably simple, cf. Section
2.3 in the supplementary material. Once reflectance estima-
tion is dropped out, the variational problem (10) for joint
depth super-resolution and lighting estimation also becomes
rather simple. Still, the appropriate combination of such
simple frameworks does provide state-of-the-art results, as
we shall see in the following.

4.3 Experiments
Since the numerical framework for estimating lighting and
high-resolution depth is the same as the one discussed in
Section 3, we use exactly the same parameters as in this
section. Using these parameters, we carried out qualitative
and quantitative comparison of our results against state-
of-the-art methods which perform deep neural network-
based depth super-resolution with the same kind of inputs
as our method [62], and deep neural network-based shape-
from-shading on low-resolution RGB data (without depth
super-resolution) [86]. Our method appears to outperform
the state-of-the-art both qualitatively and quantitatively on
synthetic and publicly available real-world data from [41].
We also compared our reflectance learning-based approach
with the previously discussed variational approach, and
the learning-based method better refines the geometry of
faces, which illustrates the benefit of dropping a handcrafted
prior in favor of a more general learning framework (see
Section 4.2 in the supplementary material).
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Fig. 5: Results of the proposed variational approach to
photometric depth super-resolution, using deep learning
to estimate reflectance. Data was captured with an Intel
Realsense D415 camera.

Next, we qualitatively evaluated our method on data we
captured ourselves using an Intel RealSense D415 (1280 ×
720 RGB and 640 × 360 depth). The results in Figure 5
illustrate the ability of the proposed approach to recover
detail-preserving geometry with subtle wrinkles and teeth
details, in contrast with pure deep learning methods which
are less accurate (see Section 4.3 in the supplementary
material). Eventually, comparing the result on the “Face
1” dataset (Figure 1) against the shape-from-shading result
from Section 3 also confirms the interest of replacing a
model-based prior by a learning framework. However, the
“Rucksack”’ and “Tabletcase” experiments of Figure 1 also
highlight the limitation of the proposed learning-based so-
lution: whenever the object significantly departs from usual
facial appearance, the reflectance fails and artifacts arise in
the depth map. This can also be observed on objects from the
DiLiGenT dataset [41] (see Section 4.4 in the supplementary
material), although our approach still outperforms other
learning-based ones. The only way to circumvent such an
issue is to acquire more data in a photometric stereo manner,
as discussed in the next section.
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5 MULTI-SHOT DEPTH SUPER-RESOLUTION US-
ING PHOTOMETRIC STEREO

Single-shot depth super-resolution requires some prior
knowledge of the surface reflectance, either in terms of
a piecewise-constant prior or of adequation to a learning
database. The only way to get rid of such priors consists in
acquiring multiple observations under varying lighting, i.e.
performing uncalibrated photometric stereo.

Let us consider from now on a sequence of images {Ii},
i ∈ {1, . . . , n} and n ≥ 4, captured under varying lighting
conditions denoted by {li}. The image formation model (35)
is then turned into the following system of n equations:

Ii = l>i mz,∇z ρ + ηIi, i ∈ {1, . . . , n}. (21)

In (21), neither the depth z nor the reflectance map ρ
depends on i. Hence, their estimation is much more con-
strained in comparison with shape-from-shading. Neverthe-
less, nescience of the lighting vectors {li} makes the joint
estimation of shape, reflectance and lighting an ill-posed
problem: as discussed in Section 2, the arising ambiguities
cannot be resolved without the introduction of additional
priors. As we shall see now, in the context of RGB-D
sensing the need for such priors can be circumvented and
a purely data-driven approach can be followed. In other
words, the low-resolution depth information act as a natural
disambiguation prior for uncalibrated photometric stereo
and, equally, the tailored photometric based-prior implicitly
ensures surface regularity for depth map super-resolution.

5.1 Maximum Likelihood-Based Solution
Let us recall that the single-shot approach discussed in
Section 3 required priors on the regularity of both the depth
and the reflectance maps. By considering multiple RGB-D
frames {Ii, z0

i }, i ∈ {1, . . . , n} of a static scene obtained
under varying (though unknown) lighting, we hope to end
up with a variational framework free of such man-made
priors. To this end, we consider a maximum likelihood
framework instead of a Bayesian one.

Considering again the independence of depth and image
observations as well as the independence of shape from
reflectance and lighting, the joint likelihood of the obser-
vations {Ii, z0

i } can be factored out as follows:

P({Ii, z0
i }|z,ρ, {li}) = P({Ii}|z,ρ, {li})P({z0

i }|z). (22)

Under the assumption that the random variables ηIi

in (21) are homoskedastically distributed according to zero-
mean Gaussian laws with the same covariance matrix
diag(σ2

I , σ
2
I , σ

2
I ), the marginal likelihood for {Ii} can be

explicitly written as

P({Ii}|z,ρ, {li})∝exp

{
−
∑
i

∥∥l>imz,∇z ρ− Ii
∥∥2

2

2σ2
I

}
. (23)

Assuming that the n low-resolution depth maps z0
i are

consistent with the super-resolution model (32), and that the
n corresponding random variables ηzi follow a zero-mean
Gaussian distribution with same variance σ2

z , the marginal
likelihood for {z0

i } writes as

P({z0
i }|z) ∝ exp

{
−
∑
i

∥∥Kz − z0
i

∥∥2

2

2σ2
z

}
. (24)

Maximum likelihood estimation of depth, reflectance
and lighting consists in maximising the joint likelihood (22)
or, equivalently, minimising its negative logarithm. Neglect-
ing all additive constants and plugging (23) and (24) into
(22), this writes as the following variational problem:

min
z,ρ,{li}

∑
i

∥∥Kz − z0
i

∥∥2

2
+ γ

∥∥∥l>i mz,∇z ρ− Ii

∥∥∥2

2
, (25)

with the trade-off parameter γ given by the ratio γ =
σ2
z

σ2
I

.
Let us emphasise the simplicity of the photometric stereo-
based variational model (25), in comparison with the one
obtained using shape-from-shading, cf. (10). Although one
may think that more data introduces more complexity to
such problems, we can clearly see here that in fact Prob-
lem (25) is naturally easier by itself as it does not include
non-smooth prior terms on the albedo and the depth, but
only two data terms. As discussed next, this allows a much
simpler numerical strategy to be followed.

5.2 Numerical Solving of (25)
Contrarily to the shape-from-shading problem (10), in (25)
the nonlinearity arises only from the unit-length constraint
on the normals. Therefore, we opt for a simpler numerical
solution based on fixed point iterations. Considering (33)
and (35), (25) can be rewritten as

min
z,ρ,{li}

∑
i

∥∥Kz − z0
i

∥∥2

2
+ γ

∥∥∥∥l>i [ñz,∇z/dz,∇z1

]
ρ− Ii

∥∥∥∥2

2

,

(26)
with nz,∇z = ñz,∇z/dz,∇z , where dz,∇z is a scalar field
ensuring the unit-length constraint of the normals:

dz,∇z =

√
|f ∇z|2 + (−z − p>∇z)2

, (27)

and ñz,∇z is a vector field encoding the normal direction:

ñz,∇z =

[
f ∇z

−z − p>∇z

]
. (28)

In (26), only dz,∇z depends in a nonlinear way on the
unknown depth z. Therefore, it seems natural to solve
(26) iteratively, while freezing the nonlinearity (contrarily
to the shape-from-shading case, in photometric stereo we
experimentally found this fixed point strategy to be con-
vergent, though we leave the convergence proof for fu-
ture work). At iteration (k) and with the current estimates
(ρ(k), {l(k)

i }, z(k)), one sweep of this scheme reads:

ρ(k+1) = argmin
ρ

∑
i

∥∥∥∥l(k)>
i

[
ñz(k),∇z(k)/dz(k),∇z(k)

1

]
ρ−Ii

∥∥∥∥2

2

,

(29)

l
(k+1)
i = argmin

li

∥∥∥∥l>i [ñz(k),∇z(k)/dz(k),∇z(k)

1

]
ρ(k+1) − Ii

∥∥∥∥2

2

∀i,

(30)

z(k+1) = argmin
z

∑
i

∥∥Kz − z0
i

∥∥2

2
(31)

+ γ

∥∥∥∥l(k+1)>
i

[
ñz,∇z/dz(k),∇z(k)

1

]
ρ(k+1) − Ii

∥∥∥∥2

2

.

All three problems (29), (30) and (31) are linear least-squares
problems which we solve using the conjugate gradient
method on the normal equations.
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Our initial values for (k) = (0) are chosen to be
ρ(0) = mean({Ii}), l

(0)
i = [0, 0,−1, 0]> ∀i, and z(0) a

smoothed version of mean({z0
i }) using the guided filter [78]

followed by bicubic interpolation to upsample to the image
domain ΩHR. As in Section 3.2, to verify convergence we
check if the relative residual rrel falls below some threshold.
In our experiments convergence was reached within at most
15 iterations, which corresponds to a few minutes in our
Matlab implementation.

5.3 Experiments

We first considered synthetic datasets in order to experimen-
tally determine appropriate values for the hyper-parameter
γ and the number n of images. The values γ = 0.01 and
n ∈ [10, 30] were found to represent an appropriate com-
promise between accuracy and runtime (see Section 5.2 in
the supplementary material). We then carried out qualitative
and quantitative comparisons of our results against state-
of-the-art uncalibrated photometric stereo [37], shading-
based depth refinement using a low-resolution RGB im-
age [51] and image-driven depth super-resolution using
an anisotropic Huber-loss as regularisation term [1], [91].
Our approach was found to be the most effective on both
synthetic and publicly available real-world datasets [41].
These experiments can be found in Sections 5.3 to 5.5 in
the supplementary material.

