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We give lower bounds for the degree of the discriminant with respect to y of squarefree polynomials f ∈ K[x, y] over an algebraically closed field of characteristic zero. Depending on the invariants involved in the lower bound, we give a geometrical characterization of those polynomials having minimal discriminant, and give an explicit construction of all such polynomials in many cases. In particular, we show that irreducible monic polynomials with minimal discriminant coincide with coordinate polynomials. We obtain analogous partial results for the case of nonmonic or reducible polynomials by studying their GL 2 (K[x])-orbit and by establishing some combinatorial constraints on their Newton polytope. Our results suggest some natural extensions of the embedding line theorem of Abhyankar-Moh and of the Nagata-Coolidge problem to the case of unicuspidal curves of P 1 × P 1 .

1. Introduction. Let f ∈ K[x, y] be a bivariate polynomial defined over an algebraically closed field K of characteristic zero. We denote by d x and d y the respective partial degrees of f with respect to x and y. The discriminant ∆ y (f ) of f with respect to y is the polynomial ∆ y (f ) := (-1) dy(dy-1)/2 lc y (f ) Res y (f,

∂ y f ) ∈ K[x],
where ∂ y f and lc y (f ) respectively stand for the partial derivative and the leading coefficient of f with respect to y and Res y stands for the resultant with respect to y. In this note, we study polynomials with discriminants of low degrees. More precisely, we focus on the following problem:

Problem 1.1. Give a lower bound for the degree of the discriminant in terms of some invariants attached to f and construct all polynomials whose discriminant reaches this lower bound.

Throughout the paper, we assume that f is primitive (with respect to y), that is f has no factor in K[x]. This hypothesis is not restrictive for our purpose thanks to the well known formula ∆ y (uf ) = u 2dy-2 ∆ y (f ) when u ∈ K[x]. We also assume that f is squarefree with respect to y in order to avoid zero discriminants.

1.1. The case of monic polynomials. We recall that a polynomial f ∈ K[x, y] is monic with respect to y if its leading coefficient with respect to y is 1.

Theorem 1.2. Let f ∈ K[x, y] be a primitive squarefree polynomial with r irreducible factors. Then

deg x ∆ y (f ) ≥ d y -r.
If moreover f is monic, then the equality holds if and only if there exists a polynomial automorphism σ = (σ x , σ y ) ∈ Aut(A 2 ) and a degree r polynomial g ∈ K[y] such that f = g • σ y .

Since the group Aut(A 2 ) of automorphisms of A 2 is generated by affine and elementary automorphisms thanks to Jung's Theorem [START_REF] Jung | Über ganze birationale Transformationen der Ebene[END_REF], Theorem 1.2 gives a solution of Problem 1.1 for monic polynomials in terms of d y and r. Moreover, given f monic for which the equality holds, we can compute the automorphism σ recursively from the Newton polytope of any irreducible factor of f (remark after Proposition 4.12). Theorem 1.2 implies in particular that if f is monic and satisfies deg x ∆ y (f ) = d y -r, then r divides d y . Hence, either its discriminant is constant, or it satisfies the inequality

deg x ∆ y (f ) ≥ d y -1 2 .
It turns out that this fact is still true for nonmonic polynomials, and we have moreover a complete classification of polynomials for which equality holds, solving Problem 1.1 in terms of the degree d y . The precise result requires some more notation and will be stated later in this introduction (Theorem 1.7).

Thanks to the multiplicative property of the discriminant, ∆ y (f g) = ±∆ y (f )∆ y (g) Res(f, g) 2 the inequality in Theorem 1.2 is equivalent to the fact that any irreducible polynomial satisfies the inequality

deg x ∆ y (f ) ≥ d y -1.
A similar lower bound for irreducible polynomials appears in [5, Prop. 1], under the additional assumption that deg f = d y . The second part of Theorem 1.2 for r = 1 has to be compared with [START_REF] Gwozdziewicz | On the singularities at infinity of plane algebraic curves[END_REF]Thm. 4],

where the authors show that if d y coincides with the total degree of f , then f is a coordinate of C 2 if and only if f is a Jacobian polynomial such that deg x ∆ y (f ) = d y -1. Our result allows to replace the Jacobian hypothesis by irreducibility. Note further that being monic is a weaker condition than deg f = d y .

