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ABSTRACT 

Temperature-cycle-induced deracemization (TCID) has been widely studied in the field of 

chiral separation, ranging from fundamental research to applications. In this study, the second-

order asymmetric transformation (SOAT) of 2-methoxy-1-naphthamide in an azeotropic 

mixture of ethyl acetate and cyclohexane is compared with TCID, in terms of process 

productivity. The results indicate that the volumetric productivity using SOAT was over 100-

times higher than that using TCID, such that a scale-up by a factor of 10 was easily 

implemented.  

Keywords: deracemization, second-order asymmetric transformation (SOAT), productivity, 

atropisomerism 
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Introduction 

Chiral separation is an important field of research because of the impact of chirality on the 

development of high-value materials (e.g., pharmaceuticals, agrochemicals, and optics). 

Crystallization is often the preferred chiral separation technique at industrial scales because it 

has a smaller carbon footprint and is cheaper than other methods like chromatography.1–3 

Preferential crystallization (PC) is a chiral resolution technique that can be applied to a 

conglomerate-forming system.4 It is noteworthy that no racemization occurs during PC (i.e. 

enantiomers cannot interconvert), leading to the gradual enrichment of the enantiomeric 

excess of the solution in the counter enantiomer. This puts a limit in the yield of every single 

operation. The theoretical maximum yield after recycling several times the mother liquors is 

50%. By contrast, deracemization by crystallization is a promising chiral separation 

technique although it needs also a conglomerate-forming system, because it is performed 

under racemize conditions which steadily produce the desired enantiomer, leading to a 

theoretical yield of 100%.5 In addition to this major advantage, deracemization by 

crystallization is quite facile. For example, temperature-cycle-induced deracemization 

(TCID) is a process that converts a racemic mixture of the substrate to a nearly pure 

enantiomer in the solid phase without any external chiral source through temperature 

cycling.1,6–11  
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Scheme 1. Schematic representations of PC, TCID, and SOAT process.  

Recently, we reported the TCID of atropoisomer 1 (Figure 1) and its racemization rate (k1),6 

where we showed that the process productivity appears to be proportional to the racemization 

rate (k1), multiplied by the solubility. The productivity of a separation process is defined as the 

amount of enantiomer produced per unit time and unit volume of crystallizer or suspension.8,12 

Productivity = mcrop × 𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − mseeds

time · volume
  (Eq. 1) 

where mcrop and eefinal are the mass and the enantiomeric excess of the collected crystals, 

respectively, and mseeds is the mass of the seed crystals. Although a few examples exhibit good 

productivity (for example, the PC of baclofen13 attained an average productivity of 69 g h-1 L-

1 taking into account the equilibration time before crystallization), the typical productivity of 

PC ranges from 10 to 20 g h-1 L-1.14,15 In comparison, the productivity of TCID is as low as 
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0.1–5.0 g h-1 L-1.6,8 Thus, although TCID can double the theoretical yield, the productivity of 

the process is almost one order of magnitude lower than that of PC. 

The low productivity of TCID is obviously due to the associated long process times. Indeed, 

the usual minimum process duration for TCID is about 10 h.7,8,16,17 In contrast, PC runs 

typically involve rapid cooling; thus, the process times are much shorter. It is therefore 

important to shorten process times to significantly improve the process productivities and 

achieve a process with high productivity.  

The scaling up of PC often lead to problems in sub-operations, even when chiral crystallization 

is effective. In particular, the filtration step could affect the feasibility, and occasionally this 

kind of problem causes PC to fail. For example, laboratory-scale filtration can usually be 

completed in a reasonable amount of time, but large-scale production requires much longer. 

The PC process normally incorporates a quick filtration after the end of the entrainment 

because a longer crystallization period could trigger the nucleation of the counter-enantiomer 

and reduce the optical purity of the crop. Therefore, the time required for filtration with a 

scaled-up process could constitute a critical problem. By contrast, deracemization processes 

generally do not incur such a problem, since enantiomers are steadily interconverted in the 

solution. Moreover, the supersaturation of both enantiomers is always held close to 1, thus the 

probability of the nucleation of the counter-enantiomer decreases. This feature eliminates the 

limitation incurred in the scaling up of the process and helps to apply the process in the 

industrial field. 