Then, we carried out a qualitative evaluation of our
results on data we captured ourselves using an Asus Xtion
Pro Live (1280×1024 RGB and 320×240 depth) and an Intel
Realsense D415 (1280× 720 RGB and 640× 480 depth). The
setup is the same as in Section 3.3, just multiple images of
the same static scene with static camera under varying light-
ing conditions are captured. Varying lighting was created
by freely moving a handheld LED light source during the
capturing process. From each image sequence, n = 20 high-
resolution RGB images Ii and low-resolution depth images
z0
i were randomly extracted. Results are displayed in Fig-

ure 6. “Face 2” results are even more satisfactory compared
to the deep learning-based approach in Figure 5, despite a
small spike on the nose due to a small specular spot being
present in every input image. Even the fine wrinkles and the
buttons of the “Shirt” are recovered. The thin structures of
the “Backpack” are appropriately recovered and the partly
very low reflectance does not seem to deteriorate the depth
estimate. The “Oven mitt“ contains fine stitching structures
which are successfully separated from the estimated albedo.
The very fine geometric details of “Hat” are appropriately
recovered in the depth, although some shading information
remains visible in the reflectance. Interestingly, although our
method is based on the Lambertian reflectance assumption,
the high-quality shape of the reflective “Vase” can still be re-
constructed and even where color is saturated at the specu-
lar regions, fine-scale geometric details are recovered. Even-
tually, among the three methods proposed in this article,
only the uncalibrated photometric stereo-based approach
can handle all three datasets in Figure 1, since reflectance is
constrained neither to be piecewise-constant (“Rucksack”)
nor to be that of a face (“Face 1”): the smoothly-varying
albedo of the “Tabletcase” is appropriately estimated, and
separated from the thin geometric wrinkle.
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Fig. 6: Qualitative results of our uncalibrated photometric
stereo-based method, on real-world data captured using a
RealSense D415 (“Hat” and “Face 2”) or an Xtion Pro Live
(five other datasets).
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6 CONCLUSION

We investigated the use of photometric techniques for solv-
ing the depth super-resolution problem in RGB-D sensing.
Three strategies were put forward: i) a shape-from-shading
approach which requires a single RGB-D frame but is lim-
ited to objects exhibiting piecewise-constant reflectance, ii)
a reflectance learning one which loosens this assumption by
delegating reflectance estimation to a deep neural network
trained on a specific class of objects such as faces, and iii) an
uncalibrated photometric stereo setup which bypasses the
need for albedo prior or training by acquiring additional
data. These three approaches represent a continuum of
solutions to photometric depth super-resolution with in-
creasing level of accuracy, yet increasing amount of required
resources.

This work may still be completed in several manners.
First, the theoretical properties (proofs of convergence, exis-
tence and uniqueness of solutions, etc.) of the proposed nu-
merical schemes may be explored. Second, all the methods
presented here explicitly use the linear Lambertian image
formation model: a natural line of future research would
be to improve robustness to off-Lambertian effects such as
specularities and cast-shadows, by resorting either to robust
estimation techniques as in [42], or to non-Lambertian image
formation models as in [92]. Eventually, the combination of
deep learning and variational techniques might be further
explored, for instance by devoting not only reflectance esti-
mation to a deep neural network, but also lighting estima-
tion as in [93]. Put together, these novelties could allow our
approaches to handle more general surfaces as well as more
general illumination conditions.
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APPENDIX A
ORGANIZATION OF THE DOCUMENT

This document is structured as follows. Section B contains
general comments on photometric 3D-reconstruction and
depth super-resolution: the derivation of the RGB image
formation model used through the paper, a visual descrip-
tion of the ambiguities arising in depth super-resolution
and in shape-from-shading, and some general information
regarding the reflectance learning-based approach. The rest
of the document is devoted to the individual experimental
evaluation of each of the proposed methods: Section C
contains the shape-from-shading experiments, Section D
the reflectance learning ones, and Section E evaluates the
uncalibrated photometric stereo-based approach. Section F
eventually concludes the document by presenting a unified
comparison of the results obtained with the three proposed
methods.

APPENDIX B
GENERALITIES

B.1 Derivation of the RGB image formation model

This subsection is devoted to the derivation of the RGB
image formation model (Eq. (3) in the main paper), which
relates the irradiance measurements and the surface nor-
mals. The following derivation is adapted from [94, Sect.
2.2], with an extension of the model to RGB images and
spherical harmonics lighting.

We first assume that the surface is Lambertian, i.e. its
appearance is independent from the viewing angle. A conse-
quence of this assumption is that the surface’s reflectance ρ
at a surface point is a simple scalar quantity called the
albedo, which is independent from the incident light direc-
tion.

Next, we assume that the surface is lit by a single,
infinitely distant light source represented by a direction ω
on the visible hemisphere. The spectral radiance at a surface
point is thus given by

L(λ, ω) = φ(λ, ω)
ρ(λ)

π
max{0, s(ω)>nz,∇z}, (32)

with λ the wavelength, φ(·, ω) the spectrum of the source
associated with direction ω, ρ(·) the spectral reflectance
of the surface point, s(ω) the unit-length vector pointing
towards the light source associated with direction ω, and
nz,∇z the outer unit-length surface normal.

Now, let us assume that the surface is observed under
natural illumination, rather than lit by one single light
source. Let us represent natural illumination by a collection
of infinitely distant point light sources, each of them being
represented by a direction ω. The total spectral radiance
of a surface point is obtained by summing the individual
contributions from each source, i.e. by integrating (32) over
the visible hemisphere:

L(λ) =
ρ(λ)

π

∫
S2
φ(λ, ω) max{0, s(ω)>nz,∇z} dω. (33)

We further assume that the sensor’s response is linear,
and that the RGB camera is focused on the surface. Then,

the sensor’s spectral irradiance, in the pixel conjugate to the
surface point, is given by

E(λ) = β cos4 αL(λ), (34)

where β depends on the sensor’s aperture and magnifica-
tion, and where α is the angle between the viewing angle
and the optical axis (the cos4 α factor is thus responsible for
darkening at the periphery of images).

The intensity recorded by the camera in channel ?,
? ∈ {R,G,B}, is proportional to the sum of all spectral
sensor’s irradiances, weighted by the camera’s transmission
spectrum. Denoting by γ this proportionality coefficient, this
writes as

I? = γ

∫
R+

c?(λ)E(λ) dλ, (35)

with c?(λ) the transmission spectrum of camera’s channel ?.
We further assume that all the light sources are achro-

matic, i.e. that
φ(λ, ω) = φ(ω) (36)

(this assumption implies that color will be interpreted in
terms of surface’s reflectance by our algorithms, rather than
in terms of lighting).

Plugging Equations (33), (34) and (36) into (35) yields

I? = ρ?

∫
S2
φ(ω) max{0, s(ω)>nz,∇z}dω, (37)

with

ρ? :=
γβ cos4 α

π

∫
R+

c?(λ)ρ(λ) dλ (38)

the “albedo”, relatively to channel ? (note that ρ? does not
characterize the surface, since it depends upon the sensor’s
response, its aperture and magnification, etc.).

Next, we approximate the integral in (37) using spherical
harmonics [4], [5]. In this work we consider the first-order
case, which already captures more than 85% of natural
illumination [95], and leave the extension to second-order
spherical harmonics as future work. The spherical harmon-
ics approximation reads∫

S2
φ(ω) max{0, s(ω)>nz,∇z}dω ≈ l>mz,∇z (39)

with l ∈ R4 the achromatic “light vector” (which is the same
for all pixels), and

mz,∇z :=

[
nz,∇z

1

]
(40)

a geometric vector depending upon the surface normals.
Plugging (39) into (37), we obtain

I? = ρ? l
>mz,∇z, ? ∈ {R,G,B}. (41)

Denoting

I :=

IRIG
IB

 and ρ :=

ρRρG
ρB

 , (42)

and assuming that (41) is satisfied up to additive noise, we
eventually obtain the RGB image formation model (Eq. (3) in
the paper) by plugging together the three equations in (41):

I = l>mz,∇z ρ + ηI, (43)

with ηI the realisation of a stochastic process.
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B.2 Ambiguities in Depth Super-resolution and Shape-
from-shading

This subsection illustrates the ambiguities arising in depth
super-resolution and in photometric 3D-reconstruction, in
order to visually motivate the choice of their joint solv-
ing. As can be seen in Figure 7, in super-resolution high-
frequency geometric clues are missing and thus there exist
infinitely many ways to interpolate between low-resolution
samples. On the contrary, shape-from-shading suffers from
the concave / convex ambiguity: though the surface orien-
tation is unambiguous in critical points (arrows in Figure 8),
two such singular points may be connected either by “going
up” or by “going down”. Therefore, it seems reasonable to
rely on high-frequency photometric clues to disambiguate
depth super-resolution, and on low-frequency geometric
clues to disambiguate photometric 3D-reconstruction.

Fig. 7: There exist infinitely many ways (dashed lines) to
interpolate between low-resolution depth samples (rectan-
gles). Our disambiguation strategy builds upon shape-from-
shading applied to the companion high-resolution color
image (cf. Figure 8), in order to resurrect the fine-scale
geometric details of the genuine surface (solid line).