1.2. Bounds with respect to the genus. If now we take into account the genus g and the degree d y of f , we can refine the lower bound d y -1 for irreducible polynomials:

Theorem 1.3. Let f ∈ K[x, y] be a primitive irreducible polynomial. Then 2g + d y -1 ≤ deg x ∆ y (f ) ≤ 2d x (d y -1),
where g stands for the geometric genus of the algebraic curve defined by f . Moreover, the equality

deg x ∆ y (f ) = 2g + d y -1
holds if and only if the Zariski closure C ⊂ P 1 × P 1 of the affine curve f = 0 is a genus g curve with a unique place supported on the line x = ∞ and smooth outside this place.

Theorem 1.2 is mainly a consequence of Theorem 1.3 combined with the embedding line theorem of Abhyankar-Moh [START_REF] Abhyankar | Embeddings of the line in the plane[END_REF] that asserts that every embedding of the line in the affine plane A 2 extends to a polynomial automorphism of the plane. In particular, it appears the remarkable fact that a monic irreducible polynomial with minimal discriminant with respect to y is also monic with minimal discriminant with respect to x (Theorem 3.3).

Remark 1.4. Our results are specific to fields of characteristic zero. For instance, if K has characteristic p, the polynomial f (x, y) = y p + y k + x is irreducible and satisfies

deg x ∆ y (f ) = k -1, ∀ 1 ≤ k < p.
Hence, there is no nontrivial lower bound for the degree of the discriminant if we do not take some care on the degree.

1.3. G-reduction of (nonmonic) minimal polynomials. We say that f ∈ K[x, y] is minimal if it is irreducible and if its discriminant reaches the lower bound

deg x ∆ y (f ) = d y -1.
Theorem 1.2 characterizes monic minimal polynomials: they coincide with coordinate polynomials, that is polynomials that form part of a Hilbert basis of the K-algebra K[x, y]. In the nonmonic case, the characterization of minimal polynomials is more complicated. Indeed, the second part of Theorem 1.2 is false in general since Aut(A 2 ) does not preserve minimality of nonmonic polynomials. An idea is to introduce other group actions in order to reduce minimal polynomials to a "canonical form". Since the discriminant of f coincides with the discriminant of its homogenization F with respect to y, we may try to apply a reduction process to F . The multiplicative group

G := GL 2 (K[x]) acts on the space K[x][Y ] of homogeneous forms in Y = (Y 0 : Y 1 ) with coefficients in K[x] by (1) a b c d (F ) = F (aY 0 + bY 1 , cY 0 + dY 1 ).
The partial degree d Y of F , the number r of irreducible factors and the degree of the discriminant are G-invariant (see Section 2). The group G is thus a good candidate for reducing nonmonic polynomials with small discriminant to a simpler form, in the same vein as in Theorem 1.2.

We say that F, H ∈ K[x][Y ] are G-equivalent, denoted by F ≡ H, if there exists σ ∈ G such that F = σ(H). The action (1) induces by dehomogenization a well defined action on the set of irreducible polynomials in K[x, y] with d y > 1, and more generally on the set of polynomials with no linear factors in y. In particular, we can talk about G-equivalence of (affine) minimal polynomials of degree d y > 1.

The G-orbit of a monic minimal polynomial contains many nonmonic minimal polynomials and it is natural to ask if all nonmonic minimal polynomials arise in such a way. We prove that the answer is no in general thanks to the following counterexample.