Second-order asymmetric transformation (SOAT) is defined as a crystallization-induced 

asymmetric transformation during which the racemic mixture is converted into either a pure 

enantiomer or a mixture in which one enantiomer is present in excess.18 In other words, SOAT 

can be regarded as being a PC process under racemization conditions, as shown in Scheme 1.  
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As a hybrid of PC and deracemization, SOAT offers great promise as a process affording high 

yield and high productivity. To the best of our knowledge, there have been relatively few 

reports on the SOAT process and no studies have investigated the productivity of the process.19–

46 In the present study, we examined the application of the SOAT process to naphthamide 1 

(Figure 1), a conglomerate-forming system that exhibits solid-state atropisomerism (i.e., it 

spontaneously racemizes in solution) at two different scales. In addition, we show that SOAT 

of this compound is more productive than that of regular TCID even if the two processes are 

comparable in term of interplay between homogeneous and heterogeneous equilibria.47 

 

 

Figure 1. Chemical structure of naphthamide 1. 

Experimental methods 

Compound 1 was synthesized as described in our previous work.6 The solubility of 1 in a 

45/55 (wt/wt) mixture of cyclohexane and ethyl acetate (Certified AR for Analysis, Fisher 

Chemical, France), was measured by a gravimetric method from 10–60 °C. The temperature 

was controlled by a thermostat (F25-HL Cryostat, JULABO GmbH, Germany). Racemization 

kinetic constants (k1) of 1 from 10–45 °C were also measured over time using a polarimeter (P-

2000, Jasco France, France) at 365 nm with a Hg-lamp.6,48 

The TCID of 1 was performed by applying the following procedure. Compound 1 was 

completely dissolved by heating in 10 mL of an azeotropic mixture of ethyl acetate and 

cyclohexane (55/45, wt/wt) in a 30-mL screw vial that contained a cross-type Teflon-coated 

stirring bar. Subsequently, the solution was cooled to 10–20 °C to induce spontaneous 
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crystallization. Then, the suspension was held at 20 °C for 30 min to allow it to reach 

equilibrium. The heterogeneous mixture was stirred under the temperature-cycling conditions 

shown in Figure 2 for a maximum of 10 days. To confirm the scalability of the process, we 

performed TCID of 1 in 4 different scales of suspension density ρ, namely, 14.4, 36.0, 72.0, 

and 144 mg mL−1. Since the temperature cycle between 20 and 30 °C gives a 7.2-mg mL−1 

dissolution-crystallization cycle, 50, 20, 10, and 5% of the crystals were deliberately dissolved 

during the heating step. For the off-line monitoring of the deracemization experiments 

involving 1, a small amount (~30 μL) of the suspension was drawn off and filtered through an 

8φ filter paper in a Kiriyama Rohto VB-8 funnel. The collected crystals were dried under a 

vacuum, weighed, and then dissolved in MeOH (1.200 mL, HPLC grade) at 4 °C. The 

enantiomeric excess was determined by comparing the optical rotations at 365 nm and 4 °C 

with the previously determined specific optical rotations. ([α]365
4 = 662.3°).6  

 

Figure 2. Temperature profile applied in the TCID experiments. 

 

The SOAT process of 1 was carried out by applying the following procedure. A variable 
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to a saturated solution of 1 in a 45/55 (wt/wt) mixture of cyclohexane and ethyl acetate at 60 °C 

(mass fraction concentration S = 22.2 wt%) in a 40-mL vial (ϕ27.5 × 95 mm, VWR France, 

France) for the 1-g scale experiment or a double-jacketed 150-mL three-neck flask for the 10-

g scale experiment. The temperature was controlled by a thermostat (F25-HL Cryostat, 

JULABO GmbH, Germany). The mixture was then stirred at 500 rpm by a cross magnetic 

stirrer throughout the experiment. After a 3-minute isotherm, the suspension was cooled to 

30 °C over a period of about 85 min by using two types of cooling profiles, shown in Figure 

3, hereafter referred to as cooling profiles A and B. The experimental conditions are 

summarized in Table 1. The temperature of the solutions was monitored every 30 s with a data 

logger (LogStick LS450-T(K), Osaka Micro Computer Inc., Osaka, Japan) equipped with a 

thermocouple. The supersaturation of the solutions was monitored during cooling by sampling 

aliquots of the solution for gravimetric analyses. The crystals were collected by filtration and 

dried under a vacuum. The enantiomeric excess was determined by comparing the optical 

rotation measurements at 365 nm and 4 °C with the previously determined specific optical 

rotation.  