Fig. 8: Shape-from-shading suffers from the concave / con-
vex ambiguity: the genuine surface (solid line) and both the
surfaces depicted by dashed lines produce the same image,
if lit and viewed from above. We put forward low-resolution
depth clues (cf. Figure 7) for disambiguation.

B.3 Generalities on Reflectance Learning-based Depth
Super-resolution

We now illustrate the creation of the training dataset and
the network’s architecture, and justify why we focused on a
particular class of objects in the learning-based approach.

Figure 9 illustrates the generation of training data. We
consider ground truth geometry and reflectance of various
human faces from the ICT-3DRFE database [89]. A rendering
software is used to generate multiple images of these faces
under different viewing and lighting scenarios. Lighting
variations are created by turning off and on several ex-
tended sources, emulating usual indoor lighting conditions.

Fig. 9: Rendering of synthetic faces for generating training
data. The white planes represent switchable extended light
sources, which are independently controlled to create mul-
tiple illumination conditions. Multiple images can then be
captured under different illumination and viewing angles.

Figure 10 illustrates the architecture of the neural net-
work. It is a U-Net architecture comprising an initial con-
volution layer of kernel size 4, stride 2 and padding 1;
after which there are repeated blocks of 8 ReLU-Conv-
BatchNorm layers. This results in downsampling of a
512x512 resolution image to a 1x512 vector at the bottle-
neck of the “U”. Then, the 1D array is upsampled to in-
put resolution with multiple ReLU-Transpose Convolution-
BatchNorm layers. Dropout is also used in a few layers to
allow for randomness while learning the mapping from in-
put images to albedo maps. Finally, the L1 loss is considered,
which favors sharper output compared to the L2 loss.

Eventually, Figure 11 illustrates the lack of inter-class
generalisation which is inherent to learning-based methods.
For instance, the approach of [96] (trained on Sintel [97]
and MIT [98] datasets) performs well on the MIT object
but poorly on the ShapeNet car image, because such an
object was not present in the learning database. For the
same reason, the alternative approach of [87] (trained on
ShapeNet objects [99]) performs well on the ShapeNet car
but fails on the MIT object, and both approaches fail on the
face image since the latter resembles none of the training
data. Due to this lack of inter-class generalisation, we choose
to focus in our approach on the specific class of human faces.

APPENDIX C
EVALUATION OF THE SINGLE-SHOT APPROACH
BASED ON SHAPE-FROM-SHADING

C.1 Creation of the Synthetic Data
Figure 12 illustrates the synthetic data used for evaluation,
which is generated using four different 3D-shapes (“Lucy”,
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Fig. 10: The U-Net Architecture used for albedo estimation.
The top two layers are the input and output, respectively.
The arrows’ color represent the operations of the other
hidden layers. Skip connections (dotted lines) concatenate
the left and right layers.

“Thai Statue”, “Armadillo” and “Joyful Yell”), each of them
rendered using three different albedo maps (“voronoi”,
“rectcircle” and “bar”) and three different scaling factors
(2, 4 and 8) for the low-resolution depth image. To this end,
3D-meshes are rendered into high-resolution ground truth
depth maps of size 480×640, which are then downsampled.
Then, additive zero-mean Gaussian noise with standard
deviation 10−4 times the squared original depth value (con-
sistently with real-world measurements from [102]) is added
to the low-resolution depth maps, which are eventually
quantised. High-resolution RGB images are rendered from
the ground truth depth map using the first-order spherical
harmonics model with l = [0, 0,−1, 0.2]> using the three
different high-resolution reflectance maps, and an additive
zero-mean Gaussian noise with standard deviation 1% the
maximum intensity is eventually added to the RGB images.

C.2 Tuning the Hyper-parameters
In Figure 13, we use the “Joyful Yell” dataset from Figure 12
in order to determine appropriate values for the hyper-
parameters (µ, ν, λ). For quantitative evaluation, we con-
sider the root mean squared error (RMSE) on the estimated
depth and reflectance maps, and the mean angular error
(MAE) on surface normals. To select an appropriate set of
values for them, we initially set µ = 0.5, ν = 0.01 and λ = 1.
We then evaluate the impact of each parameter by varying
it while keeping the remaining two fixed. As could be
expected, large values of µ force the depth map to keep close
to the noisy input, while small values make the depth prior
less important so not capable of disambiguating shape-
from-shading. Inbetween, the range µ ∈ [10−1, 10] seems to
provide appropriate results. As for ν, large values produce
over-smoothed results and small ones result in slightly

Input Image [96] [87]

Fig. 11: Learning-based albedo estimation applied to an
object from the MIT database (first row), a car from the
ShapeNet dataset (second row), and two images of human
faces we generated with a renderer using the ICT-3DRFE
database [89]. This illustrates the lack of inter-class general-
isation inherent to learning-based techniques: the approach
from [96], trained on the MIT dataset, fails on the ShapeNet
car and on faces, and the one from [87], trained on the
ShapeNet dataset, fails on the MIT object and on faces: in
both cases albedo estimation is not satisfactory since the
objects do not resemble the training data.
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Lucy [100] Thai Statue [100] Armadillo [100] Joyful Yell [101]

I

“voronoi” albedo “voronoi” albedo “rectcircle” albedo “bar” albedo

z0

Fig. 12: Illustration of synthetic data used for evaluation of the single-shot approach based on shape-from-shading. High-
resolution RGB images I, of size 480× 640, are generated using high-resolution ground truth depth and reflectance maps,
and adding noise. Low-resolution depth maps z0 are created by downsampling the ground truth depth maps with scaling
factors of 8, 4 and 2 (the second row shows the low-resolution depth maps with a scaling factor of 2), and adding noise.

noisier depth estimates, although the albedo estimate seems
unaffected by this choice. Overall, the range ν ∈ [0.5, 102]
seems appropriate. The parameter λ strongly impacts both
the resulting albedo and depth: too small (resp., high) values
for λ result in over (resp., under)-segmentation problems,
and in both cases shading information gets propagated to
the albedo. We found λ ∈ [10−1, 10] to be a reasonable
choice. Overall, we opted for (µ, ν, λ) = (0.1, 0.7, 1).

C.3 Comparison against the State-of-the-art on the
Synthetic Dataset

Next, we compare the results obtained by our single-
shot approach against the state-of-the-art, on the synthetic
dataset from Figure 12. We consider two alternative depth
super-resolution methods: the image-based one from [60],
and the learning-based one from [10] (since the authors
only provide trained data for a factor of 4, this method was
evaluated only for this factor). To emphasise the interest of
joint shape-from-shading and depth super-resolution over
shading-based depth refinement using downsampled im-
ages, we also consider [51]. Qualitative results are presented
in Figure 14, and quantitative ones in Table 1. As can be seen,
our method systematically overcomes the competitors in
terms of MAE, which indicates that high-frequency geomet-

ric details are better recovered. The RMSE on depth rather
evaluates the overall (low-frequency) fit to ground truth,
and for this metric our results are comparable with [60],
which achieves the best results.

Interestingly, for scaling factors of 4 and 8, our approach
seems less accurate than [60] in terms of RMSE. However,
Figure 14 clearly shows that our results are significantly
better: we thus believe that only the order of magnitude of
the RMSE is meaningful, yet comparison using this metric
might not really indicate which method is the best, and
MAE should be preferred for this purpose. A more thorough
discussion on the relevance of RMSE for evaluation can be
found in [103].

C.4 Comparison against the State-of-the-art on a Pub-
lic Real-world Dataset

In Figure 15, we qualitatively compare our single-shot re-
sults against the state-of-the-art, using the real-world DiLi-
GenT photometric stereo dataset [41] (only one out the
96 images of each object was used). To create noisy low-
resolution input depths with a scaling factor of 2, 4 and 8,
the ground truth depth is downsampled and Gaussian noise
is then added, as in the previous subsection.
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Fig. 13: Impact of the parameters (µ, ν, λ) on the accuracy of the albedo and depth estimates. The accuracy of the albedo is
evaluated by the root mean square error (RMSE), and that of the depth by the RMSE and the mean angular error (MAE).
Based on these experiments, the set of hyper-parameters (µ, ν, λ) = (0.1, 0.7, 1) is selected.
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Fig. 14: Qualitative comparison between our single-shot
results and state-of-the-art’s ones (the scaling factor is 4).

On objects which match our assumption of a Lamber-
tian surface with piecewise-constant albedo (e.g., “bear”
and “pot1”), we obtain very satisfactory results. However,
the strong dependency of our approach on the piecewise-
constant albedo assumption is clearly visible in the “cat”
results, which are not as satisfactory: the dark structures in
the image are too thin to be appropriately interpreted as
piecewise-constant albedo areas and this creates artifacts in
the geometry.

Besides, the “cow”, “pot2” and “reading” results demon-
strate that our approach also strongly depends upon the
Lambertian assumption: the specular highlights in the im-
ages get propagated into the estimated depth. A natural
future extension of our method would thus be to cope with
such non-Lambertian effects, either by resorting to robust
estimation techniques [42], or by adapting our approach to
a non-Lambertian image formation model [92].

Nevertheless, and despite these important limitations,
our results remain qualitatively superior to those of the
state-of-the-art in all the experiments. This can also be
observed in the quantitative evaluation of Table 2, which
confirms the conclusions of the synthetic quantitative eval-
uation from Table 1.