Theorem 1.5. Let λ ∈ K * . The polynomial f = x(x -y 2 ) 2 -2λy(x - y 2 ) + λ 2 is minimal but is not G-equivalent to a monic polynomial.
This result will follow as a corollary of the G-reduction Theorem 4.3 which shows in particular that if the degree c of the leading coefficient of a minimal polynomial is not the smallest in the G-orbit, then d y necessarily divides d x -c. The proof is in the spirit of Wightwick's results [START_REF] Wightwick | Equivalence of polynomials under automorphisms of C 2[END_REF] about orbits of Aut(C 2 ). Although we can guess that this example is not unique, we were not able to find a single other such example despite a long computer search (see Subsection B). Indeed, it turns out that being simultaneously minimal and G-reduced still imposes divisibility restrictions on the partial degrees. In particular, we can show that all minimal polynomials of prime degree d y are Gequivalent to a monic polynomial, solving Problem 1.1 in that context. More precisely: Theorem 1.6. Let f be a minimal polynomial of prime degree d y . Then there exists g ∈ K[y] of degree d y such that f (x, y) ≡ g(y) + x.

In particular, f is G-equivalent to a monic polynomial, hence to a coordinate polynomial.

Theorem 1.6 follows from the fact that minimality implies that either d y divides d x -c or d x -c and d y are not coprime except for some trivial cases (Theorem 4.14). The proof relies on a suitable toric embedding of the curve of f . It is natural to ask whether minimality implies the stronger fact that either d y divides d x -c or d x -c divides d y . This property holds for c = 0, a statement equivalent to the Abhyankar-Moh Theorem [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF]. In general, we need to study the singularity of smooth rational curves of A 1 ×P 1 with a unique place along ∞×P 1 , generalizing the Abhyankar-Moh situation of smooth rational curves of A 2 with a unique place at the infinity of P 2 .

1.4. Cremona equivalence of minimal polynomials. In a close context, we can pay attention to Cremona reduction of minimal polynomials. Theorem 1.5 shows that it is hopeless to reduce a nonmonic minimal polynomial to a coordinate by applying successively GL 2 (K[x]) and Aut(A 2 ). However, both groups can be considered as subgroups of the Cremona group Bir(A 2 ) of birational transformations of the plane and our results suggest to ask whether all minimal polynomials define curves that are Cremona equivalent to a line. We will prove for instance that the nonmonic minimal polynomial in Theorem 1.5 satisfies this property (Proposition 4.11). This open problem can be seen as a generalization of the Coolidge-Nagata problem [START_REF] Koras | The Coolidge-Nagata Conjecture[END_REF] to unicuspidal curves of P 1 × P 1 .

1.5. A uniform lower bound for reducible polynomials. Our last result gives a uniform sharp lower bound for the degree of the discriminant of any squarefree (reducible) polynomial that depends only on d y . Moreover it establishes a complete classification of polynomials that reach this lower bound. We need to express this classification in homogeneous coordinates, and we let

F ∈ K[x][Y ] stands for the homogeneous form associated to f of degree deg Y F = d y . Theorem 1.7. Let f ∈ K[x,
y] be a primitive and squarefree polynomial. Then f has constant discriminant if and only if F ≡ H for some H ∈ K[Y ]. Otherwise, we have the inequality

deg x ∆ y (f ) ≥ d y -1 2
and the equality holds if and only if one of the following conditions holds:

(1)

