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We provide an irreducibility test in the ring K[[x]][y] whose complexity is
quasi-linear with respect to the discriminant valuation, assuming the input
polynomial F square-free and K a perfect field of characteristic zero or greater
than deg(F ). The algorithm uses the theory of approximate roots and may
be seen as a generalization of Abhyankhar’s irreducibility criterion to the case
of non algebraically closed residue fields. More generally, we show that we
can test within the same complexity if a polynomial is pseudo-irreducible,
a larger class of polynomials containing irreducible ones. If F is pseudo-
irreducible, the algorithm computes also the discriminant valuation of F and
the equisingularity classes of the germs of plane curves defined by F along
the fiber x = 0.
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1 Introduction

Context and main result. This paper provides new complexity results for testing the
irreducibility of polynomials with coefficients in a ring of formal power series of charac-
teristic zero or big enough. We consider K a perfect field, x and y two indeterminates
over K and F ∈ K[[x]][y] a polynomial of degree d. In all of the sequel, we will assume
that the following hypothesis holds:

The characteristic of K is either 0 or greater than d.

Assuming F square-free, we let δ be the x-valuation of the resultant between F and its
y-derivative Fy. We prove:

Theorem 1. There exists an algorithm which tests if F is irreducible in K[[x]][y] with
an expected Õ (δ + d) operations over K and two univariate irreducibility tests over K
of degree at most d.

If F is Weierstrass1, the complexity drops to Õ (δ) operations over K and one univariate
irreducibility test of degree at most d. The notation Õ () hides logarithmic factors.
Our algorithm is Las Vegas, due to the computation of primitive elements; it should
become deterministic via the preprint [29]. See Section 7 for more details, including our
complexity model.

We say that F is absolutely irreducible if it is irreducible in K[[x]][y], where K stands for
the algebraic closure of K. In such a case, we avoid univariate irreducibility tests and
there is no need to deal with extensions of residue fields. We get:

Theorem 2. There exists a deterministic algorithm which tests if F is absolutely irre-
ducible with Õ (δ + d) operations over K, which is Õ (δ) when F is Weierstrass.

Pseudo-Irreducible polynomials. If F is irreducible, the algorithms above compute
also the discriminant valuation δ and the number of absolutely irreducible factors to-
gether with their sets of characteristic exponents and pairwise intersection multiplicities.
These numerical data capture the main relevant information about the singularities of
the germs of plane curves defined by F along x = 0. In particular, they uniquely de-
termine their equisingularity classes, hence their topological classes if K = C. It turns
out that we can compute these invariants within the same complexity (avoiding further-
more any univariate irreducibility test) for a larger class of polynomial: we say that F is
pseudo-irreducible (the terminology balanced will also be used in the sequel) if its irre-
ducible factors in K[[x]][y] have same characteristic exponents and same sets of pairwise
intersection multiplicities (see Section 8). If F is irreducible in L[[x]][y] for some field
extension L of K, then it is pseudo-irreducible by a Galois argument, but the converse
does not hold.

1We recall that in our context, F =
∑d
i=0 ai(x) yi is Weierstrass if ad = 1 and ai(0) = 0 for i < d
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Theorem 3. There exists an algorithm which tests if F is pseudo-irreducible with an
expected Õ (d+δ) operations over K, which is Õ (δ) if F is Weierstrass. If F is pseudo-
irreducible, the algorithm computes δ and the number of irreducible factors in K[[x]][y]
together with their characteristic exponents and pairwise intersection multiplicities.

Note that if F is pseudo-irreducible, all its absolutely irreducible factors have same
degree, and the algorithm computes it. We can compute also the degrees, residual
degrees and ramifications indices of the irreducible factors of F in L[[x]][y] over any
given field extension L of K by performing an extra univariate factorization of degree d
over L.

Bivariate case. If F ∈ K[x, y] is a square-free bivariate polynomial of bidegree (n, d),
we have δ ≤ 2nd−n, hence our algorithms are quasi-linear with respect to the arithmetic
size nd of F . In fact, we can avoid the square-free hypothesis in this case:

Theorem 4. If F ∈ K[x, y], then the previous irreducibility or pseudo-irreducibility tests
have complexity Õ (nd) up to univariate irreducibility tests, and so without assuming
square-freeness of F .

Note that this does not mean that we can check square-freeness of F within Õ (nd)
operations (this costs Õ (nd2) operations with usual algorithms). Also, note that there
is no hope to test irreducibility of a non square-free polynomial F ∈ K[[x]][y], as this
would require to deal with an infinite precision.

Local case. Our algorithms provide also (pseudo)-irreducibility tests in the local rings
K[[x, y]] or K[[x, y]]. To this aim, we first apply the Weierstrass Preparation Theorem and
compute a factorization F = UH up to a suitable precision using a Hensel like strategy,
with H ∈ K[[x]][y] a Weierstrass polynomial and U a unit in K[[x, y]], and we eventually
check the (pseudo)-irreducibility of H using algorithms above. Unfortunately, if F is
non Weierstrass, the computation of H up to a suitable precision is Ω(dδ) in the worst
case scenario ([25, Example 5] provides an explicit family of polynomials F ∈ K[x, y] for
which a local irreducibility test in K[[x, y]] is cubic in the total degree).

Main ideas. All algorithms are based on the same idea. We recursively compute
some well chosen approximate roots ψ0, . . . , ψg of F . At each step, we compute the
(ψ0, . . . , ψk)-adic expansion of F . We deduce the k-th generalised Newton polygon and
check if it is straigth. If so, we compute the related boundary polynomial and test if it
is the power of some irreducible polynomial. In such a case, we deduce the degree of the
next approximate root ψk+1 that has to be computed. The algorithm gives moreover
the characteristic exponents of F , and so without performing any blow-ups and liftings
inherent to the classical Newton-Puiseux algorithm. Such a strategy was developped
by Abhyankar for testing irreducibility in C[[x]][y] in [1]. A major difference here is
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that testing irreducibility for non algebraically closed residue field K requires to com-
pute also the boundary polynomials, a key point which is not an issue in Abhyankhar’s
algorithm. Also, in order to perform a unique univariate irreducibility test over K, we
rely on dynamic evaluation and rather check if the boundary polynomials are powers of
a square-free polynomial. The pseudo-irreducibility test is based on such a modification,
allowing moreover several edges of the Newton polygon in some particular cases.

Related results. Factorization in K[[x]][y] (and a fortiori irreducibility test) is an im-
portant issue in the algorithmic of algebraic curves, both for local aspects (studying
plane curves singularities) and for global aspects (e.g. computing integral basis of func-
tion fields [31], computing the geometric genus [25], factoring polynomials in K[x, y]
taking advantage of critical fibers [34], etc). Probably the most classical approach for
factoring polynomials in K[[x]][y] is derived from the Newton-Puiseux algorithm, as a
combination of blow-ups (monomial transforms and shifts) and Hensel liftings. This
approach allows moreover to compute the roots of F - represented as fractional Puiseux
series - up to an arbitrary precision. The Newton-Puiseux algorithm has been studied
by many authors (see e.g. [6, 7, 21–25, 27, 33] and the references therein). Up to our
knowledge, the best current arithmetic complexity was obtained in [25], using a divide
and conquer strategy leading to a fast Newton-Puiseux algorithm (hence an irreducibility
test) which computes the singular parts of all Puiseux series above x = 0 in an expected
Õ (d δ) operations over K. There exists also other methods for factorization, as the
Montes algorithm which allow to factor polynomials over general local fields [14, 19]
with no assumptions on the characteristic of the residue field. Similarly to the algo-
rithms we present in this paper, Montes et al. compute higher order Newton polygons
and boundary polynomials from the Φ-adic expansion of F , where Φ is a sequence of
some well-chosen polynomials which is updated at each step of the algorithm. With our
notations, this leads to an irreducibility test in Õ (d2 +δ2) [2, Corollary 5.10 p.163] when
K is a “small enough” finite field2. In particular, their work provide a complete descrip-
tion of augmented valuations, apparently rediscovering the one of MacLane [16, 17, 26].
The closest related result to this topic is the work of Abhyanhar [1], which provides a new
irreducibility test in C[[x]][y] based on approximate roots, generalised to algebraically
closed residue fields of arbitrary characteristic in [5]. No complexity estimates have been
made up to our knowledge, but we will prove that Abhyanhar’s irreducibility criterion
is Õ (δ) when F is Weierstrass. In this paper, we extend this result to non algebraically
closed residue field K[[x]][y] of characteristic zero or big enough. In some sense, our
approach establishes a bridge between the Newton-Puiseux algorithm, the Montes al-
gorithm and Abhyankar’s irreducibility criterion. Let us mention also [9, 10] where an
other irreducibility criterion in K[[x]][y] is given in terms of the Newton polygon of the
discriminant curve of F , without complexity estimates, and [20], which provides a good
reference for the relations between approximate roots, Puiseux series and resolution of
singularities of an irreducible Weierstrass polynomial F ∈ C[[x]][y].

2This restriction on the field K is due to the univariate factorization complexity. It could be probably
avoided by using dynamic evaluation.
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Organisation. In Section 2 below, we describe briefly the rational Newton-Puiseux
algorithm of Duval [6] and its improved version of [24] due to the so-called Abhyankar
trick. In section 3, we show how to recover the edge data of F from its Φ-adic expansion,
where Φ is the collection of minimal polynomials of the truncated Puiseux series of F .
We show in Section 4 that Φ can be replaced by a collection Ψ of approximate roots
of F which can be computed in the aimed complexity bound. Section 5 is dedicated
to the absolute case, and a new proof of Abhyankhar’s irreducibility criterion is given.
In Section 6, we allow residual polynomials to be square-free, leading to the notion
of pseudo-irreducible polynomials. Section 7 is dedicated to complexity issues and to
the proofs of Theorems 1, 2 and 4. We show in Section 8 that a polynomial is pseudo-
irreducible if and only if its absolutely irreducible factors are equisingular and have same
sets of pairwise intersection sets (balanced polynomials), in which case we give explicit
formulas for characteristic exponents and intersection multiplicities in terms of the edges
data, thus proving Theorem 3. We conclude in Section 9 with ongoing researches about
factorization of polynomials over general local fields of arbitrary residual characteristic.

2 The Newton-Puiseux algorithm and Abhyankar trick

Classical definitions. We first recall classical definitions that play a central role for our
purpose, namely the Newton polygon and the residual polynomial. In the following, we
denote F =

∑d
i=0 ai(x) yi and vx the usual x-valuation of K[[x]].

Definition 1. The Newton polygon of F is the lower convex hull N (F ) of the set of
points (i, vx(ai)) for i = 0, . . . , d. The principal Newton polygon N−(F ) is the union of
edges of negative slopes of N (F ).

Note that N−(F ) = N (F ) if F is Weierstrass. The Newton polygon is used at the first
call of our main algorithms, while the principal Newton polygon is used for recursive calls.
It is well known that irreducibility in K[[x]][y] (resp. in K[[x, y]]) implies straightness of
N (F ) (resp. N−(F )), a single point being straight by convention. However, straightness
condition is not sufficient.

Definition 2. Given the (principal or not) Newton polygon N of F , we call F̄ :=∑
(i,j)∈N aijx

jyi the boundary polynomial of F .

Definition 3. We say that F is degenerated over K with respect to N if its boundary
polynomial F̄ is the power of an irreducible quasi-homogeneous polynomial.

In other words, F is degenerated if and only if N is straight of slope −m/q with q,m
coprime, q > 0, and if

F̄ = c

(
P

(
yq

xm

)
xεm deg(P )

)N
(1)

with c ∈ K×, N ∈ N and P ∈ K[Z] monic and irreducible, and where ε = 1 if m ≥ 0
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and ε = 0 otherwise. We call P the residual polynomial3 of F . We call the tuple
(q,m, P,N) the edge data of the degenerated polynomial F and denote EdgeData an
algorithm computing this tuple.

Newton-Puiseux irreducibility test. If F is irreducible in K[[x]][y], it is degenerated.
The converse holds if N = 1. If N > 1, the Newton-Puiseux algorithm ensures that F
is irreducible if and only if all the successive so-called Puiseux transforms of F (line 5 of
RNP) are degenerated until we reach an edge data with N = 1.

We let ` := deg(P ) and KP := K[Z]/(P (Z)). We denote by z ∈ KP the residue class of
Z. Finally, we let s, t be the unique integers such that the Bézout relation qs−mt = 1
holds with 0 ≤ t < q. The rational version of the Newton-Puiseux algorithm of Duval
[7] induces the following irreducibility test. Therein, we check degeneracy with respect
to N (F ) at the first call and with respect to N−(F ) at the recursive calls.

Algorithm: RNP(F,K)

Input: F ∈ K[[x]][y] of degree d > 0.
Output: True if F is irreducible in K[[x]][y], and False otherwise.

1 N ← d;
2 while N > 1 do
3 if F is not degenerated over K then return False ;
4 (q,m, P,N)← EdgeData(F );

5 F ← F (ztxq, xm(y + zs))/xqm`N ; // Puiseux transform

6 K← KP ;

7 return True ;

The transform performed in RNP differs slightly from the classical Newton-Puiseux trans-
form F (xq, xm(y + z1/q)). This trick due to Duval avoids to introduce useless field ex-
tension K[z1/q] of K[z] = KP inherent to ramification. The number of iterations is
bounded by δ and powers of x can be truncated modulo xδ+1, leading to a complexity
Õ (d (δ + 1)2) [22, Lemma 4, page 213]4.

The Abhyankar trick. At each recursive call, the Weierstrass Preparation Theorem
ensures that the current polynomial F of line 3 equals a Weierstrass polynomial G =∑N

i=0 gi(x)yi times a unit of K[[x, y]], and we can compute G up to an arbitrary precision
via Hensel lifting. The Abhyankar trick consists to replace the current polynomial F by
the Abhyankhar shift H of its Weierstrass polynomial G:

H(x, y)← G
(
x, y + c(x)

)
, c(x) := −gN−1(x)

N
. (2)

3In the Montes algorithm [14, Definition 1.9, page 368], the residual polynomial would rather design
P qN in our context

4In [22], K is assumed to be a finite field. This result remains correct on any perfect field if one uses
dynamic evaluation instead of univariate factorization or irreducibility test.
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At the first call, we assume F monic and we rather consider G = F in (2). We call H
the Abhyankar transform of F , and denote Abhyankar(F ) the subroutine computing it
(with infinite precision in what follows, but with a suitable finite precision in practice,
see [25, Section 3.3]). The polynomial H has now no terms of degree N − 1, ensuring
q` > 1 at line 4. This leads to the following variant of [24, Algorithm ARNP], where we
stop computations if we find out that F is reducible (therein, we keep the notations KP

and z asociated to P ).

Algorithm: ARNP(F,K)

Input: F ∈ K[[x]][y] monic of degree d > 0.
Output: True if F is irreducible in K[[x]][y], and False otherwise.

1 N ← d;
2 while N > 1 do
3 H ← Abhyankar(F ) ;
4 if H is not degenerated over K then return False ;
5 (q,m, P,N)← EdgeData(H);

6 F ← H(ztxq, xm(y + zs))/xqm`N ;
7 K← KP ;

8 return True ;

Remark 1. The (q,m)-sequence of ARNP is not the same as the (q,m)-sequence of RNP, but
can be deduced from it [25, Remark 5 and Example 2]. It contains enough information
for computing the characteristic exponents of F ; see Section 8.

Since H has degree N with no terms of degree N −1, either it is not degenerated, either
its edge data satisfies q` ≥ 2. The product of these invariants over all iterations satisfies∏
k qk`k ≤ d (with equality if and only if F is irreducible), and the number of calls is

less than log(d). See [24, Section 4] for details. If F is irreducible, we have moreover
vx(Fy(S)) = δ

d for any Puiseux series S of F . Then, [25, Lemma 6] and [25, Corollary 4]

prove that computations can be made modulo x
2δ
d

+1, leading to an expected number of
operations over K bounded by O((δ+1) d) [25, Proposition 18]. Moreover, as mentionned
in the conclusion of [25], this complexity estimates is sharp. This is mainly due to the
fact that despite the input data being of size δ after truncation, the Puiseux transform of
line 6 generates a polynomial F that can be of size Ω(d δ) (which is then again reduced
to size O(δ) at line 3). The approach we propose in this paper avoids this intermediate
increased size thanks to the theory of approximate roots.

Notations. If N (F ) is not straight, then F is reducible. If N (F ) is straight with
positive slope, we replace F by its reciprocal polynomial. The leading coefficient is now
invertible. Consequently, we assume in the remaining of this paper that F is monic.

We denote by H0 := Abhyankar(F ) and let N0 := deg(H0) = d. If N0 = 1 or H0 is
not degenerated, we let g = 0. Otherwise, we denote by H0, . . . ,Hg−1 the successive
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degenerated polynomials encountered at line 3 when running ARNP(F,K). We collect
their respective edge data in a list

Data(F ) :=
(
(q1,m1, P1, N1), . . . , (qg,mg, Pg, Ng)

)
.

The monic polynomial H0 might have horizontal slope (in which case q1 = 1 and m1 = 0)
while Hk is Weierstrass and mk+1 > 0 for 1 ≤ k < g. We include the Nk’s in the list for
convenience, although they can be deduced from the remaining data by (3). This data is
closely related to what is called a type in [14]. The integer g is defined in such a way that
we have either Ng = 1 and F is irreducible, either the next Weierstrass polynomial Hg is
not degenerated and F is reducible. If F is irreducible, we can deduce from Data(F ) the
characteristic monomials (exponents and coefficients) of any of its conjugated Puiseux
series, see Section 8.

We let K0 = K and we denote Kk = Kk−1[Zk]/(Pk(Zk)) the field extension of Kk−1

generated by Pk, where Zk is a new undeterminate. It is a finite extension of K of degree
fk := `1 · · · `k, where `k := deg(Pk); it represents the part of the residual extension
discovered so far. We let zk ∈ Kk be the residue class of Zk mod Pk.