C.5 Comparison against State-of-the-art Multi-view
Techniques on Publicly Available Real-world Datasets

Figure 16 shows four qualitative comparisons with
state-of-the-art multi-view approaches on publicly avail-
able datasets. The “Augustus”, “Lucy” and “Relief”
datasets [47] were created using a PrimeSense camera,
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Albedo 3D-shape SF [60] [10] [51] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

bar

2 0.043643 38.6274 – – 0.41993 67.2643 0.034655 16.7496
Armadillo 4 0.051558 42.2277 0.17865 45.6972 0.45139 66.2117 0.054679 19.0314

8 0.072466 43.5649 – – 0.58837 69.3262 0.091263 20.8836
2 0.05089 29.1719 – – 0.1721 47.4836 0.050694 16.7414

Joyful Yell 4 0.066517 33.0843 0.084094 42.611 0.22867 32.9784 0.079271 19.0695
8 0.10212 36.565 – – 0.37923 31.2894 0.128 21.9886
2 0.057987 39.4714 – – 0.21309 66.5525 0.053989 25.0955

Lucy 4 0.068502 42.7169 0.50472 47.605 0.34091 69.2566 0.081005 28.3044
8 0.098713 46.4775 – – 0.43619 59.5434 0.1195 30.1058
2 0.040821 42.8976 – – 0.12948 63.06 0.035736 23.9147

Thai Statue 4 0.050296 47.1017 0.22363 49.9553 0.15489 54.6139 0.057313 28.492
8 0.066515 49.8604 – – 0.22835 56.4247 0.087054 31.65

rectcircle

2 0.044026 39.108 – – 0.34323 70.8526 0.03494 18.4909
Armadillo 4 0.052115 43.3175 0.17782 45.6324 0.2338 50.6919 0.056727 18.8487

8 0.069467 45.4735 – – 0.61917 70.9363 0.09155 21.9959
2 0.051296 30.7886 – – 0.14841 41.5424 0.05226 17.134

Joyful Yell 4 0.066911 33.3 0.10328 42.7531 0.28311 51.0665 0.080387 19.8717
8 0.10201 36.2961 – – 0.39518 35.4817 0.1281 22.8027
2 0.058495 39.7374 – – 0.19546 64.8212 0.054383 24.8427

Lucy 4 0.069893 43.9016 0.50464 48.1068 0.23235 53.2901 0.082547 28.7517
8 0.099402 46.3739 – – 0.39583 64.3269 0.12283 29.1531
2 0.039821 40.6144 – – 0.11355 58.2254 0.036845 23.9036

Thai Statue 4 0.04973 46.1154 0.20894 49.4124 0.16749 52.9663 0.05866 28.155
8 0.067799 50.6515 – – 0.21058 50.9074 0.094688 33.5308

voronoi

2 0.043635 38.9089 – – 0.33005 69.3157 0.034751 17.6873
Armadillo 4 0.051989 41.57 0.17182 45.5833 0.4407 65.5811 0.056032 20.168

8 0.07077 43.1987 – – 0.50548 63.8618 0.090708 22.2767
2 0.052002 28.7903 – – 0.16893 47.72 0.052429 17.0453

Joyful Yell 4 0.066557 32.3448 0.086394 43.1744 0.24753 39.6569 0.079888 19.6512
8 0.10238 35.8017 – – 0.47694 47.4707 0.12916 21.6663
2 0.058222 36.2327 – – 0.29164 72.9002 0.054442 26.1333

Lucy 4 0.068253 40.8878 0.5066 48.0387 0.32955 71.1042 0.079877 28.4506
8 0.099838 43.7671 – – 0.37839 57.6856 0.11877 29.6331
2 0.039872 39.6508 – – 0.13261 65.8352 0.037607 25.6126

Thai Statue 4 0.049783 45.7178 0.22688 49.4132 0.16533 58.3933 0.058957 28.6314
8 0.065577 48.7962 – – 0.21927 49.6711 0.091959 32.0347
2 0.047458 39.0085 – – 0.18378 65.3282 0.044151 21.1973

Median 4 0.059316 42.4723 0.19379 46.6511 0.24067 53.952 0.069114 24.1615
8 0.085589 44.6203 – – 0.3955 57.0551 0.10673 25.9779
2 0.048392 36.9999 – – 0.22154 61.2978 0.044394 21.1126

Mean 4 0.059342 41.0238 0.24812 46.4986 0.27298 55.4842 0.068779 23.9521
8 0.084754 43.9022 – – 0.40275 54.7438 0.1078 26.4768

TABLE 1: Quantitative comparison between our single-shot results and three state-of-the-art methods, on all the synthetic
datasets. Our results are always superior in terms of mean angular error (MAE) and in terms of root mean square error
(RMSE) when the scaling factor is 2. For larger synthetic factors our RMSE values are slightly higher than those from [60],
but Figure 14 shows that our results are actually of better quality than the latter, so the RMSE values might not be as
relevant as the MAE ones.

whereas “Gate” [104] was acquired using a Structure Sensor
for the iPad. The scaling factor for “Augustus”, “Relief” and
“Gate” is 2, whereas it is 1 for “Lucy” (in this case, our
approach only performs shading-based depth refinement
without super-resolution). Although our approach needs
significantly less data (a single RGB-D image) compared
to multi-view approaches, we are still able to recover fine
geometry close to the degree of detail of [46], [47]. Even
under more complex lighting, as for instance in the “Gate”
experiment, our approach can result in high-resolution
depth maps with fine-scale details.

C.6 Additional Comparison against State-of-the-art
Single-shot Techniques on Real-world Datasets we Cap-
tured Ourselves

Figure 17 shows additional qualitative comparison of single-
shot results, on data we captured using an Asus Xtion Pro
Live camera (scaling factor of 4). Once again, our approach

outperforms the state-of-the-art, even though under- or
over-segmentation of the reflectance may happen.

The “Clothes” experiment illustrates a case where over-
segmentation of reflectance happens, but interestingly this
does not seem to impact depth recovery. Whenever color
gets saturated (some of the balls of “Wool”) or too low
(black areas in the “Blanket”), then minimal surface drives
super-resolution: the areas where brightness is not infor-
mative are simply smoothed out, which adds robustness.
Our method only fails when reflectance does not fit the
Potts prior, as shown in the “Failure” experiment. In this
case of an object with smoothly-varying reflectance, under-
segmentation of reflectance happens, and all the thin bright-
ness variations are interpreted in terms of geometry. Two
alternative strategies are investigated in this work to cope
with this issue: estimate reflectance without a piecewise-
constant prior (learning-based strategy), or actively control
lighting (photometric stereo-based strategy).
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Fig. 15: Qualitative comparison between our single-shot results and those from the state-of-the-art, on the DiLiGenT
dataset [41] (the scaling factor is 4). Our approach outperforms the state-of-the-art in all the experiments.
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3D-shape SF [60] [10] [51] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 0.0066575 17.2655 – – 0.014616 27.9357 0.0047136 12.8781
bear 4 0.0065535 19.5072 0.8825 31.5392 0.028849 31.8918 0.0085904 14.8113

8 0.97126 76.4581 – – 0.055159 31.0276 0.018022 20.341
2 0.0099968 37.3338 – – 0.02972 69.0274 0.0080152 26.6017

buddha 4 0.0099935 39.1319 0.86352 36.8237 0.038584 68.6713 0.012027 31.0774
8 1.3683 71.2403 – – 0.047353 57.6881 0.019676 39.0075
2 0.0085294 23.3362 – – 0.028382 44.6708 0.0084811 18.8204

cat 4 0.0096136 27.826 0.80869 30.7428 0.042872 54.1746 0.01353 21.4786
8 0.015137 30.8242 – – 0.065853 53.4602 0.023393 25.3616
2 0.0086552 32.7633 – – 0.037772 59.2638 0.0049385 14.806

cow 4 0.0090334 33.8093 0.84557 33.7576 0.055621 55.3108 0.0089681 16.9767
8 0.010392 31.6684 – – 0.059261 53.5979 0.017596 21.03
2 0.01019 30.2473 – – 0.032588 59.1553 0.011007 23.0414

goblet 4 0.011121 31.1036 1.3435 34.0517 0.048727 56.7471 0.017208 24.2692
8 0.015451 36.2801 – – 0.084675 51.7091 0.031125 25.7217
2 0.014169 33.9026 – – 0.041792 66.3635 0.01594 31.1557

harvest 4 2.651 63.9349 0.75973 37.0383 0.05696 66.5893 0.023588 33.6957
8 115.5837 79.2204 – – 0.074651 50.9501 0.037176 35.9762
2 0.0077563 22.6961 – – 0.020767 48.3748 0.007147 16.9523

pot1 4 0.0086358 26.2298 0.72979 31.8426 0.03114 39.7103 0.010863 17.6975
8 0.013278 29.6214 – – 0.05537 38.9525 0.019307 19.9866
2 0.0081729 28.8295 – – 0.021455 50.4214 0.0055283 18.0749

pot2 4 0.0088839 32.7579 0.90388 33.4448 0.028528 28.5455 0.0088442 19.2421
8 0.014079 35.288 – – 0.054661 47.9005 0.01623 22.4169
2 0.011767 28.7648 – – 0.030566 53.4663 0.0097283 19.2611

reading 4 0.011428 30.4347 0.93384 31.764 0.047677 53.7065 0.015536 22.91
8 0.01607 32.2913 – – 0.071794 52.5448 0.028808 29.0107
2 0.0086552 28.8295 – – 0.02972 53.4663 0.0080152 18.8204

Median 4 0.0096136 31.1036 0.86352 33.4448 0.042872 54.1746 0.012027 21.4786
8 0.015451 35.288 – – 0.059261 51.7091 0.019676 25.3616
2 0.0095439 28.3488 – – 0.028629 53.1865 0.0083887 20.1769

Mean 4 0.30292 33.8595 0.89678 33.4449 0.042106 50.5941 0.013239 22.4621
8 13.112 46.988 – – 0.063197 48.6479 0.023481 26.5391

TABLE 2: Quantitative comparison between our single-shot results and those from the state-of-the-art, on the DiliGenT
dataset [41]. Our approach systematically outperforms the state-of-the-art, consistently with the conclusions from the
synthetic experiments drawn in Table 1.