d y = 4 and F ≡ Y 0 Y 1 (Y 2 0 + (µx + λ)Y 0 Y 1 + Y 2 1 ), with µ, λ ∈ K, µ = 0. (2) d y = 4 and F ≡ Y 1 (H(Y ) + xY 3 1 ), for some cubic form H ∈ K[Y ]. (3) d y is odd and F ≡ Y 1 H(Y 2 0 + xY 2 1 , Y 2 1 ) for some form H ∈ K[Y ]. (4) d y is even and F ≡ H(Y 2 0 +xY 2 1 , Y 2 1 ) for some form H ∈ K[Y ].
1.6. Organization of the paper. We prove Theorem 1.3 in Section 2. The proof is based on the classical relations between the valuation of the discriminant and the Milnor numbers of the curve along the corresponding critical fiber. We prove Theorem 1.2 in Section 3, the main ingredients of the proof being Theorem 1.3 combined with the embedding line theorem of Abhyankar-Moh. In particular, we show that for a monic polynomial, minimality with respect to y is equivalent to minimality with respect to x (Theorem 3.3). In Section 4, we focus on the GL 2 (K[x])-orbits of nonmonic minimal polynomials. We first characterize minimal polynomials that minimize the area of the Newton polytope in their orbit (Subsection 4. In Appendix A, we study the relations between small discriminants with respect to x and small discriminants with respect to y, extending Theorem 3.3 to the nonmonic case. In Appendix B, we give a parametric characterization of minimal polynomials and apply our result to the Computer Algebra challenge of computing nonmonic minimal polynomials.

2. Bounds for the degree of the discriminant. Proof of Theorem 1.3. The upper bound in Theorem 1.3 for the degree of the discriminant follows from classical results about the partial degrees of discriminants of homogeneous forms with indeterminate coefficients. The lower bound follows by studying the relations between the vanishing order of the discriminant at infinity and the singularities of the curve of f . We recall that in all of the sequel, f is assumed to be primitive, hence with no factors in K[x]. This assumption is not restrictive for our purpose thanks to the well known formula ∆ y (uf

) = u 2dy-2 ∆ y (f ) when u ∈ K[x].
2.1. Bihomogenization. Let X = (X 0 , X 1 ) and Y = (Y 0 , Y 1 ) be two pairs of variables and let F ∈ K[X, Y ] be the bihomogenized polynomial of f

F := X dx 1 Y dy 1 f X 0 X 1 , Y 0 Y 1 .
It is homogeneous of degree d X = d x in X and of degree

d Y = d y in Y .
We define the discriminant of F with respect to Y by

∆ Y (F ) := (-1) d Y (d Y -1)/2 d d Y -2 Y Res Y (∂ Y0 F, ∂ Y1 F ).
In the litterature, several normalizations exist concerning the sign of this discriminant, however these considerations have no impact here, where we are only interested in its degree. The present normalization satisfies the relation

∆ Y (F )(x, 1) = ∆ y (f )(x).
The polynomial ∆ Y (F ) is homogeneous of degree 2d y -2 in the coefficients of F which vanishes if and only if F is not squarefree with respect to Y . In our situation, it follows that ∆ Y (F ) is a homogeneous polynomial in X of total degree

deg X ∆ Y (F ) = 2d X (d Y -1) = 2d x (d y -1).
We get the following relation

deg x ∆ y (f ) = deg X ∆ Y (F ) -ord ∞ ∆ Y (F )
where ord ∞ stands for the vanishing order at ∞ := (1 : 0) ∈ P 1 . The upper bound in Theorem 1.3 follows. In order to get the lower bound, one needs an upper bound for ord ∞ ∆ Y (F ). Let

C ⊂ P 1 × P 1
be the curve F = 0. It coincides by construction with the Zariski closure of the affine curve f = 0 in the product of projective spaces P 1 × P 1 . For a point α ∈ P 1 we denote by

Z α := C ∩ (X = α)
the set theoretical intersection of C with the "vertical line" X = α. It is zero-dimensional since otherwise F would have a linear factor in X, contradicting the primitivity assumption on f . Moreover, we have

Card(Z α ) ≤ d Y ,
with strict inequality if and only if ∆ Y (F )(α) = 0, that is if and only if F (α, Y ) is not squarefree. In order to understand the order of vanishing of ∆ Y (F ) at α, we need to introduce some classical local invariants of the curve C. Definition 2.1. The ramification number of C over α ∈ P 1 is defined as

r α := d y - p∈Zα n p ,
where n p stands for the number of branches of C at p.

In other words, the ramification number measures the defect to the expected number d Y of branches of C along the vertical line X = α. It is also equal to the sum (e β -1) over all places β of C over α, where e β stands for the ramification index of β. 