Table 1. Experimental conditions for SOAT of 1 in 45/55 (wt/wt) mixture of cyclohexane and 

ethyl acetate. 

Run Cooling 
profile 1/g solvent / g S / wt% Seed / mg Tinitial / °C Tfinal/ °C Duration / min 

1 A 1.425 5.00 22.2 27.0 60 30 82 

2 A 1.426 5.00 22.2 32.4 60 30 82 

3 A 1.422 5.00 22.2 33.0 60 30 82 

4 B 1.428 5.01 22.2 10.9 60 30 85 

5 B 1.424 5.00 22.2 21.5 60 30 82 

6 B 1.427 5.01 22.2 30.8 60 30 83 
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7 B 1.428 5.01 22.2 10.3 60 30 81 

8 B 9.990 35.01 22.2 60.8 60 30 89 

9 B 9.984 35.00 22.2 143.8 60 30 84 

10 B 9.945 34.96 22.2 35.1 60 30 85 

11 A 9.989 35.00 22.2 41.1 60 30 85 

 

With cooling profile A, temperature decreases linearly versus time (Figure 3) and the CT/C30 

ratio, CT and C30 being gravimetric solubility respectively at T and 30 °C, changes drastically 

at the beginning of the process. Due to the solubility change, the supersaturation of the solution 

is expected to increase drastically, and primary nucleation of the counter enantiomer can occur. 

In contrast, as can be seen in cooling profile B, solubility linearly decreases with time in order 

to achieve a constant rate of crystal growth when the cooling rate was sufficiently slow to reach 

the solubility equilibrium at a specific temperature. In general, the rate of crystal growth in the 

fast cooling process depends on the diffusion and/or surface integration behavior of the 

molecule; therefore, this rate cannot be considered to be constant.  
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Figure 3. Two types of a cooling profile applied to SOAT of 1. (A) Linear cooling. (B) 

Solubility-controlled cooling; cT: saturated concentration at temperature T[°C]. Symbols (♦) 

in profile B are actual input points used in the temperature program of the thermostat.   

Results and Discussion 

Figure 4 shows the solubility and k1 values of 1 as a function of temperature in an azeotropic 

mixture of ethyl acetate and cyclohexane (45/55 wt/wt). As can be seen from Figure 4, the 

solubility variation is small from 10–30 °C but increases abruptly from 30 °C onward. This 

behavior suggests the existence of a metastable miscibility gap, at higher or lower temperatures, 

also called submerged liquid demixing or the metastable oiling-out phenomenon.49 Therefore, 

seeded crystallization is well suited for this compound in order to avoid liquid demixing which 

may cause high supersaturation in one of the two liquids and thus uncontrolled crystallization. 

Racemization kinetic constants k1 obtained by polarimetry measurements48 have been used to 

plot an Arrhenius’s graph, and the Gibbs free energy of activation (ΔG‡) was found to be 17.1 

kcal‧mol−1. In general, a torsion rotation energy barrier lower than 20–25 kcal‧mol−1 can show 

the interconversion within a few hours around room temperature.50 Thus, this value indicates 

that racemization in the solution is sufficiently fast to facilitate the development of a 

deracemization process during a reasonable period of time. Details of the solubility data and k1 

are given in the Supporting Information. 
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Figure 4. Racemization rate constants (▲) and solubility curve of 1 (○) in the azeotropic 

mixture of cyclohexane and ethyl acetate.  