For all 1 ≤ k ≤ g, we have Hk ∈ Kk[[x]][y]. The integer Nk satisfies

Nk = deg(Hk) and Nk−1 = Nkqk`k. (3)

As `kqk > 1 for all 1 ≤ k ≤ g, the sequence N0, . . . , Ng is a strictly decreazing sequence
of integers with Nk dividing Nk−1.

We associate to F the maps{
τk(x, y) = (x, y + ck(x)), 0 ≤ k ≤ g,
σk(x, y) = (ztkk x

qk , xmk(y + zskk )), 1 ≤ k ≤ g
(4)

respectively defined to be the successive Abhyankhar shifts (2) and rational Newton-
Puiseux transforms performed while running ARNP(F,K): τk performed at line 3 on the
Weierstrass polynomial of F (or directly on F for k = 0) and σk at line 6, with (sk, tk)
the Bézout co-factors of (qk,mk). Note that ck(0) = 0 if k ≥ 1 by (2). Defining π0 = τ0,
and πk = πk−1 ◦ σk ◦ τk for 1 ≤ k ≤ g, we get - see Lemma 8 for an explicit formula in
terms of Data(F ):

πk(x, y) = (µkx
ek , αkx

rky + Sk(x)), (5)

where ek := q1 · · · qk (the ramification index discovered so far), µk, αk ∈ K×k , rk ∈ N and
Sk ∈ Kk[[x]] satisfies vx(Sk) ≤ rk. The pair Rk = (µkx

ek , Sk mod xrk+1) is called in
[25, Section 3.2] a truncated rational Puiseux expansion. We can deduce from Rk all the
roots of F (seen as Puiseux series) truncated up to precision rk

ek
, that increases with k.

By construction, there exists an integer vk(F ) ∈ N such that

π∗kF = xvk(F )UkHk ∈ Kk[[x]][y], (6)

where Uk(0, 0) ∈ K×k . This key point will be used several times in the sequel. Also, note
that the coefficient of yNk−1 in Hk is 0 from the Abhyankar shift (2).
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Minimal polynomials. There exists a unic monic irreducible polynomial φk ∈ K[[x]][y]
(in practice in K[x][y] when truncating powers of x) such that

φk(µkx
ek , Sk) = 0 and dk := deg(φk) = ekfk. (7)

In particular, φ0 = y− c0(x) has degree 1. We call φk the kth minimal polynomial of F .
We deduce from (3) d = Nk dk for all k = 0, . . . , g. By construction, the function call
ARNP(φk) generates the same transformations τi, σi for i ≤ k and we have

Data(φk) =
(
(q1,m1, P1, N

′
1), . . . , (qk,mk, Pk, N

′
k = 1)

)
with N ′i := Ni/Nk. (8)

Note that up to some constant c, φk may be computed as a multivariate resultant

φk(x, y) = cResZ,T (x− µk(Z)T e, y − Sk(Z, T ), P1(Z1), . . . , Pk(Z1, . . . , Zk)), (9)

where we consider here any liftings of the coefficients of µk, Sk, P1, . . . , Pk from Kk =
K[z1, . . . , zk] to the polynomial ring K[Z] := K[Z1, . . . , Zk].

3 Edge data from the Φ-adic expansion

Let us fix an integer 0 ≤ k ≤ g and assume that Nk > 1. Given the edges data
(q1,m1, P1, N1), . . . , (qk,mk, Pk, Nk) and the minimal polynomials φ0, . . . , φk, we want
to decide if the next Weierstrass polynomial Hk is degenerated and if so, to compute its
edge data (qk+1,mk+1, Pk+1, Nk+1).

In the following, we will omit for readibility the index k for the sets Φ, B, V and Λ
defined below.

3.1 Main results

Φ-adic expansion. Let φ−1 := x and denote Φ = (φ−1, φ0, . . . , φk). Let

B := {(b−1, . . . , bk) ∈ Nk+2 , bi−1 < qi `i , i = 1, . . . , k} (10)

and denote ΦB :=
∏k
i=−1 φ

bi
i . Thanks to the relations deg(φi) = deg(φi−1)qi`i for all

1 ≤ i ≤ k, an induction argument shows that F admits a unique expansion

F =
∑
B∈B

fBΦB, fB ∈ K.

We call it the Φ-adic expansion of F . Note that we have necessarily bk ≤ Nk while we
do not impose any a priori condition to the powers of φ−1 = x in this expansion. The
aim of this section is to show that one can extract the edge data of Hk from the Φ-adic
expansion of F .
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Newton polygon. Consider the semi-group homomorphism

vk : (K[[x]][y],×) → (N ∪ {∞},+)
H 7→ vk(H) := vx(π∗kH),

From (5), we deduce that the pull-back morphism π∗k is injective, so that vk defines a
discrete valuation. This is a valuation of transcendence degree one, thus an augmented
valuation [26, Section 4.2], in the flavour of MacLane valuations [16, 17, 26] or Montes
valuations [14, 19]. Note that v0(H) = vx(H). We associate to Φ the vector

V := (vk(φ−1), . . . , vk(φk)),

so that vk(Φ
B) = 〈B, V 〉, where 〈 , 〉 stands for the usual scalar product. For all i ∈ N,

we define the integer

wi := min {〈B, V 〉, bk = i, fB 6= 0} − vk(F ) (11)

with convention wi :=∞ if the minimum is taken over the empty set.

Theorem 5. The Newton polygon of Hk is the lower convex hull of (i, wi)0≤i≤Nk .

This result leads us to introduce the sets

B(i) := {B ∈ B; bk = i} and B(i, w) := {B ∈ B(i) | 〈B, V 〉 = w}

for all i ∈ N and all w ∈ N ∪ {∞}, with convention B(i,∞) = ∅.

Boundary polynomial. Consider the semi-group homomorphism

λk : (K[[x]][y],×) → (Kk,×)

H 7→ λk(H) := tcy

((
π∗k(H)

xvk(H)

)
|x=0

)
with convention λk(0) = 0, and where tcy stands for the trailing coefficient with respect
to y (initial coefficient). We associate to Φ the vector

Λ := (λk(φ−1), . . . , λk(φk))

and denote ΛB :=
∏k
i=−1 λk(φi)

bi . Note that ΛB ∈ Kk is non zero for all B.

Theorem 6. Let B0 := (0, . . . , 0, Nk). The boundary polynomial H̄k of Hk equals

H̄k =
∑

(i,wi)∈N (Hk)

 ∑
B∈B(i,wi+vk(F ))

fBΛB−B0

xwiyi. (12)

Example 1. If k = 0, we have by definition V = (1, 0) and Λ = (1, 1) while v0(F ) =
vx(H0) = 0. Assuming H0 =

∑d
j=0 ai(x)yi, we find wi = vx(ai) and Theorem 5 stands

from Definition 1. Moreover, B(i, wi) is then reduced to the point (i, wi) and Theorem
6 stands from Definition 2.
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3.2 Key Proposition and proofs of Theorems 5 and 6

Let us first establish some basic properties of the minimal polynomials φi of F . Given
a ring A, we denote by A[[x, y]]× the set of all U ∈ A[[x, y]] for which U(0, 0) 6= 0. If A
is a field (which might not be the case in Sections 7 and 8), this is simply the group of
units of the ring A[[x, y]]. For −1 ≤ i ≤ k, we introduce the notations

vk,i := vk(φi) = vx(π∗k(φi)) and λk,i := λk(φi) = tcy

((
π∗k(φi)

xvk,i

)
|x=0

)
.

Lemma 1. Let −1 ≤ i ≤ k. There exists Uk,i ∈ Kk[[x, y]]× with Uk,i(0, 0) = λk,i s.t.:{
π∗k(φi) = Uk,ix

vk,i if i < k

π∗k(φk) = Uk,kx
vk,ky,

Proof. As ARNP(φk) generates the same transform πk, we deduce from (6):

π∗k(φk) = xvk(φk) U(x, y) (y + β(x))

with U ∈ Kk[[x, y]]× and β ∈ Kk[[x]]. From (5) and (7), we get xvk,kU(x, 0)β(x) =
φk(µkx

ek , Sk) = 0, i.e. β = 0. Second equality follows, since U(0, 0) = λk,k by definition
of λk. First equality follows from the second one by applying the pull-backs (σj ◦ τj)∗,
j = i+ 1, . . . , k to π∗i (φi) = xvii y Uii.

Corollary 1. With the standard notations for intersection multiplicities and resultants,
we have

vk(φi) =
(φi, φk)0

fk
=
vx(Resy(φi, φk))

fk
, −1 ≤ i ≤ k − 1.

Proof. By point 2 in Lemma 1, we deduce that

vk(φi) := vx(π∗k(φi)) = vx(φi(µkx
ek , Sk(x))) since vx(Sk) ≤ rk.

But this last integer coincides with the intersection multiplicity of φi with any one of
the fk conjugate plane branches (i.e. irreducible factor in K[[x]][y]) of φk. The first
equality follows. The second is well known (the intersection multiplicity at (0, 0) of two
Weierstrass polynomials coincides with the x-valuation of their resultant).

Lemma 2. We have initial conditions v0,−1 = 1, v0,0 = 0, λ0,−1 = 1 and λ0,0 = 1. Let
k ≥ 1. The following relations hold (we recall qksk −mktk = 1 with 0 ≤ tk < qk) :

1. vk,k−1 = qkvk−1,k−1 +mk

2. vk,i = qkvk−1,i for all −1 ≤ i < k − 1.

3. λk,k−1 = λk−1,k−1z
tkvk−1,k−1+sk
k .

4. λk,i = λk−1,iz
tkvk−1,i

k for all −1 ≤ i < k − 1.

11



Proof. Initial conditions follow straightforwardly from the definitions. From point 1 of
Lemma 1 and the definition of πk, we have π∗k(φk−1) = τ∗k ◦ σ∗k ◦ π∗k−1(φk−1), i.e.

π∗k(φk−1) = z
tkvk−1,k−1

k xqkvk−1,k−1+mk ỹUk−1,k−1(ztkk x
qk , xmk ỹ).

where ỹ = y + zskk + ck(x). As ck(0) = 0, mk > 0 and zk 6= 0, it follows that

π∗k(φk−1) = z
tkvk−1,k−1+sk
k xqk vk−1,k−1+mk Ũ(x, y)

with Ũ(0, 0) = Uk−1,k−1(0, 0), that is λk−1,k−1 by point 1 of Lemma 1. Items 1 and 3
follow. Similarly, using point 2 of Lemma 1, we get for all i < k − 1

π∗k(φi) = τ∗k ◦ σ∗k ◦ π∗k−1(φi) = z
tkvk−1,i

k xqkvk−1,iUk−1,i(z
tk
k x

qk , xmk(y + zskk + ck(x))).

As Uk−1,i(0, 0) = λk−1,i 6= 0 once again by Point 2 of Lemma 1, items 2 and 4 follow.

The proof of both theorems is based on the following key result:

Proposition 1. For all i, w ∈ N, the family
(
ΛB, B ∈ B(i, w)

)
is free over K. In

particular, Card(B(i, w)) ≤ fk.

Proof. We show this property by induction on k. If k = 0, the result is obvious since
B(i, w) = {(i, w)} and Λ = (1, 1). Suppose k > 0. As λk,k is invertible and bk = i is
fixed, we are reduced to show that the family

(
ΛB, B ∈ B(0, w)

)
is free for all w ∈ N.

Suppose given a K-linear relation∑
B∈B(0,w)

cBΛB =
∑

B∈B(0,w)

cBλ
b−1

k,−1 · · ·λ
bk−1

k,k−1 = 0. (13)

Using bk = 0, points 3 and 4 in Lemma 2 give ΛB = µBz
NB
k where

µB =

k−1∏
j=−1

λ
bj
k−1,j ∈ Kk−1 and NB = bk−1sk + tk

k−1∑
j=−1

bjvk−1,j .

Points 1 (qk vk−1,k−1 = vk,k−1 −mk) and 2 (qk vk−1,j = vk,j) in Lemma 2 give

qkNB = bk−1(qksk −mktk) + tk

k−1∑
j=−1

bjvk,j = bk−1 + tkw, (14)

the second equality using 〈B, V 〉 = w and bk = 0. Since 0 ≤ bk−1 < qk`k and NB is
an integer, it follows from (14) that NB = n + α where n = dtkw/qke and 0 ≤ α < `k.
Dividing (13) by znk , we get

`k−1∑
α=0

aαz
α
k = 0, where aα =

∑
B∈B(0,w),NB=α+n

cBµB.

12



Since aα ∈ Kk−1 and zk ∈ Kk has minimal polynomial Pk of degree `k over Kk−1, this
implies aα = 0 for all 0 ≤ α < `k, i.e., using (14):∑

B∈B(0,w)
bk−1=qk (α+n)−tk w

cBλ
b−1

k−1,−1 · · ·λ
bk−1

k−1,k−1 = 0.

By induction, we get cB = 0 for all B ∈ B(0, w), as required. The first claim is proved.
The second claim follows immediately since ΛB ∈ Kk is non zero for all B.

Corollary 2. Consider G =
∑

B∈B(i) gBΦB non zero. Then π∗k(G) = Ũxw yi with

Ũ ∈ Kk[[x, y]]×, w = mingB 6=0〈B, V 〉 and Ũ(0, 0) =
∑

B∈B(i,w) gBΛB 6= 0. In particular,

vk(G) = w and λk(G) = Ũ(0, 0).

Proof. By linearity of π∗k, denoting U = (Uk,−1, . . . , Uk,k) with Uk,i defined in Lemma 1,
we have

π∗k(G) =

 ∑
B∈B(i)

gBU
Bx<B,V >

 yi with U(0, 0) = Λ.

Letting w = mingB 6=0〈B, V 〉, we deduce

π∗k(G) =

 ∑
B∈B(i,w)

gBΛB +R

xwyi where R ∈ Kk[[x, y]] satisfies R(0, 0) = 0.

As
∑

B∈B(i,w) gBΛB 6= 0 by Proposition 1, the first two equalities follows. The last two
equalities follow from the definitions of vk(G) and λk(G).

Proof of Theorems 5 and 6. We prove both theorems simultaneously. We may write
F =

∑Nk
i=0

∑
B∈B(i) fBΦB. Hence, Corollary 2 combined with the definition of wi and

the linearity of π∗k implies

Fk :=
π∗k(F )

xvk(F )
=

Nk∑
i=0

Ũi x
wi yi (15)

where Ũi ∈ Kk[[x, y]] is 0 if wi = ∞, and Ũi(0, 0) =
∑

B∈B(i,wi+vk(F )) fBΛB 6= 0 other-

wise. Let N stands for the lower convex hull of the set ((i, wi), i = 0, . . . , Nk) and let N−
be the subset of negative slopes. If k = 0, then H0 = F0 and we have moreover Ũi ∈ K
for all i (use that π∗0(φ0) = y). It follows immediately from (15) that N (H0) = N , as
required. If k > 0, then we deduce from (15) that N−(Fk) = N−. Combined with
(6), we get N−(Hk) = N−. As k ≥ 1, Hk is Weierstrass of degree Nk, which forces
N (Hk) = N as required. This proves Theorem 5. Combined with (6), we deduce more
precisely that there exists µ ∈ K×k such that

µH̄k =
∑

(i,wi)∈N

 ∑
B∈B(i,wi+vk(F ))

fBΛB

xwiyi. (16)
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Since H̄k is monic of degree Nk, we get wNk = 0 and wi ≥ 0 for i < Nk and we deduce
from (16) that

µ =
∑

B∈B(Nk,vk(F ))

fBΛB. (17)

But F and φk being monic of respective degrees d and dk, the vector B0 = (0, . . . 0, Nk) ∈
B is the unique exponent in the Φ-adic expansion of F with last coordinate bk = Nk =
d/dk and we have moreover fB0 = 1. Since B(Nk, vk(F )) is non empty by construction,
this forces B(Nk, vk(F )) = {B0} and (17) becomes µ = ΛB0 . Theorem 6 follows. �

3.3 Formulas for λk(φk) and vk(φk)

In order to use Theorems 5 and 6 for computing the edge data of Hk, we need to
compute vk,k := vk(φk) and λk,k := λk(φk) in terms of the previously computed edges
data (q1,m1, P1, N1), . . . , (qk,mk, Pk, Nk) of F . We begin with the following lemma:

Lemma 3. Let 0 ≤ k ≤ g. We have vk(F ) = Nkvk,k and λk(F ) = λNkk,k.

Proof. We have shown during the proof of Theorems 5 and 6 that B(Nk, vk(F )) = {B0}
where B0 = (0, . . . , 0, Nk). By definition of B(Nk, vk(F )), we get the first point. By
definition of λk, we have λk(F ) = tcy (Fk(0, y)) = tcy

(
F̄k(0, y)

)
and we have shown that

F̄k(0, y) = ΛB0H̄k(0, y). Since H̄k is monic, we deduce that tcy
(
F̄k(0, y)

)
= ΛB0 , giving

the second claim.

Proposition 2. For any 1 ≤ k ≤ g, we have the equalities

vk,k = qk`kvk,k−1 and λk,k = qkz
1−sk−`k
k P ′k(zk)λ

qk`k
k,k−1.

Proof. To simplify the notations of this proof, let us denote w = vk−1(φk), γ = λk−1(φk)
and (m, q, s, t, `, z) = (mk, qk, sk, tk, `k, zk). By definition of φk, both φk and F generate
the same transformations σi and τi for i ≤ k. As in (6), there exists Ũk−1 ∈ K[[x, y]]×

satisfying Ũk−1(0, 0) = γ and H̃k−1 ∈ K[[x]][y] Weierstrass of degree q ` such that
π∗k−1(φk) = xwH̃k−1Ũk−1, where

H̃k−1(x, y) = Pk(x
−m yq)xm` +

∑
mi+qj>mq`

hijx
jyi.