I ρ z0 [47]/ [46] Ours

A
ug

us
tu

s
Lu

cy
R

el
ie

f
G

at
e

Fig. 16: Qualitative comparison against state-of-the-art
multi-view approaches. Although it uses a single RGB-D
frame, our approach results in depth maps whose quality is
comparable with those obtained using multi-view data.

Eventually, Figure 18 presents another qualitative com-
parison on the real-world data from Figure 3 in the main
paper (captured using a RealSense D415 camera). Note
that [60] seems to give good depth estimates whenever the
underlying assumption (an edge in the RGB image coincides
with an edge in the depth image) is met, cf. “Rucksack”
experiment, but it fails to provide detail-preserving depth
maps when reflectance is uniform or changes only slightly
(“Android” and “Minion” experiments), since it uses only
a sparse set of information from the RGB data. Unsur-
prisingly, the method from [10] cannot hallucinate surface
details, since it does not use the color image. The shading-
based depth refinement method of [51] does a much better
job at improving geometry, but it is largely overcome by the
proposed shading-based depth super-resolution approach,
because the latter uses information from a higher-resolution
RGB image.

APPENDIX D
EVALUATION OF THE REFLECTANCE LEARNING-
BASED APPROACH

D.1 Creation of the Synthetic Data

Let us first recall that the reflectance learning-based ap-
proach was trained on data extracted from the ICT-3DRFE
Database [89]. In order to evaluate this approach, we con-
sidered two subjects from this database as well, each one
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Fig. 17: Qualitative comparison of state-of-the-art single-view approaches on five real-world datasets captured with an
Asus Xtion Pro Live camera at resolution 1280× 960 for the RGB images and 320× 240 for the low-resolution depth.

enacting 10 different facial expressions. Of course, in order
to avoid any bias, these subjects were not used when train-
ing the neural network.

The high-resolution RGB and low-resolution depth im-
ages were created in a similar manner as in the previous
section: high-resolution RGB images of the faces were ren-
dered at 512× 512 resolution from the ground truth albedo
and depth under first-order spherical harmonics lighting

l = [0, 0,−1, 0.2]>; and the low-resolution depth maps
were created by downsampling the ground truth depth by a
scaling factor of 2, 4 and 8. Zero-mean Gaussian noise with
standard deviation 1% the maximum RGB intensity was
then added to the RGB images, and zero-mean Gaussian
noise with standard deviation 10−4 the squared original
depth value (consistently with the real-world measurements
from [102]) was added to the low-resolution depth maps,
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Fig. 18: Qualitative comparison between our single-shot results and those from the state-of-the-art, on the datasets from
Figure 3 in the main paper. Our approach systematically outperforms the state-of-the-art. The rightest column shows 1D
depth profiles corresponding to the lines drawn on the 3D-shapes: although the depth estimated using all the methods
overall fit well together, ours is the only which provides reasonable fine-scale details.

before quantisation.

These synthetic faces were then used for quantitative
evaluation of the proposed reflectance learning-based ap-
proach against the state-of-the-art and against the proposed
fully variational solution, as discussed in the next subsec-
tion.

D.2 Comparison against the State-of-the-art on the
Synthetic Dataset

We next evaluate our method, which first estimates re-
flectance using deep learning and then achieves variational
depth super-resolution using the RGB image, in compari-
son with end-to-end deep learning solutions for geometry
estimation.

For comparison, we first consider the method intro-
duced in [62], which is an end-to-end depth super-resolution
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technique based on low-resolution depth data and high-
resolution RGB image, i.e. the same inputs as our methods.
It can be seen in Figure 19 that this end-to-end solution
fails to recover surface details which are visible in the RGB
image.

In order to evaluate the ability of deep networks to
reconstruct geometry from a single RGB image, similarly
to shape-from-shading techniques, we also show the results
of SfSNet [86], which is a deep learning-based method
estimating albedo and surface normals (which we further
integrated into a depth map using the quadratic integation
method discussed in [105]) out of a single RGB image.
SfSNet is limited to RGB images of size 128 × 128, so it
was evaluated only for a scaling factor of 4 and, since it
does not perform depth super-resolution, the ground truth
depth was downsampled for the quantitative evaluation
of this method. Figure 19 shows that reasonable results
can be expected using SfSNet, yet geometry is slightly
oversmoothed in comparison with what can be obtained
using the proposed combination of machine learning and
variational approaches.

Eventually, we compare this combined approach with
the fully variational one from the previous section. The latter
does not completely fail at recovering a reasonable geom-
etry, but since the estimated albedo is piecewise-constant
and departs significantly from the ground truth, artifacts
and noise are propagated to the estimated geometry. This is
confirmed by the quantitative evaluation in Table 3, which
clearly indicates that the proposed combination of machine
learning and variational methods is more efficient than both
end-to-end learning solutions from the state-of-the-art and
the proposed fully variational approach.

D.3 Qualitative Comparison against the State-of-the-art
on Real-world Datasets we Captured Ourselves

In Figure 20, we show additional qualitative comparisons
of our results against those from the state-of-the-art, on
the dataset from Fig. 5 in the main paper. This dataset
consists of RGB-D frames of human faces which we acquired
ourselves using an Intel Realsense D415 camera (the scaling
factor between the high-resolution RGB image and the low-
resolution depth map is 4).

This qualitative comparison validates the conclusions
from the synthetic experiment in the previous subsection:
combining variational and machine learning techniques
yields more detailed 3D-reconstructions than end-to-end
learning solutions based on neural networks for solving the
shape-from-shading [86] or the depth super-resolution [62]
problems.

D.4 Comparison against the State-of-the-art on a Pub-
lic Real-world Dataset

Eventually, we compare qualitatively in Figure 21, and
quantitatively in Table 4, the results of the proposed re-
flectance learning-based approach against those of the state-
of-the-art, on data extracted from the DiLiGenT dataset [41].
Note that the datasets are exactly the same as the ones
used for the evaluation of the fully variational solution
in Figure 15 and Table 2, so that the results of the fully

variational solution and those of the combined approach
can also be compared.

Let us emphasize that the proposed reflectance learning-
based solution was trained on a faces dataset, while none
of the objects in this experiment resembles a face. Therefore,
this test is rather intended as a test of robustness, and we are
not expecting to overcome the results of the fully variational
solution.

Indeed, the results obtained with the combined approach
are both qualitatively and quantitatively less satisfactory on
this dataset than those obtained with the fully variational
solution. However, they remain surprisingly competitive, in
comparison with the state-of-the-art.

Obviously, such a combination of machine learning and
variational methods could still be improved by increasing
the size of the training database using multiple classes
of objects, but the present results already demonstrate its
potential.

APPENDIX E
EVALUATION OF THE MULTI-SHOT APPROACH
BASED ON PHOTOMETRIC STEREO

E.1 Creation of the Synthetic Data
In order to quantitatively evaluate the proposed photo-
metric stereo-based solution, we consider the same four
3D-shapes as in the shape-from-shading experiments, i.e.
“Lucy”, “Thai Statue”, “Armadillo” and “Joyful Yell”.
However, this time we consider much more complex
albedo maps since the multi-shot approach is not lim-
ited to piecewise-constant albedos. The albedo maps we
consider are “ebsd”2, “mandala”3 and “rectcircle”. The
rest of the process for creating the dataset (rendering the
high-resolution RGB and low-resolution depth images, and
adding noise) is exactly the same as for shape-from-shading,
except that multiple RGB images are acquired under ran-
domly varying lighting. Three RGB images of each dataset
under three different illumination conditions are presented
in Figure 22, and the corresponding depth maps are those
from Figure 12.

E.2 Selecting the Number of Images and Tuning the
Hyper-parameters
Figure 23 illustrates the effect of the hyper-parameter γ
on shape and reflectance estimation. For this purpose, we
consider sets of n = 10 images from the Joyful Yell dataset,
and evaluate the RMSE and MAE on depth, as well as
the RMSE on albedo, as functions of the number of input
images. As can be seen, when γ → 0 the estimated depth
map sticks to the noisy input, thus results are deceiving.
But as soon as γ is large enough, photometric stereo drives
super-resolution and the accuracy dramatically increases.
Interestingly, results remain stable even when λ → ∞. This
tends to indicate that the ambiguities of uncalibrated pho-
tometric stereo vanish as soon as a depth prior is available:
it is not necessary to seek a compromise between the depth
prior and the photometric 3D-reconstruction, only to plug
the information from the former into the latter.