In the present study, the productivity was calculated using Eq. 1 in which the volume of the 

solution (calculated using a solvent density of 0.856 g mL−1 and the measured mass at 20 °C) 

was used instead of the suspension volume. To compare process robustness of TCID and SOAT, 

the yield was calculated using Eq. 2: 

Yield[%]= mcrop× eefinal − mseeds

m - msolute, final
×100  (Eq. 2) 

 where m and msolute, final represent the total mass of 1 and the mass of the solute in the saturated 

solution at the final temperature, respectively.  

In general, crystallization yield does not consider the mass of the final solute which remains in 

solution since it can be varied by changing the operating conditions. Thorough optimization of 

the operating conditions would, therefore, be necessary for comparison of such factors for 

different processes is beyond the scope of this study. The yield should be 100% when the mass 

of collected crystals is the same as the theoretically affordable mass (i.e. taking into account 
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the mass of the solute that remains solvated at the final temperature. Thus, the yield can be 

considered as a factor for determining process robustness. 

Figure 5 displays the enantiomeric excesses (ees) of the collected crystals of 1 as functions of 

time during TCID experiments, while Table 2 summarizes the suspension density, the 

deracemization time (which is the time required to reach 95%ee from 0%ee), and the process 

productivity. As shown in Figure 5, a larger suspension density resulted in a longer 

deracemization time. Although the process productivity for the 144-mg·mL−1 suspension 

density was 10% lower than in the other cases, there was no significant difference in this range 

of suspension density. Thus, the process productivity of TCID can be regarded as being an 

independent factor affecting the suspension density, ranging from 10–150 mg·mL−1. A higher 

suspension density than these conditions may give rise to an issue with the homogeneity of the 

system, while the suspension density would not be an independent factor from the process 

productivity. Hereafter, the average value, 0.67 g·h−1·L−1, is used as the process productivity 

of TCID for comparison. 

 

Figure 5.  The enantiomeric excess of the collected crystals of 1 as a function of time during 

temperature cycle deracemization experiments in the azeotropic mixture of ethyl acetate and 
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cyclohexane. Symbols indicate the suspension density. Black: 14.4 mg·mL−1, Red: 36.0 

mg·mL−1, Blue: 72.0 mg·mL−1, Yellow: 144 mg·mL−1. The lines are the guide for the eye. 

Table 2. Summary of suspension density, deracemization time, and process productivity. 

Suspension density ρ / mg·mL−1 Deracemization time / h eefinal[%] Productivity / g·h−1·L−1 Yield[%] 

14.4 20 96 0.68 >95 

36.0 48 98 0.71 >95 

72.0 102 97 0.67 >95 

144 220 97 0.62 >95 

 

The solubility measurements were used to develop the SOAT process of 1 (see the 

experimental section for more details). The experimental results are summarized in Table 3.  

Table 3. Summary of the experimental results of SOAT crystallization. 

Run Cooling profile mcrop / g eefinal [%] Productivity / g h−1 L−1 Yield [%] 
1 A 1.208 4 3 2 
2 A 1.211 26 35 23 
3 A 1.220 5 3.5 <1 
4 B 1.205 87 125 86 
5 B 1.219 93 139 92 
6 B 1.206 97 141 94 
7 B 1.188 89 133 87 
8 B 8.317 77 104 75 
9 B 8.360 83 118 80 
10 B 8.432 85 124 85 
11 A 8.646 51 75 51 

 

The mass of the crystals collected after Runs 1–3 (performed using linear cooling) was 

almost equal to the maximum value, (i.e., the crystallized mass accounts for the solubility 

difference between the initial and final temperature). However, the average enantiomeric 

excess was only 12%. Because of this low enantiomeric excess, the yield was also low. 

Although the productivities of Runs 1–3 were higher than those obtained for TCID for the same 

solvent (0.67 g h−1 L−1), additional enantio-purification would be needed to achieve 

enantiopurity, which is undesirable.  
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To understand the reason for this low enantiomeric excess, we performed a 10-g scale SOAT 

experiment (Run 11 in Tables 1 and 2) and monitored the enantiomeric excess of the crystal 

during the process. As shown in Figure 6a, the crystal enantiomeric excess starts to drop at the 

beginning of the experiment. Because the CT/C30 ratio decreases rather abruptly in this 

temperature domain (Figure 3), this is likely to cause uncontrolled primary nucleation of the 

counter-enantiomer upon cooling. This is further supported by Figure 6b, which depicts the 

supersaturation profile of the solution and shows that the supersaturation remained quite high 

(~1.2) during the process. The increase in the supersaturation at the end of the experiment is 

likely due to the crystallization rate slowing down at lower temperatures and which cannot 

adapt to the corresponding temperature change. 