We deduce that there exists R0, R1, R2 ∈ Kk[[x, y]] such that

π∗k(φk) := (π∗k−1(φk))(z
txq, xm(y + zs + ck(x)))

= ztwxqw
(
ztm` xmq`(Gk + xR0)

)
(γ + xR1 + y R2)

where we let Gk(x, y) := Pk(z
−tm(y + zs + ck(x))q) ∈ Kk[[x]][y]. It follows that there

exists R ∈ Kk[[x, y]] such that

π∗k(φk) = γ zt(w+m`) xq (w+m`) (Gk(1 + yR2) + xR) (18)
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As Gk(0, y) is not identically zero, we deduce from (18) that vk(φk) = q (w+m`). Using
Lemma 3 for F = φk and the valuation vk−1, together with Point 1 of Lemma 2, we have
w + m` = `vk,k−1, which implies vk,k = q ` vk,k−1 as expected. Using ck(0) = 0 and the
relation sq − tm = 1, we see that Gk(0, 0) = Pk(zk) = 0 and ∂yGk(0, 0) = qz1−sP ′k(z) is
non zero. Combined with (18), we get that

λk,k = γzt ` vk,k−1
(
qz1−sP ′k(z)

)
= γ zq ` t vk−1,k−1+` tm+1−s q P ′k(z),

the second equality using Point 1 of Lemma 2 once again. Now, using Lemma 3 for
F = φk and the morphism λk−1, we get γ = λ`qk−1,k−1 so that λk,k = qP ′k(z)λ

q`
k,k−1z

1−s−`

as expected.

Remark 2. If qk = 1, the second formula simplifies as λk,k = P ′k(zk)λ
`k
k−1,k−1. Moreover,

we then have t = 0 and s = 1 so that no division by zk is done in the above proof. This
remark is used in Sections 7 and 8 where zk might be a zero divisor when qk = 1.

3.4 Simple formulas for V and Λ.

For convenience to the reader, let us summarize the formulas which allow to compute in
a simple recursive way both lists V = (vk,−1, . . . , vk,k) and Λ = (λk,−1, . . . , λk,k).

If k = 0, we let V = (1, 0) and Λ = (1, 1). Assume k ≥ 1. Given the lists V and Λ at
rank k− 1 and given the k-th edge data (qk,mk, Pk, Nk), we update both lists at rank k
thanks to the formulæ:

vk,i = qkvk−1,i −1 ≤ i < k − 1

vk,k−1 = qkvk−1,k−1 +mk

vk,k = qk`kvk,k−1


λk,i = λk−1,iz

tkvk−1,i

k −1 ≤ i < k − 1

λk,k−1 = λk−1,k−1z
tkvk−1,k−1+sk
k

λk,k = qkz
1−sk−`k
k P ′k(zk)λ

qk`k
k,k−1

(19)

where qksk −mktk = 1, 0 ≤ tk < qk and zk = Zk mod Pk.

4 From minimal polynomials to approximate roots

Given Φ = (φ−1, . . . , φk) and F =
∑
fBΦB the Φ-adic expansion of F , the updated

lists V and Λ then allow to compute in an efficient way the boundary polynomial H̄k

thanks to the formulas (11) and (12). Unfortunately, the computation of the minimal
polynomials φk is up to our knowledge too expensive to fit in our aimed complexity
bound. For instance, it requires to know the yNk−1 coefficients of the Puiseux transform
of Hk−1 up to some suitable precision, and computing this Puiseux transform might be
costly, as explained in Section 2.

In this section, we show that the main conclusions of all previous results remain true
if we replace φk by the N th

k -approximate root ψk of F , with the great advantage that
these approximate roots can be computed in the aimed complexity (see Section 7). Up
to our knowledge, such a strategy was introduced by Abhyankar who developped in [1]
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an irreducibility criterion in K[[x, y]] which avoids to perform any Newton-Puiseux type
transforms.

4.1 Approximate roots and main result

Approximate roots. The approximate roots of a monic polynomial F are defined thanks
to the following proposition:

Proposition 3. (see e.g. [20, Proposition 3.1]). Let F ∈ A[y] be monic of degree d,
with A a ring whose characteristic does not divide d. Let N ∈ N dividing d. There exists
a unique polynomial ψ ∈ A[y] monic of degree d/N such that deg(F − ψN ) < d− d/N .
We call it the N th approximate roots of F .

A simple degree argument implies that ψ is the N th-approximate root of F if and only if
the ψ-adic expansion

∑N
i=0 aiψ

i of F satisfies aN−1 = 0. For instance, if F =
∑d

i=0 aiy
i,

the dth approximate root coincides with the Tschirnhausen transform of y

τF (y) = y +
ad−1

d
.

More generally, the N th approximate root can be constructed as follows. Given φ ∈ R[y]
a monic of degree d/N and given F =

∑N
i=0 aiφ

i the φ-adic expansion of F , we consider
the new polynomial

τF (φ) := φ+
aN−1

N

which is again monic of degree d/N . It can be shown that the resulting τF (φ)-adic ex-
pansion F =

∑
a′iτF (φ)i satisfies deg(a′N−1) < deg(aN−1) < d/N (see e.g. [20, Proof of

Proposition 6.3]). Hence, after applying at most d/N times the operator τF , the coeffi-
cient a′N−1 vanishes and the polynomial τF ◦ · · · ◦ τF (φ) coincides with the approximate
root ψ of F . Although this is not the best strategy from a complexity point of view (see
Section 7), this construction will be used to prove Theorem 7 below.

Main result. We still consider F ∈ K[[x]][y] monic of degree d and keep notations
from Section 2. We denote ψ−1 := x and, for all k = 0, . . . , g, we denote ψk the N th

k -
approximate root of F . Fixing 0 ≤ k ≤ g, we denote Ψ = (ψ−1, ψ0, . . . , ψk), omitting
once again the index k for readibility.

Since deg Ψ = deg Φ by definition, the exponents of the Ψ-adic expansion

F =
∑
B∈B

f ′BΨB, f ′B ∈ K

take their values in the same set B introduced in (10). In the following, we denote by
w′i ∈ N the new integer defined by (11) when replacing fB by f ′B and we denote H̄ ′k the
new polynomial obtained when replacing wi by w′i and fB by f ′B in (12).
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Theorem 7. We have H̄k = H̄ ′k for 0 ≤ k < g and the boundary polynomial H̄g and H̄ ′g
have same restriction to their Newton polygon’s lower edge.

In other words, Theorems 5 and 6 still hold when replacing minimal polynomials by ap-
proximate roots, up to a minor difference when k = g which has no impact for degeneracy
tests.

Intermediate results. The proof of Theorem 7 requires several steps. We denote by
−mg+1/qg+1 the slope of the lower edge of Hg.

Lemma 4. We have vk(ψk − φk) > vk(φk) +mk+1/qk+1 for all k = 0, . . . , g.

Proof. Let (q,m) = (qk+1,mk+1). Since the lemma is true if ψk = φk and since ψk is
obtained after successive applications of the operator τF to φk, it is sufficient to prove

vk(φ− φk) > vk(φk) +m/q =⇒ vk(τF (φ)− φk) > vk(φk) +m/q (20)

for any φ ∈ K[[x]][y] monic of degree dk. Suppose given such a φ and consider the φ-adic
expansion F =

∑Nk
j=0 ajφ

j . Then (20) holds if and only if

vk(aNk−1) > vk(φk) +m/q. (21)

• Case φ = φk. Then we have vk(aNk−1) ≥ vk(F ) + m/q = Nk vk(φk) + m/q from
Theorem 5 and Lemma 3. Suppose first that vk(φk) = 0. This may happen only when
k = 0, or k = 1 if m1 = 0. As φ0 = ψ0, we do not need to consider the case k = 0. If
m1 = 0, the first slope is horizontal and the Abhyankhar transform (2) ensures that the
coefficient of yN1−1 has no constant term, so that v1(aN1−1) > 0 as required. Suppose
now vk(φk) > 0. If Nk > 1, we are done. If Nk = 1, we must have k = g and Hg = y, so
that vg(a0) =∞ from Theorem 5 and the claim follows.

• Case φ 6= φk. First note that vk(φ − φk) > vk(φk) implies vk(φ) = vk(φk). As
deg(φ − φk) < dk, we deduce from Corollary 2 (applied to G = φ − φk and i = 0) and
Lemma 1 that

π∗k(φ) = π∗k(φ− φk) + π∗k(φk) = xvk(φ)U(y + xαŨ)

where α := vk(φ−φk)−vk(φk) > m/q (hypothesis) and for some units U, Ũ ∈ Kk[[x, y]]×.
As ai has also degree < dk, we deduce again from Corollary 2 that when ai 6= 0,

π∗k(aiφ
i) = xαiUi(y + xαŨ)i, (22)

where αi := vk(aiφ
i) and Ui ∈ K[[x, y]]×. As α > m/q, this means that the lowest

line with slope −q/m which intersects the support of π∗k(aiφ
i) intersects it at the unique

point (i, αi). Since π∗k(F ) =
∑Nk

i=0 π
∗
k(aiφ

i), we deduce that the edge of slope −q/m of the
Newton polygon of π∗k(F ) coincides with the edge of slope −q/m of the lower convex hull
of ((i, αi) ; ai 6= 0, 0 ≤ i ≤ Nk). Thanks to (6) combined with vk(F ) = Nkvk(φk) (Lemma
3) and vk(φk) = vk(φ) (hypothesis), we deduce that the lower edge ∆ of Hk with slope
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−q/m coincides with the edge of slope −q/m of the lower convex hull of the points
((i, vk(ai) + (i−Nk) vk(φ)) ; ai 6= 0, 0 ≤ i ≤ Nk). Since Hk is monic of degree Nk with
no terms of degree Nk−1, we deduce that (Nk, 0) ∈ ∆ while (Nk−1, vk(aNk−1)−vk(φ))
must lie above ∆. It follows that mNk < m(Nk − 1) + q(vk(aNk−1)− vk(φ)), leading to
the required inequality vk(aNk−1) > vk(φ) +m/q. The lemma is proved.

Proposition 4. We have vk(Ψ) = vk(Φ) and λk(Ψ) = λk(Φ) for all k = 0, . . . , g.

Proof. We show this result by induction. If k = 0, we are done since ψ0 = τF (y) = φ0.
Let us fix 1 ≤ k ≤ g and assume that Proposition 4 holds for all k′ ≤ k − 1. We
need to show that vk(ψi) = vk(φi) and λk(ψi) = λk(φi) for all i ≤ k. Case i = k is
a direct consequence of Lemma 4. For i = k − 1, there is nothing to prove if φk−1 =
ψk−1. Otherwise, using the linearity of π∗k−1, Corollary 2 (applied at rank k − 1 with

G = φk−1 − ψk−1 and i = 0) and Lemma 4 give π∗k−1(ψk−1) = π∗k−1(φk−1) + xαŨ with

α > vk−1(φk−1) +mk/qk and Ũ ∈ Kk−1[[x, y]]×. As π∗k(ψk−1) = (σk ◦ τk)∗(π∗k−1(ψk−1)),
it follows that

π∗k(ψk−1) = π∗k(φk−1) + xqkαUα

with Uα ∈ Kk[[x, y]]×. As qk α > vk(φk−1) using Lemma 2 (qk vk−1,k−1 + mk = vk,k−1),
we deduce vk(ψk−1) = vk(φk−1) and λk(ψk−1) = λk(φk−1). Finally, for i < k − 1, as
deg(ψi) < dk−1, Corollary 2 (applied at rank k − 1 with G = ψi and i = 0) gives

π∗k−1(ψi) = xvk−1(ψi)λk−1(ψi)Ui = xvk−1(φi)λk−1(φi)Ui,

where Ui(0, 0) = 1 (the second equality using the induction hypothesis). Applying
(τk ◦ σk)∗ and using Lemma 2, we conclude vk(ψi) = vk(φi) and λk(ψi) = λk(φi).

Corollary 3. Let G of degree less than dk and with Ψ-adic expansion G =
∑
g′BΨB.

Then
vk(G) = min(〈B, V 〉, g′B 6= 0) and λk(G) =

∑
B∈B(0,vk(G))

g′BΛB.

In particular, if G has Φ-adic expansion
∑
gBΦB, then gB = g′B when 〈B, V 〉 = vk(G).

Proof. As already shown in the proof of Proposition 4, from Corollary 2, if i < k, we
have π∗k(ψi) = xvk,iλk,i Ui with Ui(0, 0) = 1. As deg(G) < dk, we deduce

π∗k(G) =
∑

g′BΛBx〈B,V 〉UB

with UB(0, 0) = 1. This shows the result, using Proposition 1.

Proof of Theorem 7. Write F =
∑

i aiψ
i
k the ψk-adic expansion of F . Similarly to

(22), when ai 6= 0, Corollary 2 and Lemma 4 imply:

π∗k(aiψ
i
k) = xvk(aiψ

i
k)U(y + xαŨ)i, (23)
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with α > mk+1/qk+1, U, Ũ ∈ Kk[[x, y]]× and U(0, 0) = λk(ai ψ
i
k). Applying the same

argument than in the proof of Lemma 4, we get that each point (i, wi = Nk−imk+1/qk+1)
of the lower edge N ∗k of the Newton polygon of Hk (hence the all polygon if k < g) is
actually (i, vk(ai ψ

i
k) − vk(F )), that is (i, w′i) from Corollary 3 (applied to G = ai) and

Proposition 4. This shows that we may replace wi by w′i in (11). More precisely, it
follows from (23) that the restriction H̄∗k of H̄k to N ∗k is uniquely determined by the
equality

λk(F )xvk(F )H̄∗k =
∑

(i,w′i)∈N ∗k

λk(aiψ
i
k)x

vk(aiψ
i
k)yi.

Using again Corollary 3 and Proposition 4, we get

H̄∗k =
∑

(i,w′i)∈N ∗k

 ∑
B∈B(i,w′i+vk(F ))

f ′BΛB−B0

xw
′
iyi,

as required. �

Remark 3. Theorem 7 would still hold when replacing ψk by any monic polynomial φ
of same degree for which π∗k(φ) = Uxvk,k(y + β(x)) with vx(β) > mk+1/qk+1.

4.2 An Abhyankar type irreducibility test for Weierstrass polynomials

Theorem 7 leads to the following sketch of algorithm. Subroutines AppRoot, Expand and
BoundaryPol respectively compute the approximate roots, the Ψ-adic expansion and the
current lower boundary polynomial (using (11) and (12)). They are detailed in Section
7. Also, considerations about truncation bounds is postponed to Section 7.2.

Algorithm: Irreducible(F,L)

Input: F ∈ K[[x]][y] monic with d = deg(F ) not divisible by the characteristic
of K ; L a field extension of K.

Output: True if F is irreducible in L[[x]][y], and False otherwise.
1 N ← d, V ← (1, 0), Λ← (1, 1), Ψ← (x);
2 while N > 1 do
3 Ψ← Ψ ∪ AppRoot(F,N);
4

∑
B fBΨB ← Expand(F,Ψ);

5 H̄ ← BoundaryPol(F,Ψ);
6 if H̄ is not degenerated over L then return False ;
7 (q,m, P,N)← EdgeData(H̄);
8 Update the lists V,Λ thanks to formula (19);
9 L← LP

10 return True

Theorem 8. Algorithm Irreducible returns the correct answer.

Proof. This follows from Theorem 5, 6 and 7, together with the correctness of ARNP.
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Let us illustrate this algorithm on two simple examples.

Example 2. Let F (x, y) = (y2 − x3)2 − x7. This example was suggested by Kuo who
wondered if we could show that F is reducible in Q[[x]][y] without performing Newton-
Puiseux type tranforms. Abhyankhar solved this challenge in [1] thanks to approximate
roots. Let us show that we can prove further that F is reducible in Q[[x]][y] without
performing Newton-Puiseux type tranforms.

Initialisation. Start from ψ−1 = x, N0 = d = 4, V = (1, 0) and N = (1, 1).

Step k=0. The 4-th approximate root of F is ψ0 = y. So H0 = F and we deduce from
(12) (see Exemple 1) that H̄0 = (y2 − x3)2. Hence, F is degenerated with edge data
(q1,m1, P1, N1) = (2, 3, Z1 − 1, 2) and we update V = (2, 3, 6) and Λ = (1, 1, 2) thanks
to (19), using here z1 = 1 mod P1.

Step k=1. The 2-th approximate root of F is ψ1 = y2 − x3 and F has Ψ-adic expansion
F = ψ2

1 − ψ7
−1. We have v1(ψ2

1) = 2v1,1 = 12, λ1(ψ2
1) = λ2

1,1 = 4 while v1(ψ7
−1) =

7v−1,1 = 14 and λ1(ψ7
−1) = λ7

−1,1 = 1. We deduce from (12) that H̄1 = y2 − 1
4x

2. As

the polynomial Z2
2 − 1

4 is reducible in QP1 [Z2] = Q[Z2], we deduce that F is reducible in
Q[[x]][y].

Example 3. Consider F = ((y2 − x3)2 + 4x8)2 + x14(y2 − x3) (we assume that we only
know its expanded form at first).

Initialisation. We start with ψ−1 = x, N0 = d = 8, V = (1, 0) and N = (1, 1).

Step k=0. The 8-th approximate root of F is ψ0 = y. The monomials reaching the
minimal values (11) in the Ψ = (ψ−1, ψ0)-adic expansion of F are ψ8

0 −4ψ3
−1ψ

6
0, 6ψ6

−1ψ
4
0

,−4ψ9
−1ψ

2
0, ψ12

−1 and we deduce from (12) that H̄0 = (y2−x3)4. Hence, (q1,m1, P1, N1) =
(2, 3, Z1 − 1, 4) and we update V = (2, 3, 6) and Λ = (1, 1, 2) thanks to (19), using here
z1 = 1 mod P1.

Step k=1. The 4-th approximate root of F is ψ1 = y2−x3 and we get the current Ψ-adic
expansion F = ψ4

1 + 8ψ8
−1ψ

2
1 + ψ14

−1ψ1 + 16ψ16
−1. The monomials reaching the minimal

values (11) are ψ4
1, 8ψ8

−1ψ
2
1, 16ψ16

−1 and we deduce from (12) that H̄1 = (y2 +x4)2. Hence
(q2,m2, P2, N2) = (1, 2, Z2

2 + 1, 2) and we update V = (2, 3, 8, 16) and Λ = (1, 1, 2z2, 8z2)
thanks to (19), where z2 = Z2 mod P2 and using the Bézout relation q2s2 −m2t2 = 1
with (s2, t2) = (1, 0). Note that we know at this point that F is reducible in Q[[x]][y]
since P2 has two distinct roots in Q.