2. https://mtex-toolbox.github.io/files/doc/EBSDSpatialPlots.html
3. http://www.cleverpedia.com/mandala-coloring-books-20-

coloring-books-with-brilliant-kaleidoscope-designs/

https://mtex-toolbox.github.io/files/doc/EBSDSpatialPlots.html
http://www.cleverpedia.com/mandala-coloring-books-20-coloring-books-with-brilliant-kaleidoscope-designs/
http://www.cleverpedia.com/mandala-coloring-books-20-coloring-books-with-brilliant-kaleidoscope-designs/
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Fig. 19: Qualitative comparison of the results obtained using the deep learning-based depth super-resolution technique
from [62], the deep learning-based shape-from-shading approach from [86], the proposed variational approach to
shape-from-shading (denoted by SfS), and the proposed combination of deep learning and variational methods. The latter
seems the most effective, and this is confirmed by the quantitative evaluation provided in Table 3.
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Subject (S) Expression (E) SF [62] [86] Ours (SfS) Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

4

2 0.1572 48.3553 – – 0.1613 14.1551 0.1355 9.9354
0 4 0.13284 36.9774 0.6071 13.4647 0.10629 11.6301 0.086867 8.5443

8 0.63 38.0244 – – 0.24354 14.2278 0.19869 11.0617
2 0.15451 48.4316 – – 0.15824 15.2649 0.13413 10.6932

1 4 0.13069 36.4169 0.7185 14.3254 0.10972 12.8361 0.087058 9.5301
8 0.61295 35.7076 – – 0.25859 15.2818 0.20735 12.0648
2 0.15358 49.0454 – – 0.14589 14.516 0.14005 14.221

2 4 0.13266 37.1973 0.8821 18.5108 0.12322 13.9566 0.10993 13.2265
8 0.97825 38.8272 – – 0.27613 17.4243 0.25379 16.0565
2 0.15657 48.4417 – – 0.1614 14.776 0.14468 11.1379

3 4 0.13335 37.0725 0.8554 16.0271 0.11759 13.165 0.09558 10.604
8 0.95333 38.6755 – – 0.26179 15.8035 0.21567 13.0665
2 0.15155 48.3665 – – 0.14914 14.5008 0.13132 11.1096

4 4 0.13093 37.2093 0.6301 15.0882 0.1108 12.6113 0.091216 10.0432
8 0.81628 37.4412 – – 0.24872 15.1804 0.18053 12.4699
2 0.15404 47.7565 – – 0.17 15.3645 0.16346 13.0845

5 4 0.17413 37.2071 0.9004 18.8166 0.187 15.0677 0.16933 13.3297
8 0.81401 37.1801 – – 0.35861 18.885 0.31589 16.5856
2 0.15457 47.8468 – – 0.16725 14.4807 0.15373 12.0069

6 4 0.13863 36.681 0.8684 19.1934 0.14573 13.5136 0.12169 11.3427
8 0.49746 36.8001 – – 0.31234 17.0774 0.26064 14.4585
2 0.15476 48.4094 – – 0.17713 15.3454 0.1602 12.6357

7 4 0.18215 36.0914 0.8460 19.8673 0.18528 14.1876 0.15723 11.8129
8 0.82718 38.4132 – – 0.34986 17.1481 0.29932 14.3226
2 0.15437 48.3719 – – 0.15093 15.9026 0.13533 12.1738

8 4 0.13062 37.3586 0.4986 13.6524 0.107 13.3844 0.085065 10.5078
8 0.71791 37.543 – – 0.23366 15.5826 0.19305 12.6953
2 0.15989 49.2317 – – 0.15939 13.879 0.13843 11.097

9 4 0.13373 38.022 0.6107 14.3473 0.11108 12.4866 0.091548 9.9358
8 0.53732 36.8758 – – 0.25022 15.1722 0.20378 12.7385

11

2 0.16035 48.3088 – – 0.15248 15.1914 0.13971 9.7571
0 4 0.13743 36.6588 1.0125 11.8150 0.11775 12.5609 0.10129 8.6988

8 0.51743 32.4395 – – 0.26081 14.6577 0.22472 11.6671
2 0.15231 48.2292 – – 0.14523 15.381 0.13328 9.9593

1 4 0.12957 35.6881 0.8798 10.8757 0.11237 12.7309 0.097136 8.5511
8 0.52279 32.5115 – – 0.25173 14.7836 0.20387 11.6099
2 0.15548 47.5781 – – 0.15421 15.7925 0.14821 12.0207

2 4 0.1393 36.4907 0.9789 19.5521 0.13943 14.875 0.12114 11.8059
8 0.66616 36.1001 – – 0.30543 18.2869 0.26649 15.2768
2 0.16131 48.4766 – – 0.15472 15.3901 0.14409 10.0102

3 4 0.13652 36.0848 1.2922 13.2403 0.12219 13.3513 0.10614 8.9464
8 0.94169 37.7036 – – 0.27622 16.4698 0.2266 12.5186
2 0.15879 48.3293 – – 0.15457 15.0479 0.14001 10.8615

4 4 0.13926 36.8105 0.8897 12.7579 0.12404 13.557 0.10533 9.5906
8 0.72556 35.9876 – – 0.27086 15.786 0.22974 12.7579
2 0.16252 47.6152 – – 0.16964 17.0446 0.15787 10.6522

5 4 0.15556 36.695 1.1557 14.7778 0.17783 15.3102 0.15392 10.6452
8 0.81958 35.1608 – – 0.32727 18.6277 0.28649 14.4657
2 0.15936 48.2603 – – 0.15054 15.5422 0.14255 10.4559

6 4 0.13906 36.2701 0.7581 13.9221 0.13145 13.7609 0.1157 9.8813
8 0.68759 35.3423 – – 0.29362 18.0689 0.25192 14.3041
2 0.15783 46.3708 – – 0.19123 16.3544 0.17274 10.4441

7 4 0.20118 35.1363 1.2066 18.6458 0.23771 16.3544 0.20955 11.5822
8 0.73165 35.5369 – – 0.41273 19.1395 0.36912 14.8272
2 0.1601 48.3084 – – 0.14637 18.5782 0.12985 13.3089

8 4 0.13852 37.6211 0.7112 13.2194 0.11509 15.9898 0.095155 11.6081
8 0.78491 37.1651 – – 0.25296 18.0263 0.20633 14.3745
2 0.15292 48.2978 – – 0.13997 14.5447 0.12648 10.2274

9 4 0.13424 36.6469 0.9484 12.6980 0.11997 13.0994 0.10137 9.4048
8 0.63803 34.7198 – – 0.26044 15.9719 0.21383 12.7267

Median
2 0.15693 48.3609 – – 0.15494 15.1423 0.14043 11.0633
4 0.13568 36.769 0.8741 14.3363 0.11767 13.1322 0.10094 9.9086
8 0.72174 36.838 – – 0.26285 15.7971 0.22566 12.7326

Mean
2 0.15694 48.2983 – – 0.15773 15.3515 0.1432 11.1919
4 0.14095 36.7644 0.8625 15.2399 0.12908 13.4354 0.10935 10.1732
8 0.72675 36.4789 – – 0.27802 16.2705 0.23276 13.117

TABLE 3: Quantitative comparison between two state-of-the-art methods, the proposed fully variational approach based
on shape-from-shading (denoted by SfS), and the proposed combination of deep learning and variational methods, on the
synthetic dataset. The combined solution is the most effective.
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Input [62] [86] Ours
z0 I z z ρ z ρ

Fig. 20: Qualitative comparison of our reflectance learning-based results against state-of-the-art methods, on six RGB-
D frames of human faces which we captured using an Intel RealSense D415 camera (scaling factor of 4). Our method
provides the most detailed 3D-reconstructions.
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Fig. 21: Qualitative comparison between our method combining deep learning and variational methods, and state-of-the-
art deep learning-based methods, on the DiLiGenT dataset [41] (the scaling factor is 4). Our approach outperforms the
state-of-the-art in all the experiments.
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3D-shape SF [62] [86] Ours
RMSE MAE RMSE MAE RMSE MAE

2 0.010946 62.708 – – 0.0046569 22.5961
bear 4 0.010609 49.8753 0.1096 41.9262 0.0086235 23.2417

8 0.012821 36.8812 – – 0.018246 30.7021
2 0.011778 63.0557 – – 0.0082909 29.6526

buddha 4 0.012539 52.2028 0.0518 40.1120 0.011945 33.5974
8 0.015423 45.132 – – 0.019568 41.0636
2 0.013194 62.903 – – 0.008389 15.1466

cat 4 0.0137 50.278 0.0647 36.9720 0.013534 19.1494
8 0.015258 38.3265 – – 0.023363 26.7149
2 0.011679 64.5302 – – 0.0053628 17.6086

cow 4 0.011237 50.6826 0.0562 39.3336 0.0092811 18.8318
8 0.014157 42.9122 – – 0.017689 21.1007
2 0.013153 61.8508 – – 0.011713 30.1888

goblet 4 0.01379 48.7097 0.1414 36.4712 0.017615 29.6286
8 0.016659 36.6476 – – 0.03133 28.7208
2 0.0167 64.113 – – 0.016649 39.602

harvest 4 0.019409 53.9958 0.1757 54.1461 0.024208 41.0901
8 0.028625 44.4953 – – 0.037441 41.1994
2 0.011218 61.9779 – – 0.0070793 18.4819

pot1 4 0.011597 50.0199 0.1051 35.0139 0.010794 18.6248
8 0.01495 40.4749 – – 0.019198 20.5408
2 0.010693 61.9083 – – 0.0057831 20.0908

pot2 4 0.011123 50.5484 0.0575 32.0884 0.0090011 20.7887
8 0.014105 40.3902 – – 0.016243 23.1403
2 0.012058 61.2583 – – 0.0098101 20.5263

reading 4 0.012927 49.0756 0.0817 55.4988 0.015531 24.2634
8 0.017714 41.0243 – – 0.028793 28.8291
2 0.011778 62.708 – – 0.0082909 20.5263

Median 4 0.012539 50.278 0.0732 38.1528 0.011945 23.2417
8 0.015258 40.4749 – – 0.019568 28.7208
2 0.01238 62.7006 – – 0.0086371 23.766

Mean 4 0.012992 50.5987 0.0918 41.2045 0.013392 25.4684
8 0.016635 40.6982 – – 0.023541 29.1124

TABLE 4: Quantitative comparison between other state-of-the-art methods and our method combining machine learning
and variational methods. Although the results are not as accurate as the fully variational solution (cf. Table 2), since none
of the objects here resembles the faces from the training database, they remain superior to the state-of-the-art.