  

Figure 6. (a) Enantiomeric excess (ee) values of the collected crystals of compound 1. (b) 

Temperature profile of SOAT experiments with linear cooling and supersaturation as a function 

of time during SOAT experiments with linear cooling (cooling profile A). 

By contrast, the crystals obtained by solubility-controlled cooling (cooling profile B) 

exhibited high enantiomeric excesses (Runs 4–11, Table 3), and showed moderate yields (75–
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crystals was also identical to that of the seed crystals. Accordingly, the monitoring of the crystal 

enantiomeric excess (Figure 7a) showed that the initial enantiomeric excess of the seeds was 

almost constant throughout the process. The cooling profile applied to these experiments 

implies a slow cooling rate at the beginning of the process, which reduces the primary 

nucleation of the counter enantiomer (Figure 7b). The cooling profile maintains the 

supersaturation at close to 1.0 during the whole process (the crystal growth of the seeds is 

sufficiently fast to compensate for the moderated supersaturation increase).   

 

Figure 7. (a) Enantiomeric excess (ee) values of the collected crystals of 1. Each line 

corresponds to Runs 8, 9, and 10. (b) Temperature profile of SOAT experiments with 

solubility-controlled cooling (black line: ideal profile, red line: observed profile), and 

supersaturation as a function of time during SOAT experiments with solubility-controlled 

cooling (cooling profile B). 
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a few hours because it requires only a single cooling process.  Moreover, for the 10-g scale 

experiment (Run 8−10), without sophisticated optimization (i.e., the mass of the compound 

and solvent increased proportionally), the time required for the process remained the same, 

with a decrease in productivity of only 10% compared to the 1-g scale. Therefore, scaling-up 

for industrial applications is expected to be relatively easy. 

Figure 8a shows a SEM image of crop crystal after cooling profile A. The crystals exhibited 

a size distribution 10−100 μm, while small particles adhered to those crystals. Those small 

particles could have been produced by the primary nucleation during the process, implying that 

primary nucleation frequently occurred during cooling profile A. Since the chirality of the 

primary nucleation could not be controlled, the nucleation included both enantiomers. 

Therefore, the enantiomeric excess dropped during cooling profile A. By contrast, the relatively 

large crystals (100−1000 μm) are found in the crop after cooling profile B, as shown in Figure 

8b. These crystals can be regarded as grown seeded crystals. As scars of abrasions was visible 

on the large crystals, abrasion phenomena might also occur during the process. Since abrasion 

produces small crystals which have the same chirality as the original crystals, the resulting 

crystals do not cause a decrease in the enantiomeric excess. Smaller crystals could be generated 

by the abrasion process of the large crystals or by secondary nucleation.  
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Figure 8. (a) SEM images of collected crystals after (a) the cooling profile A, and (b) the 

cooling profile B.  

 

Conclusion 

We performed SOAT on atropoisomeric naphthamide 1, which exhibits spontaneous 

racemization in solution in the absence of any racemization reagent, with two different 

temperature profiles at 1-g and 10-g scales. Monitoring of the supersaturation of the solution 

and enantiomeric excess of the solid phase upon cooling highlighted that the so-called 

“solubility-controlled cooling” is better suited to producing high enantiomeric excesses of 

crystals. Moreover, we showed that the productivity of SOAT is considerably higher than that 

of TCID. The present study was the first to compare the productivities of SOAT and TCID for 

the same compound, naphthamide 1. In addition, we found that scaling up by a factor of 10 

was also feasible. Although SOAT requires enantiomerically pure seed crystals, it could 

feasibly be part of an efficient process in the future. For example, TCID could be used to 

prepare enantiopure crystals, which could then be used as seed crystals in a SOAT process. 

Alternatively, a continuous SOAT process could be envisaged as a more productive technique 

than TCID. 

(a) (b)
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