Step k=2. The 2-th approximate roots of F is ψ2 = (y2−x3)2+4x8 and we get the current
Ψ-adic expansion F = ψ2

2 +ψ14
−1ψ1. The monomials reaching the minimal values (11) are

ψ2
2, ψ14

−1ψ1 and we deduce from (12) that H̄2 = y2+(32z2)−1x (note that z2 is invertible in
QP2). Hence H̄2 is degenerated with edge data (q3,m3, P3, N3) = (2, 1, Z3 + (32z2)−1, 1).
As N3 = 1, we deduce that F is irreducible in Q[[x]][y] (g = 3 here).

Remark 4. Note that for k ≥ 2, we really need to consider the Ψ-adic expansion: the
(x, y, ψk)-adic expansion is not enough to compute the next data. At step k = 2 in the
previous example, the ψ2-adic expansion of F is F = ψ2

2 + a where a = x14y2 − x17.
We need to compute v2(a). Using the Ψ-adic expansion a = ψ14

−1ψ1, we find v2(a) =
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14× 2 + 8 = 36. Considering the (x, y)-adic expansion of a would have led to the wrong
value v2(x14y2) = v2(x17) = 34 < 36.

5 Absolute irreducibility

We say that F ∈ K[[x]][y] is absolutely irreducible if it is irreducible in K[[x]][y], that is if
Irreducible(F,K) returns True. In particular, in this context, we always have `k = 1.
As already mentionned, Abhyankhar’s absolute irreducibility test avoids any Newton-
Puiseux type transforms or Hensel type liftings. In fact, it is even stronger as it does not
even compute the boundary polynomials H̄k, but only their Newton polygon. Although
we don’t need this improvement from a complexity point of view (see Subsection 7.4),
we show how to recover this result in our context for the sake of completness. We will
use the following alternative characterizations of valuations and polygons:

Lemma 5. Suppose that H0, . . . ,Hk−1 are degenerated.

1. Write F =
∑
ciψ

i
k the ψk-adic expansion of F . Then vk(F ) = mini vk(ciψ

i
k) and

Nk(F ) := N−(π∗k(F )) = Conv
((
i, vk(ciψ

i
k)
)

+ (R+)2, ci 6= 0
)
. (24)

2. Let k ≥ 1 and G ∈ K[[x]][y] with ψk−1-adic expansion G =
∑

i aiψ
i
k−1. We have

vk(G) = min
i

(
qkvk−1(aiψ

i
k−1) + imk

)
. (25)

Proof. 1. Equality (24) is a direct consequence of Corollary 3 with Theorems 5 and 7.
Also, from (23), π∗k(ciψ

i
k) has a term of lowest x-valuation of shape uxvk(ai ψ

i
k) yi for some

u ∈ K×k and it follows that vk(F ) = mini vk(ciψ
i
k), as required.

2. By (23) applied to rank k − 1, we get π∗k−1(aiψ
i
k−1) = xvk−1(aiψ

i
k−1)Ui(y + xαŨi),

where α > mk/qk, and Ui, Ũi are units. Suppose mk > 0. Then Vi = Ui(z
sk
k x

qk , xmk(y+

ztkk + ck(x)) is a unit such that Vi(0, y) = Ui(0, 0) ∈ K∗k is constant and a straightforward

computation shows that π∗k(aiψ
i
k−1) = xqkvk−1(aiψ

i
k−1)+imkPi(y) + h.o.t, where Pi ∈ K[y]

has degree exactly i. Equality (25) follows. The case mk = 0 may occur only when
k = 1, q1 = 1. In such a case, we have π∗1(G) =

∑
i ai(x)(y + z1 + c(x))i with vx(c) > 0

and the same conclusion holds.

Remark 5. Point 2 in Lemma 5 shows that our valuations coincide with the extended
valuations used in Montes algorithm over general local fields, see for instance [14, point
(3) of Proposition 2.7].

Hence, we may take (24) and (25) as alternative recursive definitions of valuations and
Newton polygons. This new point of view has the great advantage to be independent of
the map πk, hence of the Newton-Puiseux algorithm. In particular, it can be generalized
at rank k + 1 without assuming that Hk is degenerated.
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Definition 4. Suppose that H0, . . . ,Hk−1 are degenerated and let −mk+1/qk+1 be the
slope of the lowest edge of Hk. We still define the valuation vk+1 and the Newton polygon
Nk+1(F ) by formulas (25) and (24) applied at rank k + 1.

We obtain the following absolute irreducibility test which only depends on the geometry
of the successive Newton polygons.

Algorithm: AbhyankarTest(F )

Input: F ∈ K[[x]][y] Weierstrass s.t. Char(K) does not divide d = deg(F ).
Output: True if F is irreducible in K[[x]][y], False otherwise.

1 N ← d, v = vx;
2 while N > 1 do
3 ψ ← AppRoot(F,N);
4

∑
ciψ

i ← Expand(F,ψ);
5 Compute the current polygon N (F ) with (24);
6 if (N, v(F )) /∈ N (F ) or N (F ) is not straight or q = 1 then
7 return False

8 N ← N/q;
9 Update v with (25);

10 return True ;

Proposition 5. Algorithm AbhyankarTest works as specified.

Proof. Suppose that F is not absolutely irreducible. Let us abusively still denote by g be
the first index k such that Hk is not degenerated over K or Nk = 1: so both algorithms
AbhyankarTest(F ) and Irreducible(F,K) compute the same data ψ0, . . . , ψg−1 and
(q1, N1), . . . , (qg, Ng). If Ng = 1, then F is absolutely irreducible, and both algorithms
return True as required. If Ng > 1, then Irreducible(F,K) returns False. Note
that N (Hg) equals Ng(F ) − (0, vg(F )) by definition of Ng. As Hg is Weierstrass of
degree Ng, we have (Ng, vg(F )) ∈ Ng(F ) at this stage. If Ng(F ) is not straight or
qg+1 = 1, then so does N (Hg) and AbhyankarTest(F ) returns False as required. There
remains to treat the case where Ng(F ) is straight with qg+1 > 1 (still assuming Ng > 1
and Hg not degenerated over K). In such a case, AbhyankarTest(F ) computes the
next N th

g+1 approximate roots ψg+1 of F where Ng+1 = Ng/qg+1. We will show that
(Ng+1, vg+1(F )) /∈ Ng+1(F ) so that AbhyankarTest returns False at this step.

Let F =
∑Ng+1

i=0 ciψ
i
g+1 be the ψg+1-adic expansion of F . By hypothesis, we know that

π∗g(F ) = xvg(F )Hg U, with U(0, 0) 6= 0

where H̄g =
∏
Q(ζ)=0(yqg+1 − ζxmg+1), with Q ∈ K[Z] of degree Ng+1 := Ng/qg+1 having

at least two distinct roots. In particular, H̄g is not the Ng+1-power of a polynomial and

it follows that π∗g(ψ
Ng+1

g+1 ) and π∗g(F ) can not have the same boundary polynomials. We

deduce that there is at least one index i < Ng+1 such that Ng(ciψig+1) has a point on
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or below Ng(F ). Consider the ψg-adic expansions ciψ
i
g+1 =

∑
j ajψ

j
g and F =

∑
j αjψ

j
g.

Thanks to (24), there exists at least one index j such that (j, vg(ajψ
j
g)) ∈ Ng(ciψig+1).

By (24), Ng(F ) is the lower convex hull of (j, vg(αjψ
j
g)), which is by assumption straight

of slope −qg+1/mg+1. It follows that

min
j

(qg+1vg(ajψ
j
g) +mg+1j) ≤ min

j
(qg+1vg(αjψ

j
g) +mg+1j).

Thanks to Definition 4, this implies vg+1(ciψ
i
g+1) ≤ vg+1(F ) which in turns forces

(Ng+1, vg+1(F )) /∈ Ng+1(F ).

Remark 6. At step k + 1 of the algorithm, we know that H0, . . . ,Hk−1 are degenerated
over K. Hence the recursive definition of the map vk+1 is equivalent to

vk+1(G) = min
gB 6=0

(qk+1〈B, V 〉+mk+1bk) (26)

where G has (ψ−1, . . . , ψk)-adic expansion G =
∑
gBΨB and V = (vk,−1, . . . , vk,k). This

is the approach we shall use in practice for valuations updates.

6 Pseudo-irreducibility

As mentionned in the introduction, performing too many irreducibility tests might be
costly. We therefore relax the degeneracy condition by allowing square-freeness of the
involved residual polynomial P1, . . . , Pg, and eventually check if Kg is a field. This leads
to what we call a pseudo-irreducibility test. Despite of its complexity interest, we will
show in Section 8 that this modification allows to characterise balanced polynomials,
thus proving Theorem 3.

If we allow the Pk’s to be square-free, the fields Kk’s become ring extensions of K iso-
morphic to a direct product of fields and we have to take care of zero divisors. Let
A = L0 ⊕ · · · ⊕ Lr be a direct product of perfect fields. We say that a (possibly multi-
variate) polynomial H defined over A is square-free if all its projections under the natural
morphisms A→ Li are square-free (in the usual sense over a field). If the polynomial is
univariate and monic, this exactly means that its discriminant is not a zero divisor in A.

In the following, we call the lower boundary polynomial of F the restriction of F to the
lower edge of its Newton polygon, that we abusively still denote by F̄ .

Definition 5. We say that a monic polynomial F ∈ A[[x]][y] is pseudo-degenerated if its
lower boundary polynomial is the power of a square-free quasi-homogeneous polynomial
of shape

F̄ =

(
P

(
yq

xm

)
xm deg(P )

)N
, (27)

with P ∈ A[Z] square-free and P (0) ∈ A× if q > 1.
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We still call P the residual polynomial of F and (q,m,N, P ) the edge data of F (with
convention (q,m) = (1, 0) if the Newton polygon is reduced to a point).

Remark 7. If q > 1, then N (F ) is straight, and Definition 5 is the analoguous of Defi-
nition 3 of degenerated polynomials (square-freeness replacing irreducibility). However,
in contrast to degenerated polynomials, we authorize here P (0) = 0 (or more generally
a zero-divisor) if q = 1. In such a case, N (F ) may have several edges. For instance,
F = (y−x)(y−x2) has two edges but is pseudo-degenerated (we get as F̄ = y2−xy and
P = Z2−Z). A more complicated example is F = (y2−x2)2(y−x2)(y−x3)+x10 which
has three edges but is pseudo-degenerated (we get F̄ = (y3 − x2y)2 and P = Z3 − Z).
Although having several edges implies reducibility, this definition will make sense when
considering balanced polynomials (Remark 5 and Example 6).

Definition 6. We call Pseudo-ARNP and Pseudo-Irreducible the new algorithms ob-
tained when replacing degenerated tests by pseudo-degenerated tests respectively in
algorithms ARNP and Irreducible.

Remark 8. Note that any assertions in previous sections of type a 6= 0 still has to be read
as such (a is non zero), while any assertion of type a ∈ K×k still has to be read as such
(meaning now a is not a zero divisor). In particular, given a ∈ A[[x]], vx(a) is computed
via the smallest monomial with non-zero coefficient (and not “non zero divisor”). This
remark also applies to formula (11).

Proposition 6. Algorithms Pseudo-Irreducible and Pseudo-ARNP are well-defined.
Moreover, they give the same output and compute the same edges data. We say that a
monic polynomial F ∈ K[[x]][y] is pseudo-irreducible if this output is True.

Proof. We need to show that both algorithms are well-defined and that all results of
Section 3 and Section 4 still hold when considering pseudo-degeneracy. We have to take
care of the fact that zk might be now a zero divisor. It is however sufficient to prove
that λk,k ∈ K×k . Indeed, then the computation of the Weierstrass polynomial Hk is
possible, the statement of Theorem 6 is correct, and so is the proof of Proposition 1.
This also implies that the functorial properties vk(aφ

j
k) = vk(a)+jvk(φk) and λk(aφ

j
k) =

λk(a)λk(φk)
j hold for all a ∈ K[[x]][y]. As vk still obeys to the triangular inequality, all

these implications mean that all results of Sections 4 hold too.

We now prove that λk,k ∈ K×k by induction. The claim is obvious when k = 0. Now, let
k > 0 and assume that λi,i ∈ K×i for i < k. If zk ∈ K×k , then we are done. Otherwise,
we must have qk = 1 and tk = 0 so that the definition of φk makes sense by (4), (5) and
(7) (we use µk ∈ K×k ) and Lemma 1 and 2 hold up to rank k. The proof of Proposition
1 remains valid (we use n = bwtk/qkc = 0 in that case) and the proof of Proposition
2 remains valid too (we use P ′k(zk) ∈ K×k since by assumption Pk is square-free over a
product of perfect fields). This implies λk,k ∈ K×k from Remark 2. Finally, note that
some splittings might appear during the algorithm (see Example 4), not changing the
output of the algorithm (see [25, Section 5] for details).
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Remark 9. Note that λk,i might be a zero divisor when i < k. For instance, the polyno-
mial F = (y3−x2y)N + · · · is pseudo-degenerated with residual polynomial P1 = Z3−Z,
so that z1 := Z mod P1 ∈ K1 is not invertible. We compute π∗1(φ0) = π∗1(y) = x(y+ z1)
from which it follows that λ1,0 = z1 is a zero-divisor. The key point is that the families
ΛB, B ∈ B(w, j) remain free over K.

Remark 10. The polynomials φk are no longer irreducible (nor the ψk’s) when consid-
ering algorithm Pseudo-ARNP, but only pseudo-irreducible. However, they still obey to
equalities deg(φk) = ekfk and π∗k(φk) = xvk,kUk,k(x, y) y, with Uk(0, 0) = λk,k ∈ K×k .

Corollary 4. A square-free monic polynomial F ∈ K[[x]][y] is irreducible over K if and
only if it is pseudo-irreducible and Kg is a field.

Proof. This follows immediately from Definition 5 and Proposition 6.

We will check irreducibility using Corollary 4, thus avoiding to perform too many uni-
variate irreducibility tests. Besides this advantage, testing pseudo-degeneracy will allow
us to characterize a larger class than irreducible polynomials in K[[x]][y], namely the
class of balanced polynomials. In particular, if F is pseudo-irreducible, we can compute
easily the ramification index and the residual degrees of all its irreducible factors in
K[[X]][Y ] (see Example 4), and the characteristic exponents and pairwise intersection
multiplicities of all its absolutely irreducible factors (see Examples 6, 7, 8).

7 Complexity. Proof of Theorems 1 and 2

7.1 Complexity model

We use the algebraic RAM model of Kaltofen [15, Section 2], counting only the number of
arithmetic operations in our base field K. Most subroutines are deterministic; for them,
we consider the worst case. However, computation of primitive elements in residue
fields uses a probabilistic algorithm of Las Vegas type, and we consider then the average
running time. We denote by M(d) the number of arithmetic operations for multiplying
two polynomials of degree d. We use fast multiplication, so that M(d) ∈ Õ (d) and
d′M(d) ≤ M(d′d), see [11, Section 8.3]. We denote by I(d) the number of arithmetic
operations for testing irreducibility of a degree d polynomial over K. We assume that
d ∈ I(d) and d′I(d) ≤ I(dd′), which is consistent with the known bounds for I(d) (see
e.g. [11, Theorem 14.37] for K = Fq and [11, Theorem 15.5] for K = Q). We use the
classical notations O() and Õ () that respectively hide constant and logarithmic factors
([11, Chapter 25, Section 7]). In particular, we will abusively denote Õ (δ) a complexity
result as δ log(d) (which is bounded by δ log(δ) only when F is Weierstrass).

Primitive representation of residue rings. The K-algebra Kk is given inductively as a
tower extension of K defined by the radical triangular ideal (P1(Z1), . . . , Pk(Z1, . . . , Zk)).
It turns out that such a representation does not allow to reduce a basic operation in Kk
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to Õ (fk) operations over K (see [25] for details). To solve this problem, we compute a
primitive representation of Kk, introducing the notation KQ := K[T ]/(Q(T )).

Proposition 7. Let Q ∈ K[T ] and P ∈ KQ[Z] square-free, and assume that K has
at least (degT (Q) degZ(P ))2 elements. There exists a Las Vegas algorithm Primitive

that returns (Q1, τ) with Q1 ∈ K[W ] square-free and τ : K[T,Z]/(Q,P ) → K[W ]/(Q1)
an isomorphism. It takes an expected O((degT (Q) degZ(P ))(ω+1)/2) operations over K.
Given α ∈ K[T,Z]/(Q,P ), one can compute τ(α) in less than Õ (degT (Q)2 degZ(P )).

Proof. Use [25, Proposition 15] with I = (Z1, Q(Z2)) (see notations therein).

In the following, we use that an operation in Kk costs Õ (fk) operations in K.

Remark 11. Another way to deal with tower extensions would be the recent preprint
[29]. This would make all algorithms deterministic, with a cost O(δ1+o(1)) instead of
Õ (δ). Note also [30] for dynamic evaluation.

7.2 Truncation bounds

In order to estimate the complexity in terms of arithmetic operations in K, we will
compute approximate roots and Ψ-adic expansions modulo a suitable truncation bound
for the powers of ψ−1 = x. We show here that the required sharp precision is the
same than the one obtained in [25, Section 3] for the Newton-Puiseux type algorithm.
Note also [2, Theorem 2.3, page 144] that provides similar results in the context of
irreducibility test. In the following, when we say that we truncate a polynomial with
precision τ ∈ Q, we mean that we keep only powers of X less or equal than τ .