Next, we evaluate the number n of input RGB im-
ages which would result in the best compromise between
accuracy of the 3D-reconstruction and runtime. For this
purpose, we consider once again the Joyful Yell synthetic
dataset, and evaluate the RMSE and MAE on depth, the
RMSE on albedo and the total runtime required to attain
convergence, as functions of n. As can be seen in Figure 24,
the accuracy of the estimation very quickly increases with
n, while the runtime increases linearly with n. Overall, the
choice n ∈ [10, 30] seems to represent a good compromise.

E.3 Comparison against the State-of-the-art on the
Synthetic Dataset
Next, we compare our multi-shot approach against the state-
of-the-art, on all the synthetic datasets (consistently with the
results from the previous subsection, n = 20 images are
considered for each dataset, and γ = 0.01 in all the exper-
iments). Our results are expected to overcome both pure
depth super-resolution and pure uncalibrated photometric
stereo, as well as single-shot depth refinement methods
acting on low-resolution data.

To highlight the interest of an explicit photometric
model, we first compare our results against an image-
based multi-shot depth super-resolution approach adapted
from [1], [91]. It is a personal combination of these papers
which achieves variational depth super-resolution by fusing
the n low-resolution depth maps, while regularising the

gradient of the estimated high-resolution depth map in
an anisotropic manner. Here, the anisotropy coefficient is
derived from the gradients of the RGB image. This approach
is thus a “pure depth super-resolution” one, which uses
RGB clues but without any explicit photometric model.

In contrast, we also consider the “pure” uncalibrated
photometric stereo method from [37], which estimates light-
ing, albedo and high-resolution geometry from the n high-
resolution RGB images. In this method, an explicit photo-
metric model is used, as in ours, yet no low-resolution depth
clue is considered hence the underlying bas-relief ambiguity
may affect the quality of the results.

As in the evaluation of the shape-from-shading-based
approach from Section C, we also show the results of RGB-D
refinement [51] applied to the low-resolution RGB-D frame,
selecting one image out of n.

The qualitative comparison in Figure 25, and the quanti-
tative ones in Table 5, show that our methods result in much
more satisfactory high-resolution geometry, in comparison
with these methods. This proves that using an explicit
model for driving image-based depth super-resolution, and
using low-resolution depth clues to disambiguate uncali-
brated photometric stereo, both are worthwile.
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Lucy [100] Thai Statue [100] Armadillo [100] Joyful Yell [101]
“ebsd” albedo “ebsd” albedo “mandala” albedo “rectcircle” albedo

Fig. 22: Illustration of the synthetic RGB data used for quantitatively evaluating the multi-shot depth super-resolution
approach based on photometric stereo. Each row represents a different illumination condition. Remark that much more
complex albedo maps are considered, in comparison with the ones used in the single-shot approach, cf. Figure 12.
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Fig. 23: Impact of the parameter γ on the accuracy of the albedo and depth estimates using our multi-shot photometric
stereo approach (n = 10 in this experiment). Based on these results, the value γ = 0.01 was retained.



28

R
M

SE
(d

ep
th

)

4 6 810 20 30 50
0

0.05

0.1

0.15

0.2

0.25
mandala
rectcircle
ebsd
SF 8
SF 4
SF 2

M
A

E
(d

ep
th

)

4 6 810 20 30 50
0

2

4

6

8

10

12

14
mandala
rectcircle
ebsd
SF 8
SF 4
SF 2

n n

R
M

SE
(a

lb
ed

o)

4 6 810 20 30 50
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2
mandala
rectcircle
ebsd
SF 8
SF 4
SF 2

R
un

ti
m

e
(s

)

4 6 810 20 30 50
0

50

100

150

200

250

300

350

400

mandala
rectcircle
ebsd
SF 8
SF 4
SF 2

n n

Fig. 24: Impact of the number of images n on the accuracy of the albedo and depth estimates using our multi-shot
photometric stereo approach (γ = 0.01 in this experiment). The range n ∈ [10, 30] represents a reasonable compromise
between accuracy and runtime.

E.4 Qualitative Comparison against the State-of-the-art
on Real-world Datasets we Captured Ourselves

Figure 26 shows four qualitative comparisons against the
state-of-the-art, on real-world data from Figures 1 and 6 in
the main paper, which was captured with an Asus Xtion Pro
Live camera (scaling factor of 4).

It can be seen that image-based depth super-resolution
approach hallucinates reflectance information as geometric
information, since the underlying concept allows larger
depth variations where strong image gradients are present.
The uncalibrated photometric stereo results from [37] con-
tain much more relevant details, but the approach clearly
suffers from a low-frequency bias due to the underlying bas-
relief ambiguity, cf. “Tablet Case” and “Vase”. In these ex-
periments the RGB-D fusion results from [51] are reasonable,
but not as accurate as the ones obtained with the proposed
multi-shot approach.

E.5 Comparison against the State-of-the-art on a Pub-
lic Real-world Dataset

Eventually, we compare our results against the state-of-the-
art on the DiLiGenT dataset [41]. Qualitative results are
presented in Figure 27, and quantitative ones in Table 6.
Once again, our method most of the times overcomes the
state-of-the art in terms of surface details recovery. It is also
interesting to compare these results with the corresponding
ones in the previous sections: this comparison clearly shows
that resorting to a multi-shot strategy based on photometric
stereo is the only way to cope with general reflectance.

Still, it can be observed that even with redundant data,
some results such as the “harvest” one remain somewhat
disappointing: this is because the proposed method explic-
itly builds upon the Lambertian assumption, which is not
met in this example. Future extensions could thus include
coping with non-Lambertian phenomena.
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Fig. 25: Qualitative comparison of our multi-shot approach against state-of-the-art methods, on four synthetic datasets
(scaling factor of 4). Image-based depth super-resolution adapted from [1], [91] results in noisy geometry, uncalibrated
photometric stereo results from [37] are slightly flattened due to the underlying bas-relief ambiguity, and RGB-D fusion [51]
of the low-resolution data is not really successful here. In comparison, the results of the proposed method are extremely
satisfactory.
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Albedo 3D-shape SF Image Based depth SR [37]∗ [51] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

mandala

2 0.031468 46.4149 0.51996 17.4225 0.4320 69.7311 0.023266 2.883
Armadillo 4 0.042467 43.5403 – – 0.3948 63.7382 0.037789 2.8391

8 0.088849 42.6184 – – 0.5961 83.7853 0.073928 2.9196
2 0.043889 46.4903 0.37197 15.7192 0.4755 84.6189 0.036334 3.5842

Lucy 4 0.065857 44.0677 – – 0.4951 82.0516 0.051316 3.6142
8 0.12668 42.8905 – – 0.5231 64.7317 0.084713 4.7864
2 0.048887 45.0552 1.0735 14.2243 0.3757 70.2724 0.044198 3.3143

Joyful Yell 4 0.069088 42.644 – – 0.2985 55.6927 0.063392 3.6407
8 0.13103 40.0426 – – 0.4240 44.2549 0.1046 3.753
2 0.032432 47.8575 0.37738 13.372 0.4615 70.3271 0.022446 3.579

Thai Statue 4 0.053061 45.5618 – – 0.4211 90.2134 0.036245 3.6985
8 0.094911 43.838 – – 0.3371 53.2791 0.049733 4.1133

rectcircle

2 0.028459 41.506 0.52582 18.0902 0.2844 55.3096 0.020885 2.0047
Armadillo 4 0.038966 38.7345 – – 0.3031 48.1000 0.035145 1.9458

8 0.11182 36.3801 – – 0.5805 80.4625 0.073139 2.1436
2 0.040635 42.3051 0.32285 13.6126 0.4868 85.9076 0.026858 1.8617

Lucy 4 0.062747 39.0783 – – 0.4685 75.9166 0.041968 2.2851
8 0.12325 37.956 – – 0.3767 56.5020 0.075311 3.8793
2 0.045765 39.9946 0.84162 11.4847 0.2012 41.3053 0.038698 2.7879