The successive polynomials generated by Pseudo-ARNP(F ) are still denoted H0, . . . ,Hg,
and we let (qg+1,mg+1) stand for the slope of the lower edge of Hg ((qg+1,mg+1) := (1, 0)
if Ng = 1). As deg(Hk) = Nk and N (Hk) has a lower edge of slope −mk+1/qk+1, the
computation of the lower boundary polynomial H̄k only depends on Hk truncated with
precision Nkmk+1/qk+1. Combined with (6), and using vx(π∗k(x)) = ek, we deduce that
the kth-edge data only depends on F truncated with precision

ηk :=
vk(F )

ek
+Nk

mk+1

ek+1
. (28)

Denoting η(F ) := max
0≤k≤g

(ηk), we deduce that running Pseudo-Irreducible modulo

xη(F )+1 return the correct answer, this bound being sharp by construction.

Lemma 6. We have ηk = ηk−1 +
Nkmk+1

ek+1
. In particular, η(F ) = ηg =

∑g+1
k=1

Nk−1mk
ek

.

Proof. As vk(F ) = Nk vk,k from Lemma 3, we get

ηk =
Nkvk,k
ek

+
Nkmk+1

ek+1
(29)

26



for all 0 ≤ k ≤ g. If k = 0, we have η0 = N0m1/q1 as required, as v0,0 = 0. Suppose
k ≥ 1. Applying (29) at rank k − 1, we obtain for k = 1, . . . , g the relations

ηk−1 =
Nk−1vk,k−1

ek
=
Nkvk,k
ek

, (30)

first equality using Point 1 of Lemma 2 (vk,k−1 = qkvk−1,k−1 +mk) and second equality
using Nk−1 = qk`kNk and equality vk,k = qk`kvk,k−1 of Theorem 2. Hence (29) and (30)

give ηk = ηk−1 +
Nkmk+1

ek+1
as required. The formula for η(F ) follows straightforwardly.

Remark 12. We have the formula ηk =
vx(π∗kF (x,0))

ek+1
= (F,φk)0

dk
for k ≤ g−1, the first equal-

ity following again from (6) and the second equality from Corollary 1. Since (F, φk)0 =
(F,ψk)0, we deduce in particular that the sequence of integers (N0, d0η0, . . . , dg−1ηg−1)
form a minimal set of generators of the semi-group of F when F is irreducible in K[[x]][y]
; see e.g. [20, Proposition 4.2 and Theorem 5.1].

Proposition 8. Let F ∈ K[[x]][y] be monic and separable of degree d, with discriminant
valuation δ. Then η(F ) ≤ 2δ

d . If moreover F is pseudo-irreducible, then η(F ) ≥ δ/d.

Proof. It follows from Lemma 6 that η(F ) is smaller or equal than the quantity “Ni”
defined in [25, Subsection 3.3] (take care of notations, these Ni are not the same as
those defined here), with equality if F is pseudo-irreducible. From [25, Corollary 4], we
deduce η(F ) ≤ 2vi for i = 1, . . . , d, where vi := vx(∂yF (yi)), yi denoting the roots of
F . As δ =

∑
vi, we have min vi ≤ δ/d and the upper bound for η(F ) follows. If F is

pseudo-irreducible, then we have also vi ≤ η(F ) = Ni by [25, Corollary 4]. As all vi’s
are equal in that case, the lower bound follows too.

Remark 13 (Dealing with the precision). As δ is not given, we do not have an a piori
bound for the precision η(F ). To deal with this problem, we start from some low
precision, and double it each time the computed lower edge of the Newton polygon
is not ”guaranted” [25, Definition 8 and Figure 1.b], which can be checked thanks to
Lemma 6 (lines 6 and 7 of algorithm Pseudo-Irreducible below). We could use also
relaxed computations [28]. In both solutions, this only multiply the complexity result
by at most a logarithm factor.

7.3 Main subroutines

Computing approximate roots and Ψ-adic expansion.

Proposition 9. There exists an algorithm AppRoot which given F ∈ A[y] a degree d
monic polynomial defined over a ring of characteristic not dividing d and given N which
divides d, returns the N th approximate root of F with M(d) operations over A.

Proof. ψ can be computed as follows. Let G = ydF (1/y) be the reciprocal polynomial
of F . So G(0) = 1 and there exists a unique series S ∈ A[[y]] such that S(0) = 1 and
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G = SN . Then ψ is the reciprocal polynomial of the truncated series dSe
d
N (see e.g. [20,

Proposition 3.4]). The serie S is solution of the equation ZN − G = 0 in A[[y]][Z] and
can be computed up to an arbitrary precision σ with M(Nσ) operations by quadratic
Newton iteration [11, Theorem 9.25], hence M(d) operations with σ = d/N .

Proposition 10. There exists an algorihm Expand which, given F ∈ A[y] of degree d
and Ψ = (ψ0, . . . , ψk) a collection of monic polynomials ψi ∈ A[y] of strictly increazing
degrees d0 < · · · < dk ≤ d returns the reduced Ψ-adic expansion of F within O((k +
1)M(d) log(d)) arithmetic operations over A.

Proof. The ψk-adic expansion of F =
∑
aiψ

i
k requires O(M(d) log(d)) operations by

[11, Theorem 9.15]. If k > 0, we recursively compute the (ψ0, . . . , φk−1)-adic expansion
of ai in O(kM(deg ai) log(deg ai)) operations. Since deg(ai) < dk, summing over all
i = 0, . . . , bd/dkc gives O(kM(d) log(d)) operations.

Computing boundary polynomials.

Proposition 11. Given F and Ψ = (ψ−1, . . . , ψk) modulo xη(F )+1, V = (vk,−1, . . . , vk,k)
and Λ = (λk,−1, . . . , λk,k), there exists an algorithm BoundaryPol that computes the
lower boundary polynomial H̄k ∈ Kk[x, y] within Õ (δ + f2

k ) operations over K.

Proof. First compute the Ψ-adic expansion F =
∑
fBΨB modulo xη+1, with η := η(F ).

As η ≤ 2δ/d, this is Õ (δ) by Proposition 10 applied with A = K[x]/(xη+1). The
computation of the lower edge of H̄k is done with Theorem 6 and take no arithmetic
operations (this takes Õ (δ) bit operations as 〈B, V 〉 ∈ O(δ) and there are at most
ekfkNkη ≤ 2δ such scalar products to compute). It remains to compute the coefficient
of each monomial xwiyi of H̄k, which is (Theorem 6):

ck,i :=
∑

B∈B(i,wi+vk(F ))

fBΛB−B0 .

Note first that computing ΛB0 = λNkk,k takes O(log(d)) operations over Kk via fast expo-

nentiation. Then, there are at most fk monomials ΛB to compute from Proposition 1.
Each of them can be computed in O(k log(δ)) operations in Kk via fast exponentiation
on each λk,i (we have wi ≤ vx(Hk(x, 0)) = Nkmk+1/qk+1, thus wi + vk(F ) ≤ ekηk ≤ 2δ
from (28) and Proposition 8). This concludes.

Testing pseudo-degeneracy and computing edge data. There remains to test the
pseudo-degeneracy of the boundary polynomials.

Proposition 12. Given Q ∈ K[Z] square-free and H̄ ∈ KQ[x, y] monic in y and quasi-
homogeneous, there exists an algorithm Pseudo-Degenerated that returns False if H̄ is
not pseudo-degenerated, and the edge data (q,m, P,N) of H̄ otherwise. It takes at most
Õ (degZ(Q) deg(H)) operations over K.
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Proof. As H̄ is quasi-homogeneous, we have H̄ = yrP0(yq/xm)xm deg(P0) for some co-
prime integers q,m ∈ N, 0 ≤ r < q and some P0 ∈ KQ[T ] which can be computed with
the aimed complexityIf r 6= 0, then H is not pseudo-degenerated. Otherwise, there re-
mains to check if P0 = PN for some N ∈ N and P ∈ KQ[T ] square-free (i.e (Q,P ) radical
ideal in K[Z, T ]), and that P (0) /∈ K×Q when q > 1. The first task is a special case of
[25, Proposition 14] and fits in the aimed bound. Second one is just a gcd computation,
bounded by Õ (degZ(Q)).

Remark 14. We might discover that Q factors and perform some splittings of the ring KQ

in course of the square-free test (see Example 4). In such a case, we do not necessarily
return False: although this is the natural option when testing irreducibility, we don’t
want to stop the algorithm if Q factors when testing balancedness (see Section 8).

7.4 The main algorithm. Proofs of Theorems 1, 2 and 4

Algorithm: Pseudo-Irreducible(F, η = 1)

Input: F ∈ K[[x]][y] monic of degree d not divisible by the characteristic of K
Output: False if F is not pseudo-irreducible, and (Data, Q) otherwise, with

Data the edges data of F and Kg = KQ.
1 F ← F mod xη ; // All computations modulo xη

2 N ← d, V ← [1, 0], Λ← [1, 1], Ψ← [x], Q← Z, (e, η′)← (1, 0), Data← [ ];
3 while N > 1 do
4 Ψ← Ψ ∪ AppRoot(F,N);
5 H̄ ← BoundaryPol(F,Ψ, V, λ) ; // H̄ ∈ KQ[x, y]

6 e← q e ; η′ ← η′ + N m
e ; // (q,m) lower edge of H̄

7 if η ≤ η′ then return Pseudo-Irreducible(F, 2η);
8 (Bool, (q,m, P,N))← Pseudo-Degenerated(H̄,Q) ;
9 if Bool = False then return False ;

10 Data← Data ∪ (q,m, P,N);
11 Update the lists V,Λ thanks to formula (19);
12 (Q, τ)← Primitive(Q,P );
13 Λ← τ(Λ);

14 return (Data, Q);

Proposition 13. Running Pseudo-Irreducible(F ) returns the correct output. If F is
Weierstrass, it takes at most Õ (δ) operations over K. If F is monic, it takes Õ (δ+ d)
operations, assuming a slight change of line 12 and a bivariate representation Kg = KP1,Q

(see the proof below).

Proof. The polynomial H̄ at line 8 is the correct lower boundary polynomial thanks to
Lemma 6 (see also Remark 13). Then correctness follows from Theorem 8 and 9, together
with Proposition 8. As qk`k ≥ 2, we have g ≤ log2(d), while recursive calls of line 7
multiplies the complexity by at most a logarithm too. Considering one iteration, lines 4,
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5, 8, 12 and 13 cost respectively Õ (δ), Õ (δ+ f2
k ), Õ (fkNk) ⊂ Õ (d), Õ (f

(ω+1)/2
k ) and

Õ (fk) from respectively Propositions 9 (used with precision η(F ) ≤ 2 δ/d), 11, 12, 7 and
7 once again. Summing up, we get a total cost Õ (δ + d+ f2). Lemma 6 gives η(F ) ≥
dm1/q1. If F is Weierstrass, we have m1 > 0. Hence η(F ) ≥ d/q1 ≥ f from which it
follows that df ≤ 2δ. Therefore, both d and f2 ≤ fd belong to O(δ), proving Proposition
13 for Weierstrass polynomials. If F is monic and not Weierstrass, then m1 = 0 and the
inequality df ≤ 2δ doesn’t hold anymore. We thus modify the algorithm as follows: we
do not compute primitive elements of Kk over the field K but only over the next residue
ring K1 = KP1 . We thus get a representation Kk = K[Z1, Z2]/(P1(Z1), Qk(Z1, Z2)) for all
k ≥ 2, with Qk ∈ K1[Z2] square-free of degree fk/`1. Given Pk+1, we compute then Qk+1

such that (P1, Qk+1) = (P1, Qk, Pk), thus dealing with at most trivariate triangular sets.
Propositions 7 and 12 need to be adapted slightly: the base field K has to be replaced by
the ring K1 = KP1 . This is possible thanks to [25, Propositions 14 and 15], computing
now Qk with smaller complexity O(dP1(dQk−1

dPk)(ω+1)/2) ⊂ O(`1(fk/`1)(ω+1)/2) and
still checking pseudo-degeneracy of H̄k with Õ (dP1dQkNk) = O(d). As m2 > 0, Lemma
6 gives η(F ) ≥ N1m2/q2 = d/`1q1q2 ≥ fk/`1 from which it follows that `1(fk/`1)2 =
`1f

2
k ≤ 2fkη(F ) ≤ 2δ. The all complexity of this slightly modified algorithm becomes

Õ (δ + d), as required.

Proof of Theorem 1. If F is monic, then it is irreducible in K[[x]][y] if and only if
it is pseudo-irreducible and Kg is a field (Corollary 4). If F is Weierstrass, we have
Kg = K[Z]/(Q(Z)) and we check if Kg is a field with a univariate irreducibility test in
K[Z] of degree deg(Q) = f ≤ d (cost I(d)). If F is monic but not Weierstrass, we have
Kg = KP1 [Z]/(Q(Z)) and Kg is a field if and only if P1 and Q are irreducible. This
cost I(`1) ⊂ I(d) operations in K for P1 and I(f/`1) operations in K1 for Q (assuming
P1 irreducible), that is Õ (I(d)) operations over K (use assumption dI(n) ≤ I(dn)). If F
is not monic and its leading coefficient has valuation 0, we simply invert it. Otherwise,
either its Newton polygon has more than one slope and F is reducible, either F (0) has
valuation 0 and we can run the algorithm on the reciprocal polynomial of F . We are
thus done from Proposition 13. �

Proof of Theorem 2. The polynomial F is absolutely irreducible if and only if it is
pseudo-irreducible and fg = 1. We thus apply algorithm Pseudo-Irreducible, except
that we return False if we find out that `k > 1. We thus have Kk = K for all k, and
we need not to deal with the Las-Vegas subroutine Primitive, nor with univariate irre-
ducibility tests. We obtain a deterministic algorithm running with Õ (δ+ d) operations
over K, which is Õ (δ) is F is Weierstrass (or more generally if F (0, y) has a unique root:
in such a case, we have `1 = 1 which implies q1 > 1 and m1 > 0 so that the inequality
fg d = d ≤ 2δ holds). Note that the non-monic case is handled in the same way than
in the proof of Theorem 1. Also, we could have used algorithm AbhyankarTest with
suitable precisions for the same cost. �
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Proof of Theorem 4. If the input F ∈ K[x, y] is monic in y with partial degrees
n := degx(F ) and d = degy(F ), we run algorithm Pseudo-Irreducible with parameters
F and 4n, except that we return False whenever the Newton polygon test of line 7 fails.
If F is square-free, we have the well known inequality δ ≤ 2nd so that η(F ) ≤ 4n: the
algorithm will return the correct answer with at most Õ (nd) operations over K as
required, and so without performing recursive calls of line 7 (see Remark 13 once again).
If F is not square-free, then H̄k is never square-free. Hence, we will never reach the case
Nk = 1, and either the pseudo-degenarcy test of line 8 or the Newton polygon test of
line 7 will fail at some point during the algorithm, in which case we return False within
Õ (nd) as required. If F is not monic, the result is similar, applying the same strategy
as in the proof of Theorems 1 and 2. �

Example 4. Let us illustrate algorithm Pseudo-Irreducible on a simple example.
Consider F = (Y 4 −X2)4 + Y 6X11 − Y 4X12 − Y 2X13 +X14 +X16 ∈ Q[X,Y ].

Initialisation. We have N0 = d = 16, and we let ψ−1 = X, V = (1, 0) and λ = (1, 1).

Step 0. The 16th-approximate roots of F is ψ0 = Y and we find H̄0 = (Y 4 − X2)4,
meaning that H0 is pseudo-degenerated with edge data (q1,m1, P1, N1) = (2, 1, Z2

1−1, 4).
Accordingly to (19), we update V = (2, 1, 4) and λ = (z1, z1, 4z1), with z1 = Z1 mod P1

(i.e. z2
1 = 1). Note that Z1 is coprime to P1 so that λ1,1 = 4 z3

1 = 4 z1 is invertible in Q1

as predicted by the proof of Proposition 6.

Step 1. As N1 = 4, we compute the 4th-approximate root of F , getting ψ1 = Y 4 −X2.
F has Ψ = (ψ−1, ψ0, ψ1)-adic expansion F = ψ4

1 +ψ11
−1ψ

2
0ψ1−ψ12

−1ψ1 +ψ16
−1. All involved

monomials reach the minimal values (11), and we deduce from (12) and equality z2
1 = 1

that H̄1 = Y 4 + (z1−1)
(4z1)3

X12Y + 1
(4z1)4

X16. Here, H̄1 is quasi-homogeneous with slope

(q2,m2) = (1, 4). As 4 z1 is a unit of Q1, H1 is pseudo-degenerated if and only if
the univariate polynomial Q(Z2) = Z4

2 + (z1 − 1)Z2 + 1 is the power of a square-free
polynomial P2 in Q1[Z2]. To check this, we apply the euclidean algorithm to compute
the gcd between Q and its derivative Q′. The first euclidean division gives Q = Z2

4 Q′+R
with R = 3

4 (z1−1)Z2 + 1. As Z1−1 divides P1, the leading coefficient of the remainder
R is a zero divisor in Q1. Hence, performing the next euclidean division of Q′ by R
requires to split Q accordingly to the decomposition of the current residue ring Q1 =
Q1,1 ⊕Q1,2 induced by the factorization P1 = (Z1 − 1)(Z1 + 1) discovered so far. Then
we continue the euclidean algorithm in each fields summands. We find here that both
reductions Q1 ∈ Q1,1[Z2] and Q2 ∈ Q1,2[Z2] of Q are square-free, from which it follows
by definition that Q is square-free in Q1[Z2]. Hence, H1 is pseudo-degenerated with edge
data (q2,m2, P2, N2) = (1, 4, Z4

2 + (z1 − 1)Z2 + 1, 1). As N2 = 1, we deduce that F is
pseudo-irreducible.

Note that F is thus balanced (see Section 8). In particular, it has `1`2 = 8 irreducible
factors in Q[[X]][Y ] all with same ramification index q1q2 = 2 and whose characteristic
exponents and intersection multiplicities can be deduced from the edges data thanks
to Theorem 9 and formula (32). If we want furthermore to compute the number of
irreducible factors in Q[[X]][Y ] together with their residual degrees, there only remains
to compute the decomposition of the last residue ring Q2 into fields summand. We find
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here the field decomposition:

Q2 '
Q[Z1, Z2]

(Z1 − 1, Z4
2 + 1)

⊕ Q[Z1, Z2]

(Z1 + 1, Z2 − 1)
⊕ Q[Z1, Z2]

(Z1 + 1, Z3
2 + Z2

2 + Z2 − 1)
.

It follows that F has three irreducible factors in Q[[X]][Y ] of respective residual degrees
4, 1, 3 (which are given together with their residue fields) and ramification index 2. In
particular, they have respective degrees 8, 2, 6.

Remark 15. This example was chosen to illustrate that it might be necessary to perform
some splittings in course of the involved square-free tests, as mentionned in Remark 14.
In case of pseudo-degeneracy, the splittings recombine thanks to the Chinese Remainder
Theorem, and we pursue the algorithm over a single residue field: in the previous exam-
ple, if we would have found Q1 = PN2

2,1 and Q2 = PN2
2,2 with P2,i ∈ Q1,i[Z2] square-free

and with the same exponent N2 > 1 for i = 1, 2, we would have continue the algorithm
over the single current residue ring Q2 = Q1[Z2]/(P2), with P2 ∈ Q1[Z2] square-free,
recovered from its reductions P2,1 and P2,2.

The reader will find more examples in Subsection 8.4.

8 Pseudo-irreducible means balanced

We show in this section that a polynomial is pseudo-irreducible if and only if its ab-
solutely irreducible factors are equisingular and have same sets of pairwise intersection
multiplicities (balanced polynomials). In this case, we give explicit formulas for the
characteristic exponents and the intersection multiplicities in terms of the edges data.
This leads us to the proof of Theorem 3.

8.1 Balanced polynomials

Characteristic exponents. Let F ∈ K[[x]][y] be an irreducible polynomial of degree e
satisfying F (0, 0) = 0. We still assume that Char(K) is zero or greater than e and we
let (T e,

∑
aiT

i) be the Puiseux parametrization of the germ of plane curve (F, 0) (or
branch) defined by F . The characteristic exponents of F are those exponents i for which
a non trivial factor of the ramification index is discovered. Namely, they are defined as

β0 = e, βk = min (i s.t. ai 6= 0, gcd(β0, . . . , βk−1) 6 |i) , k = 1, . . . , G,

where G is the least integer for which gcd(β0, . . . , βG) = 1 (characteristic exponents are
sometimes refered to the rational numbers βi/e in the litterature). It is wellknown that
the data

C(F ) = (β0;β1, . . . , βG)

determines the equisingularity class of the germ (F, 0). The equisingular equivalence of
two germs of plane curves was developped by Zariski in [35]. There are several equivalent
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definitions, a usual one being in terms of the multiplicity sequences of the infinitely
near points of the singularity. This notion is particularly important as it agrees with
the topological class when K = C (see e.g. [32]). Conversely, two equisingular germs
of curves which are not tangent to the x-axis have same characteristic exponents [4,
Corollary 5.5.4]. If tangency occurs, we rather need to consider “generic characteristic
exponents”, which form a complete set of equisingular (hence topological if K = C)
invariants. The set C(F ) and the set of generic characteristic exponents determine each
others assuming that we are given β0 (contact order with x-axis) [20, Proposition 4.3]
or [4, Corollary 5.6.2]. Note that a data equivalent to C(F ) is given by the list of
intersection multiplicities of F with its characteristic approximate roots ψ−1, ψ0, . . . , ψg
[4, Cor. 5.8.5 and 5.9.11], or equivalently with its characteristic minimal polynomials
φ−1, . . . , φg (use e.g. Proposition 9 and Lemma 2, or see [20]).

More generally, if F ∈ K[[x]][y] is irreducible, it defines a unique germ of irreducible curve
on the line x = 0, with center (0, c), c ∈ K ∪ {∞}. We define then the characteristic
exponents of F as those of the shifted polynomial F (x, y+c) if c ∈ K or of the reciprocal
polynomial F̃ = ydF (x, y−1) if c =∞.

Intersection sets. If we want to determine the equisingularity class of a reducible
polynomial (F, 0), we need to consider also the intersection multiplicities between the
branches of F . The intersection multiplicity between two coprime polynomials G,H ∈
K[[x]][y] is defined as

(G,H)0 := vx(Resy(G,H)) = dimK
K[[x]][y]

(G,H)
,

the right hand equality following from classical properties of the resultant. The intersec-
tion multiplicity is zero if and only if G and H do not have branches with same center.
Suppose that F has (distinct) irreducible factors F1, . . . , Ff ∈ K[[x]][y]. We introduce
the intersection sets of F , defined for i = 1, . . . , f as

Γi(F ) :=
(
(Fi, Fj)0, 1 ≤ j ≤ f, j 6= i

)
.

By convention, we take into account repetitions, Γi(F ) being considered as an unordered
list with cardinality f − 1. If F is Weierstrass, the equisingular class (hence the topo-
logical class if K = C) of the germ (F, 0) is uniquely determined by the characteristic
exponents and the intersections sets of the branches of F [36]. Note that the set C(Fi)
only depends on Fi while Γi(F ) depends on F .

Balanced polynomials. Theorem 3 asserts that in some “balanced” situation, we can
compute in quasi-linear time characteristic exponents and intersection sets of some re-
ducible polynomials.

Definition 7. We say that F is balanced if C(Fi) = C(Fj) and Γi(F ) = Γj(F ) for all
i, j. In such a case, we denote simply these sets by C(F ) and Γ(F ).
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Thus, if F is a balanced Weierstrass polynomial, its absolutely irreducible factors are
equisingular and have same sets of pairwise intersection multiplicities, and the converse
holds if no branch is tangent to the x-axis or all branches are tangent to the x-axis.

Example 5. Let us illustrate this definition with some basic examples. Note that the
second and third examples show in particular that no condition implies the other in
Definition 7.

• If F ∈ K[[x]][y] is irreducible, a Galois argument shows that it is balanced (follows
from Theorem 9 below). The converse doesn’t hold: F = (y−x)(y+x2) is reducible, but
it is balanced. This example also shows that balancedness does not imply straightness
of the Newton polygon.

• The polynomial F = (y2−x3)(y2+x3)(y2+x3+x4) is not balanced. It has 3 absolutely
irreducible factors with same sets of characteristic exponents C(Fi) = (2; 3) for all i, but
Γ1(F ) = (6, 6) while Γ2(F ) = Γ3(F ) = (6, 8).

• The polynomial F = (y−x−x2)(y−x+x2)(y2−x3) is not balanced. It has 3 absolutely
irreducible factors with same sets of pairwise intersection multiplicities Γi(F ) = (2, 2),
but C(F1) = C(F2) = (1) while C(F3) = (2; 3).

• The polynomial F = (y − 2x2)2 − 8yx5 − 2x8 has four irreducible factors in Q[[x]][y],
namely F1 = y −

√
2x − 4

√
2x2, F2 = y −

√
2x + 4

√
2x2, F3 = y +

√
2x − i 4

√
2x2 and

F4 = y −
√

2x + i 4
√

2x2. We have C(Fi) = (1) and Γi(F ) = (1, 1, 2) for all i so F
is balanced. Note that this example shows that balancedness does not imply that all
factors intersect each others with the same multiplicity.

• The polynomial F = (y2 − x3)(y3 − x2) is not balanced. However, it defines two
equisingular germs of plane curve (one is tangent to the x-axis while the other is not).

Noether-Merle’s Formula. If F,G ∈ K[[x]][y] are two irreducible Weierstrass polyno-
mials of respective degrees eF and eG, their intersection multiplicty (F,G)0 at the origin
is closely related to the characteristic exponents (β0, . . . , βG) of F . Let us denote by

Cont(F,G) := eF max
F (yF )=0
G(yG)=0

vx(yF − yG)

the contact order of the branches F and G. Then Noether-Merle’s [18] formula states

(F,G)0 =
eG
eF

∑
k≤K

(Ek−1 − Ek)βk + EKCont(F,G)

 , (31)

where Ek := gcd(β0, . . . , βk) and K = max(k |βk ≤ Cont(F,G)). A proof can be found
in [20, Proposition 6.5] (or references therein), where a formula is given in terms of the
semi-group generators, which turns out to be equivalent to (31) thanks to [20, Proposition
4.2].
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PGL2(K)-invariance of characteristic exponents and intersection sets. As we will
consider also non monic polynomials, we will need the following lemma in order to
reduce to the monic case.

Lemma 7. Let a, b, c, d ∈ K such that ad− bc 6= 0. Then F and F̃ := (cy+d)dF
(
ay+b
cy+d

)
have same number of irreducible factors in K[[x]][y], same numbers of irreducible fac-
tors in K[[x]][y], same sets of characteristic exponents and same intersection sets. In
particular, F is balanced if and only if F̃ is.

Proof. As F̃ is obtained after a projective change of coordinate over K, it’s clear that F
and F̃ have same number of factors over any given field extension of K. If F has irre-
ducible factors F1, . . . , Ff over K, then F̃ has irreducible factors F̃i = (cy+d)d(Fi)Fi((ay+
b)/(cy+d)), i = 1, . . . , f . It follows immediately that C(Fi) = C(F̃i) as the characteristic
exponents are computed after translation to y = 0. We have also Γi(F ) = Γi(F̃ ) as the
x-valuation of the resultant is invariant under projective change of the y coordinate (see
e.g. [12, Chapter 12]).

8.2 Balanced is equivalent to pseudo-irreducible

Notations and main results. Let F ∈ K[[x]][y] be a monic and square-free polynomial.
As usual we let (q1,m1, P1, N1), . . . , (qg,mg, Pg, Ng) its edge data computed by algorithm
Pseudo-Irreducible. We denote e = eg = q1 · · · qg and let êk = e/ek. We define

f = fg = `1 · · · `g and f̂k = f/fk in the analoguous way, where as usual `k = deg(Pk).
For all k = 1, . . . , g, we define

Bk = m1ê1 + · · ·+mkêk and Mk = m1ê0ê1 + · · ·+mkêk−1êk (32)

and we let B0 = e. They are positive integers related by the formula

Mk =
k∑
i=1

(êi−1 − êi)Bi + êkBk. (33)

Note that 0 ≤ B1 ≤ · · · ≤ Bg and B0 ≤ Bg. We have B1 > 0 if and only if m1 > 0,
or equivalently, F is Weierstrass. In such a case, the inequality B0 ≤ B1 is equivalent
to that q1 ≤ m1, meaning that the germ (F, 0) is not tangent to the x-axis. We check
easily that êk = gcd(B0, . . . , Bk). In particular, gcd(B0, . . . , Bg) = 1.

Theorem 9. A monic polynomial F ∈ K[[x]][y] is balanced if and only if it is pseudo-
irreducible. In such a case, it has f irreducible factors in K[[x]][y] of degree e and

1. C(F ) = (B0;Bk | qk > 1)

2. Γ(F ) = (Mk | `k > 1), where Mk appears f̂k−1 − f̂k times.

Note that taking into account repetitions, the intersection set has cardinality
∑g

k=1(f̂k−1−
f̂k) = f − 1, as required. Of course, it is empty if and only if f = 1, that is if F is irre-
ducible in K[[x]][y].
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Corollary 5. Let F ∈ K[[x]][y] balanced and monic. Then, the discriminant of F has
valuation

δ = f
( ∑
`k>1

(f̂k−1 − f̂k)Mk +
∑
qk>1

(êk−1 − êk)Bk
)

and the discriminants of the absolutely irreducible factors of F all have same valuation
δ̄ =

∑
qk>1(êk−1 − êk)Bk.

Proof. (of Corollary 5) Suppose that F is balanced. Then it has f irreducible factors
F1, . . . , Ff of same degree e, with discriminant valuations say δ1, . . . , δf . The multiplica-
tive property of the discriminant gives the well-known formula

δ =
∑

1≤i≤f
δi +

∑
1≤i 6=j≤f

(Fi, Fj)0. (34)

Let y1, . . . , ye be the roots of Fi. Thanks to [32, Proposition 4.1.3 (ii)] combined with
point 1 of Theorem 9, we deduce that for each fixed a = 1, . . . , e, the list (vx(ya −
yb), b 6= a) consists of the values Bk/e repeated êk−1 − êk times for k = 1, . . . , g. Since
δi =

∑
1≤a6=b≤e vx(ya − yb), we deduce that δ̄ := δ1 = · · · = δf satisfies the claimed

formula. The formula for δ then follows straightforwardly from (34) combined with
point 2 in Theorem 9.

The proof of Theorem 9 requires some intermediate results. We begin by investigating
the relations between (pseudo)-rational Puiseux expansions and the Puiseux series of F .

Structure of the pseudo-rational Puiseux expansion. Contrarly to [25] where dynamic
evaluation is also considered, we do not necessarily “split” the Newton-Puiseux type
algorithm when we meet several edges. However, we show that this has no impact for
our purpose and that algorithm Pseudo-ARNP still allow to recover all the Puiseux series
of a pseudo-irreducible polynomial. To this aim, we need to study in more details the
so-called pseudo-rational Puiseux expansion (pseudo-RPE for short)

(µkT
ek , Sk(T )) := πk(T, 0)

computed when running algorithm Pseudo-ARNP. As an induction argument is used, we
need some further notations.

Exponents data. For all 0 ≤ i ≤ k ≤ g, we define Qk,i = qi+1 · · · qk with convention
Qk,k = 1 and let

Bk,i = m1Qk,1 + · · ·+miQk,i (35)

with convention Bk,0 = 0. We have Qk+1,i = Qk,iqk+1 and Bk+1,i = qk+1Bk,i for all
i ≤ k and Bk+1,k+1 = qk+1Bk,k +mk+1.

Coefficients data. For all 0 ≤ i ≤ k ≤ g, we define µk,i := z
ti+1Qi,i
i+1 · · · ztkQk−1,i

k with
convention µk,k = 1 and let

αk,i := µm1
k,1 · · ·µ

mi
k,i , (36)
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with conventions αk,0 = 1. We have µk+1,i = µk,iz
tk+1Qk,i
k+1 and αk+1,i = αk,iz

tk+1Bk,i
k+1 for

all 1 ≤ i ≤ k, and αk+1,k+1 = αk+1,k.

Remark 16. Note that µk,0 is invertible in the product of fields Kk. Namely, if zi /∈ K×i ,
then Pi(0) is a zero divisor and we must have qi = 1 by definition of pseudo-degeneracy
(see Remark 7). In such a case, we have ti = 0 and zi does not appear as a factor of
µk,0.

Lemma 8. Let z0 = 0. For all k = 0, . . . , g, we have the formula

πk(x, y) =

(
µk,0x

Qk,0 ,
k∑
i=0

αk,ix
Bk,i
(
zsii + ci

(
µk,ix

Qk,i
))

+ αk,kx
Bk,ky

)
.

Proof. This is correct for k = 0: the formula becomes π0(x, y) = (x, y+c0(x)). For k > 0,
we conclude by induction, using the the relations (35) and (36) above with definition
πk(x, y) = πk−1(ztkk x

qk , xmk(zskk + ck(x) + y)).

Given α an element of a ring L, we denote by α1/e the residue class of Z in L[Z]/(Ze−α).
By Remark 16 we know that µk,0 ∈ Kk is invertible for all k = 0, . . . , g and we introduce
the ring extension

Lk := Kk[θk] = K[z1, . . . , zk][θk], where θk :=
(
µ−êkk,0

) 1
e .

Note that L0 = K and we check straightforwardly from the definition that θk ∈ Lk+1.
In particular, we have a natural strict inclusion Lk ⊂ Lk+1.

Proposition 14. Let F ∈ K[[x]][y] be Weierstrass and S̃ = S(µ−1/eT ) with (µT e, S(T )) :=
πg(T, 0). We have

S̃(T ) =
∑
B>0

aBT
B ∈ Lg[[T ]],

where gcd(B0, . . . , Bk)|B and aB ∈ Lk for all B < Bk+1 (with convention Bg+1 := +∞).
Moreover, we have for all 1 ≤ k ≤ g

aBk =

{
εk(zkθ

mk
k−1)

1
qk if qk > 1

εkzkθ
mk
k−1 + ρk if qk = 1

(37)

where εk ∈ Lk−1 is invertible and ρk ∈ Lk−1. In particular aBk ∈ Lk \ Lk−1.

Proof. Note first that we have µ = µg,0 thanks to Lemma 8, so that S̃(T ) = S(θgT ) lies
in Lg[[T ]] as required. Thanks to definitions (35) and (36), we compute

µg,kµ
−êk/e
g,0 = θk ∈ Lk and αg,kµ

−Bk/e
g,0 =

k∏
j=1

(
µg,jµ

−êj/e
g,0

)mj
=

k∏
j=1

θ
mj
j ∈ Lk. (38)
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Combined with Lemma 8 applied to rank k = g, we deduce

S̃(T ) =

g∑
k=0

Uk(θkT
êk)TBk , Uk(T ) :=

(
zskk + ck(T )

) k∏
j=1

θ
mj
j ∈ Lk[[T ]]. (39)

As êk = gcd(B0, . . . , Bk) divides both êi and Bi for all i ≤ k, this forces gcd(B0, . . . , Bk)
to divide B for all B < Bk+1. In the same way, as Li ⊂ Lk for all i ≤ k, we get aB ∈ Lk
for all B < Bk+1. There remains to show the formula for aBk for k ≥ 1. As ck(0) = 0,
we deduce that

Uk(0) = zskk

k∏
j=1

θ
mj
j = (zkθ

mk
k−1)

1
qk

k−1∏
j=1

θ
mj
j , (40)

the second equality using the Bézout relation skqk − tkmk = 1. Note that εk :=∏k−1
j=1 θ

mj
j ∈ Lk−1 is invertible by Remark 16. In particular, (zkθ

mk
k−1)

1
qk ∈ Lk (although

z
1/qk
k might not belong to Lk). Let ρk be the sum of the contribution of the terms TBiUi to

the coefficient of the monomial TBk . So aBk = Uk(0) +ρk. As B1 ≤ · · · ≤ Bg and k ≥ 1,
we deduce that if UiT

Bi contributes to TBk , then i < k so that UiT
Bi ∈ Lk−1[[T êk−1 ]].