Joyful Yell 4 0.064537 37.1175 – – 0.3189 37.2107 0.053871 3.1022
8 0.09492 34.7218 – – 0.4432 36.3990 0.084381 3.2463
2 0.030859 44.4276 0.38981 13.3935 0.2625 66.0562 0.018374 2.1086

Thai Statue 4 0.045516 41.7235 – – 0.3151 85.4734 0.028457 2.2876
8 0.10507 39.7697 – – 0.2389 55.0568 0.041552 3.0519

ebsd

2 0.031939 46.9515 0.49466 16.3427 0.3473 65.4823 0.021037 2.0398
Armadillo 4 0.04424 44.2571 – – 0.5933 58.6932 0.036102 2.0035

8 0.10062 42.2539 – – 0.6453 81.5187 0.073138 1.8159
2 0.04299 47.5844 0.32989 13.0463 0.4141 84.9623 0.028555 1.9483

Lucy 4 0.072388 44.5851 – – 0.4541 75.3771 0.04325 2.1771
8 0.16385 42.4252 – – 0.6460 74.8618 0.079427 3.6839
2 0.049515 46.0065 1.0052 13.1767 0.2645 55.3462 0.034162 2.1722

Joyful Yell 4 0.069491 43.4654 – – 0.2770 42.4242 0.04818 2.3335
8 0.11255 40.9818 – – 0.4589 38.8507 0.073515 2.5774
2 0.03307 48.7666 0.30254 12.0112 0.2371 69.6653 0.019305 2.3639

Thai Statue 4 0.046843 45.6104 – – 0.2792 77.7622 0.029185 2.4529
8 0.089646 43.7591 – – 0.2847 64.3520 0.041307 2.9642
2 0.036853 46.2107 0.44223 13.503 0.12186 45.0229 0.025062 2.2681

Median 4 0.057904 43.5029 – – 0.18929 41.3767 0.039879 2.3932
8 0.10844 41.6178 – – 0.31159 41.3102 0.073722 3.1491
2 0.038326 45.28 0.54626 14.3246 0.11516 42.7392 0.027843 2.554

Mean 4 0.056267 42.5321 – – 0.18488 40.6331 0.042075 2.6984
8 0.11193 40.6364 – – 0.29819 40.1205 0.071228 3.2446

TABLE 5: Quantitative comparison of the results attained with the proposed multi-shot approach and the state-of-the-art (∗:
to make the comparison fair, we run the algorithm of [37] on the high resolution RGB images, as it performs uncalibrated
photometric stereo on the RGB images without super-resolution – the scaling factor is thus actually 1 in this case). Our
approach overcomes the state-of-the-art in all the experiments.

APPENDIX F
UNIFIED COMPARISON OF OUR RESULTS ON A PUB-
LIC REAL-WORLD DATASET

Eventually, we present in Figure 28 a unified qualitative
comparison of the results obtained with the three proposed
methods, on the 9 objects of the DiLiGenT dataset [41].
This dataset illustrates well the cases where the single-shot
approach can be used (when reflectance is uniform, as for
instance in the “bear” example) and when it completely
fails because the piecewise-constant albedo assumption is
not satisfied (e.g., “Cat”). This method could thus still be
improved by designing a more general reflectance prior.
The multi-shot approach based on uncalibrated photomet-
ric stereo estimates a much more reasonable albedo map,
and thus a much more satisfactory depth map, because
it does not rely on any assumption regarding piecewise-
constantness. Yet, it could still be improved in order to
reduce artifacts due to specularirites (e.g., “reading”). Even-
tually, the albedo estimated by deep learning is sometimes

reasonable (e.g., “buddha”), but most of the times it is
not really satisfactory. This is because the objects do not
resemble the training set, which consists only of faces: to
cope with a wider variety of objects, the training dataset
should contain a broader range of object classes.

APPENDIX G
CONCLUSION

We evaluated in depth the applicability of photometric tech-
niques to resolve depth super-resolution in the context of
RGB-D sensing. Multiple self-captured real-world, publicly
available real-world and self-generated synthetic datasets
were used in order to qualitatively and quantitatively com-
pare the three proposed strageties against state-of-the-art
variational, optimization-based and deep learning methods.
It appeared that each of the three proposed methods beats
the corresponding state-of-the-art ones, which provides an
empirical evidence for the soundness of considering pho-
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Fig. 26: Comparison between the proposed multi-shot method and the state-of-the-art, on real-world datasets captured
using an Asus Xtion Pro Live camera. These results confirm the conclusion of the synthetic experiments in Figure 25.
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Fig. 27: Qualitative comparison of our uncalibrated photometric stereo-based approach against state-of-the-art methods,
on the DiLiGenT dataset [41] (the scaling factor is 2). Our method overcomes the state-of-the-art in all the experiments.
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3D-shape SF [1], [91] [37]∗ Ours
RMSE MAE RMSE MAE RMSE MAE

2 0.0077882 23.2799 0.029124 8.65 0.0064907 7.056
bear 4 0.0077919 19.6628 – – 0.0083983 7.2645

8 0.0079796 23.8495 – – 0.013453 7.0708
2 0.0077863 31.0075 0.041827 18.0718 0.0066078 12.7816

buddha 4 0.0078303 28.5663 – – 0.0077671 13.0276
8 0.0076309 20.1206 – – 0.012959 13.6987
2 0.0078205 24.5162 0.039112 11.0118 0.008108 6.1952

cat 4 0.0076492 20.6365 – – 0.010542 6.5739
8 0.0078364 21.2045 – – 0.015403 7.3812
2 0.0078497 31.5175 0.030244 18.1343 0.0055052 10.4445

cow 4 0.007844 26.7532 – – 0.0083455 11.3151
8 0.0085472 17.225 – – 0.015231 12.7818
2 0.0078938 32.2235 0.13005 71.5669 0.010771 11.16

goblet 4 0.0078725 29.261 – – 0.015434 11.6484
8 0.008322 24.9651 – – 0.030694 13.9542
2 0.0078757 32.6288 0.06847 29.3081 0.024211 30.4736

harvest 4 0.0078363 30.6866 – – 0.029344 31.9109
8 0.0077605 33.427 – – 0.040837 33.5636
2 0.0078648 25.4586 0.01869 10.3055 0.0063032 7.3048

pot1 4 0.0078397 22.6612 – – 0.0080599 7.514
8 0.0079306 30.9277 – – 0.014455 7.9022
2 0.0077881 29.7433 0.022896 14.5031 0.0048177 9.4492

pot2 4 0.0080123 26.261 – – 0.0066391 9.5829
8 0.0076366 21.8009 – – 0.012587 10.0768
2 0.0077277 29.1401 0.069057 25.0014 0.0098433 16.7382

reading 4 0.0076277 26.4486 – – 0.014885 19.6366
8 0.0078612 18.6829 – – 0.027963 23.2138
2 0.0078205 29.7433 0.039112 18.0718 0.0066078 10.4445

Median 4 0.0078363 26.4486 – – 0.0083983 11.3151
8 0.0078612 21.8009 – – 0.015231 12.7818
2 0.0078216 28.835 0.049941 22.9503 0.0091842 12.4004

Mean 4 0.0078115 25.6597 – – 0.012157 13.1638
8 0.007945 23.5781 – – 0.020398 14.4048

TABLE 6: Quantitative Comparison between other state-of-the-art methods and our multi-shot approach based on
photometric stereo (∗: to make the comparison fair, we run the algorithm of [37] on the high resolution RGB images,
as it performs uncalibrated photometric stereo on the RGB images without super-resolution – the scaling factor is thus
actually equal to 1 in this case). Our approach overcomes the state-of-the-art in terms of the level of geometric details
which can be recovered, while being only slightly less accurate in terms of overall RMSE fit.

tometry as a valuable clue for depth super-resolution in
RGB-D sensing.

In order to have at hand a unified comparison of the
three methods presented in this work, we also considered a
publicly available real-world photometric stereo benchmark
across all experimental sections. This permitted us to clearly
highlight the respective strengths and weaknesses of each
method. They could still be improved towards, respectively,
a more general reflectance prior (single-shot strategy), a
broader training dataset (reflectance learning), and the han-
dling of specularities (uncalibrated photometric stereo).
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[6] B. Goldlücke, M. Aubry, K. Kolev, and D. Cremers, “A super-
resolution framework for high-accuracy multiview reconstruc-
tion,” International Journal of Computer Vision, vol. 106, no. 2, pp.
172–191, 2014.

[7] R. Maier, J. Stückler, and D. Cremers, “Super-resolution keyframe
fusion for 3D modeling with high-quality textures,” in Proceedings
of the International Conference on 3D Vision (3DV), 2015, pp. 536–
544.

[8] S. Schuon, C. Theobalt, J. Davis, and S. Thrun, “Lidarboost: Depth
superresolution for TOF 3D shape scanning,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009, pp. 343–350.

[9] O. Mac Aodha, N. D. F. Campbell, A. Nair, and G. J. Brostow,
“Patch based synthesis for single depth image super-resolution,”
in Proceedings of the European Conference on Computer Vision
(ECCV), 2012, pp. 71–84.

[10] J. Xie, R. S. Feris, and M.-T. Sun, “Edge-guided single depth
image super resolution,” IEEE Transactions on Image Processing,
vol. 25, no. 1, pp. 428–438, 2016.
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[14] D. Ferstl, M. Rüther, and H. Bischof, “Variational depth superres-
olution using example-based edge representations,” in Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV),
2015, pp. 513–521.
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