We deduce that ρk ∈ Lk−1. Moreover, ρk 6= 0 forces êk−1 to divide Bk. By definition
(32) of Bk, and using that mk is coprime to qk, we must have qk = 1, as required.

Remark 17. While algorithm Pseudo-ARNP allows to compute the all parametrization∑
B aBT

B (up to some truncation bound), algorithm Pseudo-Irreducible precisely
allows to compute the monomials (aBk − ρk)TBk , k = 0, . . . , g (using (37) and explicit
formula of εk in terms of edges data). As the remaining part of this section shows, this
is precisely the minimal information required for testing balancedness. For instance,
the Puiseux series of F = (y − x − x2)2 − 2x4 are S1 = T + T 2(−

√
2 + 1) and S2 =

T +T 2(
√

2 + 1). While algorithm Pseudo-ARNP allows to compute S1 and S2, algorithm
Pseudo-Irreducible will compute only the “essential monomials” −

√
2T 2 and

√
2T 2

with approximate roots. Computing the singular part of the Puiseux series of a (pseudo)-
irreducible polynomial in quasi-linear time remains an open challenge (see Section 9 for
some hints towards such a result).

For all ζ ∈ W , we denote by θg(ζ) a eth-roots of µ(ζ)−1 = µg,0(ζ)−1. Such a choice
induces a natural evaluation map

evζ : Lg = K[z1, . . . , zg][θg]→ K[ζ1, . . . , ζg][θg(ζ)] ⊂ K

and we denote for short a(ζ) ∈ K the evaluation of a ∈ Lg at ζ.

Let ζ ′ ∈W . By construction, when θg(ζ
′) runs over the qth-roots of µ(ζ ′)−1, then θk(ζ

′)
runs over the ek = e/êk roots of µk,0(ζ ′1, . . . , ζ

′
k). Hence it is always possible to choose

θg(ζ
′) in such a way that

(ζ1, . . . , ζk) = (ζ ′1, . . . , ζ
′
k) =⇒ θk(ζ) = θk(ζ

′), (41)

We assume this from now. In such a case, we have a(ζ) = a(ζ ′) for all a ∈ Lk. The
following lemma is crucial for our purpose.
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Lemma 9. Let us fix ω such that ωe = 1 and let ζ, ζ ′ ∈ W . For all k = 0, . . . , g, the
following assertions are equivalent:

1. aB(ζ) = aB(ζ ′)ωB for all B ≤ Bk.

2. aB(ζ) = aB(ζ ′)ωB for all B < Bk+1.

3. (ζ1, . . . , ζk) = (ζ ′1, . . . , ζ
′
k) and ωêk = 1.

Proof. By Proposition 14, we have aB ∈ Lk and êk|B for all B < Bk+1 from which we
deduce 3) ⇒ 2) thanks to hypothesis (41). As 2) ⇒ 1) is obvious, we need to show
1) ⇒ 3). We show it by induction. If k = 0, the claim follows immediately since
ê0 = q. Suppose 1) ⇒ 3) holds true at rank k − 1 for some k ≥ 1. Let us denote

by ζ
1/qk
k := evζ(z

1/qk
k ). If aB(ζ) = aB(ζ ′)ωB for all B ≤ Bk, then this holds true for

all B ≤ Bk−1. As εk, ρk ∈ Lk−1, the induction hypothesis combined with (41) gives
εk(ζ) = εk(ζ

′) 6= 0 and ρk(ζ) = ρk(ζ
′). Let us use now aBk(ζ) = aBk(ζ ′)ωBk . Two cases

occur:

• If qk > 1, we deduce from (37) that
(
ζkθ

mk
k−1(ζ)

) 1
qk =

(
ζ ′kθ

mk
k−1(ζ ′)

) 1
qk ωBk . Raising to

the power qk, and using that êk−1|qkBk forces ωqkBk = 1 by induction hypothesis,
we deduce that ζkθ

mk
k−1(ζ) = ζ ′kθ

mk
k−1(ζ ′). As θk−1 ∈ L×k−1, we get ζk = ζ ′k thanks

again to the induction hypothesis. Furthermore, as ζk = ζ ′k implies aBk(ζ) =
aBk(ζ ′) thanks to (41), we have also ωBk = 1.

• If qk = 1, we deduce from (37) that ζkθ
mk
k−1(ζ) + ρk(ζ) = ωBk(ζ ′kθ

mk
k−1(ζ ′) + ρk(ζ

′)).

As qk = 1 implies êk−1 = êk|Bk and ρk ∈ Lk−1, θk−1 ∈ L×k−1, induction hypothesis

gives again ωBk = 1 and ζk = ζ ′k.

To conclude, use that Bk =
∑

s≤kmsês, so that induction hypothesis gives (ωêk)mk = 1.

Since mk is coprime to qk and (ωêk)qk = ωêk−1 = 1, this forces ωêk = 1.

In particular, Lemma 9 above implies that algorithm Pseudo-ARNP still allow to recover
all the Puiseux series of a pseudo-irreducible polynomial, as required.

Corollary 6. Suppose that F is pseudo-irreducible and Weierstrass. Then F admits
exactly f distinct monic irreducible factors Fζ ∈ K[[x]][y] indexed by ζ ∈W . Each factor
Fζ has degree e and defines a branch with classical Puiseux parametrizations (T e, S̃ζ(T ))
where

S̃ζ(T ) =
∑
B

aB(ζ)TB. (42)

The e Puiseux series of Fζ are given by S̃ζ(ωx
1
e ) where ω runs over the eth-roots of unity

and this set of Puiseux series does not depend of the choice of the eth-roots θg(ζ).

Proof. As F is pseudo-irreducible, Hg = y (Weierstrass polynomial of degree Ng = 1
with no terms of degree Ng − 1),thus π∗gF (x, 0) = 0. We deduce F (T e, S̃ζ(T )) = 0 for
all ζ ∈ W . By (37), we have aBk(ζ) 6= 0 for all k such that qk > 1. Since gcd(B0 =
e,Bk | qk > 1)) = gcd(B0, . . . , Bg) = êg = 1, the parametrization (T e, S̃ζ(T )) is primitive,
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that is the greatest common divisor of the exponents of the series T e and S̃ζ(T ) equals
one. Hence, this parametrization defines a branch Fζ = 0, where Fζ ∈ K[[x]][y] is an
irreducible monic factor of F of degree e. Thanks to Lemma 9, these f branches are
distinct when ζ runs over W . As deg(F ) = e f , we obtain in such a way all irreducible
factors of F . The last claim follows straightforwardly.

Pseudo-irreducible implies balanced. This is the easiest implication. Let us first con-
sider the characteristic exponents. We get:

Proposition 15. Let F ∈ K[[x]][y] be pseudo-irreducible. Then each branch Fζ of F
has characteristic exponents (B0;Bk | qk > 1), k = 1, . . . , g).

Proof. Thanks to Corollary 6, all polynomials Fζ have same first characteristic exponent
B0 = e. Using again that aBk(ζ) 6= 0 for all k ≥ 1 such that qk > 1 (by (37)), it fol-
lows immediately from Proposition 14 and Corollary 6 that the remaining characteristic
exponents of Fζ are those Bk for which k ≥ 1 and qk > 1.

Concerning the intersection multiplicities, we get:

Proposition 16. Let F ∈ K[[x]][y] be pseudo-irreducible with at least two branches
Fζ , Fζ′. We have

(Fζ , Fζ′)0 = Mκ, κ := min
(
k = 1, . . . , g | ζk 6= ζ ′k

)
.

and this value is reached exactly f̂κ−1 − f̂κ times when ζ ′ runs over the set W \ {ζ}.

Proof. Noether-Merle’s formula (31) combined with Proposition 15 gives

(Fζ , Fζ′)0 =
∑
k≤K

(êk−1 − êk)Bk + êKCont(Fζ , Fζ′) (43)

with K = max{k |Cont(Fζ , Fζ′) ≥ Bk}. Note that the Bk’s which are not characteristic
exponents do not appear in the first summand of formula (43) (qk = 1 implies êk−1−êk =
0). It is a classical fact that we can fix any root y of F for computing the contact order
(see e.g. [8, Lemma 1.2.3]). Combined with Corollary 6, we obtain the formula

Cont(Fζ , Fζ′) = max
ωe=1

(
vT

(
S̃ζ(T )− S̃ζ′(ωT )

))
. (44)

We deduce from Lemma 9 that

vT

(
S̃ζ(T )− S̃ζ′(ωT )

)
= Bκ̄, κ̄ := min

{
k = 1, . . . , g | ζk 6= ζ ′k or ωêk 6= 1

}
.

As ω = 1 satisfies ωêk = 1 for all k, we deduce from the last equality that the maximal
value in (44) is reached for ω = 1 (it might be reached for other values of ω). It follows
that Cont(Fζ , Fζ′) = Bκ with κ = min {k | ζk 6= ζ ′k}. We thus have K = κ and (43) gives
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(Fζ , Fζ′)0 =
∑κ

k=1(êk−1 − êk)Bk + êκBκ = Mκ, the last equality by (33). Let us fix ζ.
As said above, we may choose ω = 1 in (44). We have vT (S̃ζ(T )− S̃ζ′(T )) = Bκ if and
only if ζ ′k = ζk for k < κ and ζκ 6= ζ ′κ. This concludes, as the number of possible such

values of ζ ′ is precisely f̂κ−1 − f̂κ.

If F is pseudo-irreducible, then it is balanced and satisfies both items of Theorem 9
thanks to Proposition 15 and Proposition 16. There remains to show the converse.

Balanced implies pseudo-irreducible. We need to show that then Ng = 1 if F is
balanced. We denote more simply H := Hg ∈ Kg[[x]][y], and πg(T, 0) = (µT e, S(T )).
We denote Hζ , Sζ , µζ the images of H,S, µ after applying (coefficient wise) the evaluation
map evζ : Kg → K.

Lemma 10. Suppose that F is balanced. Then all irreducible factors of all Hζ , ζ ∈ W
have same degree.

Proof. Let ζ ∈W and let yζ be a roots of Hζ . As Hζ divides (π∗gF )ζ = π∗g,ζF by (6), we
deduce from Lemma 8 (use Bgg = Bg) that

F (µζx
e, Sζ(x) + xBgyζ(x)) = 0.

Hence, y0(x) := S̃ζ(x
1
e ) + µ

−Bg
e

ζ x
Bg
e yζ(µ

− 1
e

ζ x
1
e ) is a root of F and we have moreover the

equality
degK((x))(y0) = e degK((x))(yζ), (45)

where we consider here the degrees of y0 and yζ seen as algebraic elements over the field
K((x)). As F is balanced, all its irreducible factors - hence all its roots - have same
degree. Combined with (45), this implies that all roots - hence all irreducible factors -
of all Hζ , ζ ∈W have same degree.

Corollary 7. Suppose F balanced and Ng > 1. Then there exist some coprime positive
integers (q,m) and Q ∈ Kg[Z] monic with non zero constant term such that H has lower
boundary polynomial

H̄(x, y) = Q (yq/xm)xm deg(Q).

Proof. As Ng > 1, the Weierstrass polynomial H = Hg is not pseudo-degenerated and
admits a lower slope (q,m) (we can not have Hg = yNg as F would not be square-free).
Hence, its lower boundary polynomial may be written in a unique way

H̄(x, y) = yrQ̃ (yq/xm)xm deg(Q̃) (46)

for some non constant monic polynomial Q̃ ∈ Kg[Z] with non zero constant term and
some integer r ≥ 0. Let ζ ∈W such that Q̃ζ(0) 6= 0 and suppose r > 0. By applying the
evaluation map evζ to (46), we deduce that the Newton polygon of Hζ has a vertice of
type (r, i), 0 ≤ r ≤ d and the Newton-Puiseux algorithm (over a field) implies that Hζ
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admits two factors A,B such that deg(A) = r and deg(B) = q deg(Q̃). By Lemma 10,
this forces q to divide r. Hence r = nq for some n ∈ N and the claim follows by taking
Q(Z) = ZnQ̃(Z).

Lemma 11. Suppose F balanced and Ng > 1. We keep notations q and Q from Corollary
7. Let G ∈ K[[x]][y] be an irreducible monic factor of F . Then e q divides n := deg(G)
and there exists a unique ζ ∈ W and a unique root α of Qζ such that G admits a
parametrization (Tn, SG(T )), where

SG(T ) ≡ S̃ζ(T
n
e ) + α

1
qµ
−Bg

e
ζ T

n
e
Bg+nm

eq mod T
n
e
Bg+nm

eq
+1
, (47)

with α1/q an arbitrary qth-roots of α (we may a priori have α = 0). Conversely, given
ζ ∈W and α a roots of Qζ , there exists at least one irreducible factor G for which (47)
holds.

Proof. Let y
(i)
ζ , i = 1, . . . , Ng be the roots of Hζ . Following the proof of Lemma 10, we

know that each roots y
(i)
ζ gives rise to a family of e-roots of F

y
(i)
ζ,ω := S̃ζ(ωx

1
e ) + ωµ

−Bg
e

ζ x
Bg
e y

(i)
ζ (ωµ

− 1
e

ζ x
1
e ),

where ω runs over the eth roots of unity. As Hζ has distinct roots and S̃ζ(ωx
1/e) 6=

S̃ζ′(ω
′x1/e) when (ζ, ω) 6= (ζ ′, ω′) (Lemma 9), we deduce that the efNg = deg(F )

Puiseux series y
(i)
ζ,ω are distinct, getting all roots of F . As e divides n := degK((x))(y

(i)
ζ,ω)

(use (45)), the roots y
(i)
ζ,ω, ωe = 1 belong to the same orbit of the Galois group of the

field extension K((x)) → K((x1/n)). Thus, any irreducible factor G of F has degree

n and admits a root of type y
(i)
ζ,1 for some pair (ζ, i). Hence G admits a parametriza-

tion (Tn, SG(T )), where SG(T ) := y
(i)
ζ,1(Tn). Since y

(i)
ζ (x) = α1/qxm/q + h.o.t for some

uniquely determined roots α of Qζ (use Corollary 7), we get the claimed formula. Since
there exists at least one root α 6= 0 of Qζ , the fact that SG ∈ K[[T ]] forces nm/eq ∈ N.
Hence eq divides n since e divides n and q and m are coprime. Conversely, if ζ ∈W and

Qζ(α) = 0, there exists at least one root y
(i)
ζ of Hζ such that y

(i)
ζ (x) = α1/qxm/q + h.o.t

and by the same arguments as above, there exists at least one irreducible factor G such
that (47) holds.

For any irreducible factor G of F , we denote by (ζ(G), α(G)) ∈ W ×K the unique pair
(ζ, α) such that (47) holds.

Corollary 8. Suppose F balanced and Ng > 1. Let n stands for the degree of any of its
irreducible factor and let q as in Lemma 11. Then the lists of the characteristic exponents
of the irreducible factors of F all begin as {n} ∪ {neBk, qk > 1, k = 1, . . . , g}. Moreover
the next characteristic exponent of any factor G is greater or equal than n

eBg + nm
eq ∈ N,

with equality if and only if q > 1 and α(G) 6= 0.
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Proof. This follows straightforwardly from Lemma 11 combined with Proposition 14
(similar argument than for Proposition 15).

Corollary 9. Suppose F balanced with Ng > 1 and with ρ ≥ 2 irreducible factors
G1, . . . , Gρ ∈ K[[x]][y]. We have

(Gi, Gj)0 >
n2

e2

(
Mg +

m

q

)
⇐⇒ (ζ(Gi), α(Gi)) = (ζ(Gj), α(Gj)).

Proof. Using similar arguments than Proposition 16, we get Cont(Gi, Gj) = vT (SGi −
SGj ) and we deduce from (47) and Lemma 9 that Cont(Gi, Gj) >

n
eBg + nm

eq if and only
if ζ(Gi) = ζ(Gj) and α(Gi) = α(Gj) . The claim then follows from Noether-Merle’s
formula (31) combined with Corollary 8.

Proposition 17. If F is balanced, then it is pseudo-irreducible.

Proof. We need to show that Ng = 1. Suppose on the contrary that Ng > 1. Let ζ ∈W
and let Gi such that ζ(Gi) = ζ. Thanks to Lemma 11, we deduce from algorithm ARNP

(over a field) that π∗g,ζ(Gi) has an boundary polynomial of shape (yq − α(Gi)x
m)N(Gi)

where eqN(Gi) = deg(Gi) = n. In particular, N(Gi) = n/eq is constant for all i =
1, . . . , ρ. We deduce that H̄ζ =

∏
i|ζ(Gi)=ζ(y

q − α(Gi)x
m)N(Gi), hence

Qζ(Z) =
∏

i|ζ(Gi)=ζ

(Z − α(Gi))
N(Gi). (48)

Let α be a root of Qζ and j such that (ζ(Gj), α(Gj)) = (ζ, α). Denote Ij := {i 6=
j | (ζ(Gi), α(Gi)) = (ζ(Gj), α(Gj))}. Thanks to (48), we deduce that the root α has
multiplicity N(Gj) +

∑
i∈Ij N(Gi) = (Card(Ij) + 1)n/eq. As F is balanced, all factors

have same intersection sets and Corollary 9 implies that all sets Ij have same cardinality.
It follows that all roots α of all polynomials Qζ have same multiplicity. In other words,
Q is the power of some square-free polynomial P ∈ Kg[Z]. If q = 1, this implies that
H = Hg is pseudo-degenerate (Definition 5), contradicting Ng > 1. If q > 1, we need
to show moreover that P has invertible constant term. Since there exists at least one
non zero root α of some Qζ (Corollary 7), we deduce from Corollary 8 that at least one
factor Gi has next characteristic exponent n

eBg + nm
eq (use q > 1). As F is balanced, it

follows that all Gi’s have next characteristic exponent n
eBg + nm

eq , which by Corollary 8
forces all α(Gi) - thus all roots α of all Qζ by last statement of Lemma 11 - to be non
zero. Thus P has invertible constant term and H = Hg is pseudo-degenerate (Definition
5), contradicting Ng > 1. Hence Ng = 1 and F is pseudo-irreducible.

The proof of Theorem 9 is complete. �
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8.3 Proof of Theorem 3.

If F is monic, the result follows immediately from Proposition 13 and from Theorem 9
(see Section 8). Namely, F is balanced if and only if it is pseudo-irreducible and in such a
case, the edges data allow to compute characteristic exponents and pairwise intersection
multiplicities as well as the discriminant valuation δ (Corollary 5). If F = c(x)yd + · · ·
has invertible leading coefficient c ∈ K[[x]], c(0) 6= 0, we invert c after line 1 up to
precision η ≤ η(F ), for a cost Õ (η) ⊂ Õ (δ), thus reducing in the aimed bound to
the monic case. If the leading coefficient of F is not invertible, we can find z ∈ K
such that F (0, z) 6= 0 with at most d evaluation of F (0, y) at z = 0, 1, . . . , d (use
here that K has at least d elements). This costs at most Õ (d) using fast multipoint
evaluation [11, Corollary 10.8]. One such a z is found, we can apply previous strategy

to the polynomial F̃ := ydF
(
zy+1
y

)
∈ K[[x]][y] which has by construction an invertible

coefficient. We have deg(F ) = deg(F̃ ) and δ(F ) = δ(F̃ ) 5 so the complexity remains the
same. Moreover, Lemma 7 shows that F is balanced if and only if F̃ is, and there is a one-
to-one correspondance between the irreducible factors of F and F̃ in K̄[[x]][y] such that
Fi and F̃i have same characteristic exponents and same sets of intersection multiplicities.
Hence we are reduced to the monic case, and so within the aimed complexity. Theorem
3 is proved. �

8.4 Some examples

Example 6 (balanced). Let F = y6− 3x3y4− 2x2y4 + 3x6y2 + x4y2− x9 + 2x8− x7 ∈
Q[x, y]. This small example is constructed in such a way that F has 3 irreducible factors
(y − x)2 − x3, (y + x)2 − x3, y2 − x3 and we can check that F is balanced, with e = 2,
f = 3 and C(Fi) = (2; 3) and Γi(F ) = (4, 4) for all i = 1, 2, 3. Let us recover this with
algorithm Pseudo-Irreducible.

Initialise. We have N0 = d = 6, and we let ψ−1 = x, V = (1, 0) and Λ = (1, 1).

Step 0. The 6th-approximate roots of F is ψ0 = y and we deduce that H̄0 = y6−2x2y4 +
x4y2 = (y(y2− x2))2. Thus, H0 is pseudo-degenerated with edge data (q1,m1, P1, N1) =
(1, 1, Z3

1 − Z1, 2). Accordingly to (19), we update V = (1, 1, 1) and Λ = (1, z1, 3z
2
1 − 1).

Note that the Newton polygon N of F is not straight. In particular, P1 is reducible over
Q and F is reducible over Q[[x]][y].

Step 1. The 2th-approximate root of F is ψ1 = y3 − 3
2x

3y − x2y and F has Ψ-adic
expansion F = ψ2

1 − 3ψ2
0ψ

5
−1 + 3

4ψ
2
0ψ

6
−1 − ψ7

−1 + 2ψ8
−1 − ψ9

−1. The monomials reaching
the minimal values (11) are ψ2

1 (for j = 2) and −3ψ2
0ψ

5
−1 and ψ7

−1 (for j = 0). We
deduce from (12) that H̄1 = y2 − αx, where α = (3z2

1 + 1)/(3z2
1 − 1)2 is easily seen to

be invertible in Q1 (in practice, we compute P ∈ Q[Z1] such that α = P mod P1 and
we check gcd(P1, P ) = 1). We deduce that H1 is pseudo-degenerated with edges data

5This equality explains why we consider the valuation of the resultant between F and Fy as main
complexity indicator instead of the valuation of the discriminant which may vary under projective
change of coordinates.
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(q2,m2, P2, N2) = (2, 1, Z2−α, 1). As N2 = 1, we deduce that F is balanced with g = 2.

Conclusion. We deduce from Theorem 9 that F has f = `1`2 = 3 irreducible factors
over K[[x]][y] of same degrees e = q1q2 = 2. Thanks to (32), we compute B0 = e = 2,
B1 = 2, B2 = 3 and M1 = 4, M2 = 6. We deduce that all factors of F have same
characteristic exponents C(Fi) = (B0;B2) = (2; 3) and same intersection sets Γi(F ) =
(M1,M1) = (4, 4) (i.e. M1 which appears f̂0 − f̂1 = 3− 1 times), as required.

Example 7 (non balanced). Let F = y6 − x6y4 − 2x4y4 − 2x2y4 + 2x10y2 + 3x8y2 −
2x6y2 + x4y2 − x14 + 2x12 − x10 ∈ Q[x, y]. This second small example is constructed in
such a way that F has 6 irreducible factors y+x−x2, y+x−x2, y−x−x2, y−x+x2,
y − x3 and y + x3 and we check that F is not balanced, as Γi(F ) = (1, 1, 1, 1, 2) for
i = 1, . . . , 4 while with Γi(F ) = (1, 1, 1, 1, 3) for i = 5, 6. Let us recover this with
algorithm Pseudo-Irreducible.

Initialise. We have N0 = d = 6, and we let ψ−1 = x, V = (1, 0) and Λ = (1, 1).

Step 0. The 6th-approximate roots of F is ψ0 = y and we deduce that H̄0 = y6−2x2y4 +
x4y2 = (y(y2 − x2))2. Thus, as in Example 6, H0 is pseudo-degenerated with edge data
(q1,m1, P1, N1) = (1, 1, Z3

1 − Z1, 2). Accordingly to (19), we update V = (1, 1, 1) and
Λ = (1, z1, 3z

2
1 − 1).

Step 1. The 2th-approximate root of F is ψ1 = y3 − yx2 − yx4 − 1
2yx

6 and F has Ψ-
adic expansion F = ψ2

1 −ψ10
−1 + 2ψ12

−1−ψ14
−1− 4ψ6

−1ψ
2
0 +ψ8

−1ψ
2
0 +ψ10

−1ψ
2
0 − 1

4ψ
12
−1ψ

2
0. The

monomials reaching the minimal values (11) are ψ2
1 (for j = 2) and −4ψ6

−1ψ
2
0 (for j = 0).

We deduce from (12) that H̄1 = y2 − αx2, where α = 4z2
1/(3z

2
1 − 1)2. As z1 is a zero

divisor in Q1 = Q[Z1]/(Z3
1 − Z1) and (3z2

1 − 1) = P ′1(z1) is invertible in Q1, we deduce
that α is a zero divisor. It follows that H̄1 is not the power of a square-free polynomial.
Hence H1 is not pseudo-degenerated and F is not balanced (with g = 1), as required. In
order to desingularise F , we would need at this stage to split the algorithm accordingly to
the discovered factorization P1 = Z1(Z2

1 − 1) before continuing the process, as described
in [25].

Example 8 (non Weierstrass). Let F = (y+ 1)6 − 3x3(y+ 1)4 − 2(y+ 1)4 + 3x6(y+
1)2 + (y+ 1)2−x9 + 2x6−x3. We have F = ((y+ 2)2−x3)((y+ 1)2−x3)(y2−x3) from
which we deduce that F is balanced with three irreducible factors with characteristic
exponents C(Fi) = (2, 3) and intersection sets Γi(F ) = (0, 0). Let us recover this with
algorithm Pseudo-Irreducible.

Initialise. We have N0 = d = 6, and we let ψ−1 = x, V = (1, 0) and Λ = (1, 1).

Step 0. The 6th-approximate roots of F is ψ0 = y + 1. We have F = ψ6
0 − 3ψ3

−1ψ
4
0 −

2ψ4
0 + 3ψ6

−1ψ
2
0 + ψ2

0 − ψ9
−1 + 2ψ6

0 − ψ3
−1. By (11), the monomials involved in the lower

edge of H0 are ψ6
0,−2ψ4

0, ψ
2
0. We deduce from (12) that H̄0 = (y3 − y)2 so that H0

is pseudo-degenerated with edge data (q1,m1, P1, N1) = (1, 0, Z3
1 − Z1, 2). Note that

m1 = 0. This is the only step of the algorithm where this may occur. Using (19), we
update V = (1, 0, 0) and Λ = (1, z1, 3z

2
1 − 1).

Step 1 The N1 = 2th approximate roots of F is ψ1 = (y + 1)3 − 3/2x3(y + 1) − (y + 1)
and F has Ψ-adic expansion F = ψ2

1 − ψ3
−1 − 3ψ3

−1ψ
2
0 + 2ψ6

−1 − ψ9
−1 + 3/4ψ6

−1ψ
2
0. We
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deduce that the monomials reaching the minimal values (11) are ψ2
1 (for j = 2) and

−ψ3
−1, −3ψ3

−1ψ
2
0 (for j = 0). We deduce from (12) that H̄1 = y2 − αx3, where α =

(λ3
1,−1 + 3λ3

1,−1λ
2
1,0)λ−2

1,1 = (3z2
1 + 1)/(3z2

1 − 1)2 is easily seen to be invertible in Q1. We
deduce that H1 is pseudo-degenerated with edges data (q2,m2, P2, N2) = (2, 3, Z2−α, 1).
As N2 = 1, we deduce that F is balanced with g = 2. By Theorem 9 (assuming
only F monic), we get that F has f = `1`2 = 3 irreducible factors over K[[x]][y] of
same degrees e = q1q2 = 2. Thanks to (32), we compute B0 = e = 2, B1 = 0,
B2 = 3 and M1 = 0, M2 = 6. By Theorem 9, we deduce that all factors of F have
same characteristic exponents C(Fi) = (B0;B2) = (2; 3) and same intersection sets
Γi(F ) = (M1,M1) = (0, 0) as required.

9 Further comments

We conclude this paper with some ongoing work that will deserve further publication,
providing the main perspectives. They are twofold. We start by discussing a way
to factorize the input polynomial once non irreducibility has been discovered by our
main algorithm. Then we discuss the more general context of polynomials defined over
discrete valuation rings (e.g. F ∈ Qp[y]) and conclude by an open question concerning
the assumption on the base field we are making in this paper.

Analytic factorization. Let’s assume that Ng > 1. Then Ng(F ) has two distinct edges,
or its boundary polynomial factorizes. In both cases, if v denotes the extended valu-
ation defined by the lower edge of Ng(F ), we get from the boundary polynomial two
polynomials G and H such that v(F − GH) > v(F ). Then, using the classical Hensel
Lemma [11, Section 15.4], we get a quadratic lifting of G and H. As in [3], we start with
euclidean division, denoting ψ = ψg (it is important that ψ is monic, so that v(ψ) ≥ 0),
and QuoRem the euclidean algorithm.

Lemma 12. Let A, B ∈ K[[x]][y] such that B is monic in ψ (i.e. B = ψb + · · · )
and v(B) = b v(ψ). Then, Q,R = QuoRem(A,B) satisfies v(R) ≥ v(A) and v(Q) ≥
v(A)− v(B).

Proof. We focus on the computation of R. First note that it be computed as follows6:
write A =

∑m
i=0 ai ψ

i the ψ-adic expansion of A, then compute Ã = A−amB, and apply
recursively this strategy to Ã. As deg(Ã) < deg(A), this procedure converges towards
the unique remainder R. We now prove the result by induction on the degree of A.
Nothing has to be done whe deg(A) < d. When deg(A) = d, then A = c ψb with c ∈ A
and result is straightforward for ψd (we have v(B−ψd) ≥ v(B) by assumption). Finally,
when deg(A) > d, apply the above step Ã = A−amB. We have v(amB) ≥ v(A) so that
v(Ã) ≥ v(A), and deg(Ã) < deg(A), which proves the lemma for R recursively. Result
for Q is then a straightforward consequence, as v(QB) = v(A−R).

6in practice, we use the classical algorithm of A[y], this is only for this proof purpose
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From this Lemma, it is trivial to show that the Hensel lemma, when starting with
correct initial polynomials, “double the precision” according to an extended valuation
(v, ψ): given F , G, H, S, T ∈ A[Y ] with H monic in ψ, and n ∈ N∗ satisfying,

• v(F −GH) ≥ v(F ) + n

• v(S G + T H − 1) ≥ n with deg(S) < deg(H), deg(T ) < deg(G), v(S) = −v(G)
and v(T ) = −v(H).

it outputs polynomials G̃, H̃, S̃, T̃ ∈ K[X,Y ] with H̃ monic in ψ such that:

• v(F − G̃ H̃) > v(F ) + 2n, with v(G̃−G) ≥ n+ v(G) and v(H̃ −H) ≥ n+ v(H),

• v(S̃ G̃+ T̃ H̃ − 1) > 2n ; deg(T̃ ) < deg(G̃), deg(S̃) < deg(H̃), v(S̃) = −v(G) and
v(T̃ ) = −v(H).

We recall the algorithm (this is exactly [11, Algorithm 15.10]):

Algorithm: HenselStep(F,G,H, S, T )

1 α← (F −GH);
2 Q,R← QuoRem(S α,H);

3 G̃← G+ αT +QG;

4 H̃ ← H +R;

5 β ← (S G̃+ T H̃)− 1;

6 A,B ← QuoRem(S β, H̃);

7 S̃ ← S −B;

8 T̃ ← T − β T −AG̃;

9 return H̃, G̃, S̃, T̃

Proposition 18. Algorithm HenselStep is correct.

Proof. We have F − G̃ H̃ = (1−S G+T H)α−S T α2− (S G−T H)Qα+GH Q2. By
assumption, we have v(α) ≥ v(F ) + n, v(S T ) = −v(F ), and by Lemma 12, v(Q) ≥ n.
This shows v(F−G̃ H̃) > v(F )+2n. Similarly, v(G̃−G) = v(T α+QG) ≥ n+v(G) and
v(H̃−H) = v(R) ≥ n+v(H). As for monicity of H̃, it is a obvious as deg(R) < deg(H).

To conclude, as S̃ G̃+ T̃ H̃−1 = β ((G̃−G)S+ (H̃−H)T −β), v(β) ≥ n (assumption),
v((G̃ − G)S) > n and v((H̃ −H)T ) > n (see above), we get v(S̃ G̃ + T̃ H̃ − 1) > 2n.
As v(B) > v(S) and v(β T − AG̃) > v(T ), we obsiously have v(S̃) = −v(G) and
v(T̃ ) = −v(H). Condition deg(S̃) < deg(H̃) is obvious as deg(B) < deg(H̃).

To conclude this paragraph, let us illustrate how to get the initial G, H, S and T with
H monic on an example.

Example 9. Consider F = ψ3 + y2 x3 ψ + x6 y ∈ Q[[x]][y] with ψ = y3 − x2 and
the associated valuation V1 = (3, 2, 6). Considering the lower edge ((1, 1), (3, 0)), we
get V = (6, 4, 13). Then, we can initialise G and H as respectively ψ2 + y2 x3 and
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ψ, so that v(F − GH) = v(x6 y) = 40 > 39 = v(F ). We then use the extended
euclidean algorithm over Q[Z], getting s = 1 and t = −Z such that s (Z2 + 1) + t Z = 1.
Then, we can multiply s and t by a monomial of valuation 26, so that v(S) = −v(G)
and v(T ) = − = v(H), getting S = x−5 y and T = −x−5 y ψ. They indeed satisfy
v(S G+ T H − 1) = v(x−2ψ) = 1 > 0.

Finally, not that finding the monomial x−5 y in the above example is always possible
(see e.g. [26, Lemma 4.23, page 24]).

Such a factorization done, we can recursively apply our main algorithm on each factor,
factorising again if needed, until we get the full factorization. This provides an algorithm
with complexity Õ (nρ d) to get the ρ factors separable from precision n, improving the
bound Õ (nd2) of [25, Proposition 7]. Nevertheless, this will not improve the overall
complexity of [25, Section 7] (we might need to take n = δ), and the divide and conquer
strategy therein will still have to be used. Details concerning this algorithm will be
presented in a forthcoming paper.

Working over A[y] and small characteristic. The algorithm using approximate roots
described in our paper can be adapted to the case where for instance F ∈ Qp[y], using vp
instead of vx as initial valuation. In such a context, we would not define the valuations
vk as in Section 3.1, but as augmented valuations (see [16, 17, 26] or [14, 19]). They
would however be computed exactly as described in Section 3.4 or - equivalently - as in
Definition 4 of Section 5. This strategy improves the computation of optimal representa-
tives of types [13, Section 3]: the computed approximate root is actually always optimal
(in the sense they described in [13]), and we do not need the refinment process anymore.

However, several points remain to be investigated: is there any need to use some “cor-
recting terms” as we are doing here with the morphisms λk ? And how to deal with the
case where the characteristic of the field divides d (or more generally is less than d when
considering the factorization algorithm described above), in which case Proposition 3
does not make sense anymore. These points are being studied by the authors at the
time of the writing, and will be the topic of a further paper.

Computing Puiseux series using approximate roots ? As mentioned in Remark 17,
our strategy does not compute all terms of the Puiseux series of the input polynomial.
However, there might be ways to compute them. We here comment a few special cases.
First note that the coefficients corresponding to integer exponents are given by the d-th
approximate root. Then, if N1 = d/2, we then have ψ1 = ψ2

0 + Xm1 S1(X)2, so that
S1(X) can be computed via quadratic Newton iteration (this provides all coefficients
corresponding to exponents with denominator 2). When q1 > 2, one can probably
compute additional coefficients of the Puiseux series by solving a linear system. For
instance, the case q1 = 3 can be dealt with as follows: if S1(x) = x

1
3 P1(x) + x

2
3 P2(x),

then we have ψ1 = ψ3
0 − 3xP1 P2 ψ0 − xP 3

1 − x2 P 3
2 , defining the linear system to solve.
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