δ p (C) := i δ p (B i ) + i<j (B i • B j ) p
where the B i 's run over the branches of C at p and where (B i • B j ) p stands for the intersection multiplicity at p of the curves B i and B j . In some sense, the delta invariant δ p (C) measures the complexity of the singularity of C at p. In particular, we have

δ p (C) = 0 if and only if C is smooth at p. Definition 2.2. The delta invariant of C over α ∈ P 1 is δ α := p∈Zα δ p (C).
The integer δ α thus measures the complexity of all singularities of C that lie over α.

P SL

2 -invariance of the discriminant. The multiplicative group GL 2 (K[x]) of 2×2 invertible matrices with coefficients in K[x] acts nat- urally on the space K[x][Y ] of homogeneous forms in Y = (Y 0 : Y 1 ) with coefficients in K[x] by (2) a b c d (F ) = F (aY 0 + bY 1 , cY 0 + dY 1 )
This action preserves the degree in Y and for τ ∈ GL 2 (K[x]), we have We will study in more details the action of GL 2 (K[x]) in Section 4.1.

(3) ∆ Y (τ (F )) = det(τ ) d Y (d Y -1) ∆ Y (F ), so that the discriminant is P SL 2 (K[x])-invariant
2.5. Vanishing order of the discriminant. For α = (α 0 : α 1 ) ∈ P 1 and H ∈ K[X 0 : X 1 ] a homogeneous form, the vanishing order ord α H of H at α is the highest power of α 0 X 1 -α 1 X 0 that divides H.

The vanishing order at α = ∞ coincides with the usual valuation of the dehomogenization of H at x -α. The vanishing order of the discriminant is related to the ramification degree and the delta invariant thanks to the following key proposition:

Proposition 2.3. Let α ∈ P 1 and F ∈ K[X, Y ] a bihomogeneous form with no factors in K[X].
We have the equality

ord α ∆ Y (F ) = r α + 2δ α .
In particular, we have

deg x ∆ y (f ) = 2d x (d y -1) -2δ ∞ -r ∞ .
Proof. Up to a change of coordinates of P 1 , and without loss of generality, we can assume that α = (0 : 1) and we will write simply ord 0 for ord (0:1) . Note first that ord 0 ∆ Y (F ) = ord 0 ∆ y (f ). Since K has infinite cardinality, there exists β ∈ K such that f (0, β) = 0. For such a β, the leading coefficient with respect to y of the transformed polynomial y dy f (x, β + 1/y) is a unit modulo x. Since by (3) the discriminant is invariant under P SL 2 (K), we can thus assume that the leading coefficient of f with respect to y is a unit modulo x, meaning that the point (0, ∞) does not belong to C. In such a case, Hensel's lemma ensures that we have a unique factorization

f = u p∈Z0 f p ∈ K[[x]][y] where u ∈ K[[x]] is a unit and where f p ∈ K[[x]][
y] is a monic polynomial giving the equation of the germ of curve (C, p). Note that f p is not necessary irreducible. By the well known multiplicative relations between discriminants and resultants, we have

∆ y (f ) = ±u 2dy-2 p∈Z0 ∆ fp p =q Res y (f p , f q ) 2
where Res y stands for the resultant with respect to y. The roots of f p (0, y) and f q (0, y) are distinct by assumption so the resultant

Res(f p , f q ) is a unit in K[[x]]. Hence, ord 0 ∆ y (f ) = p∈Z0 ord 0 ∆ y (f p ).
The polynomial f p is monic with respect to y -y p and f (0, y) = (y -y p ) dp , where d p stands for the degree in y of f p . Such a polynomial is said to be distinguished with respect to y -y p (or a Weierstrass polynomial) and has the property that

ord 0 ∆ y (f p ) = (C • C y ) p ,
where C y stands for the polar curve ∂ y f = 0. Now by Teissier's Lemma [16, Chap. II, Prop. 1.2], we have

(C • C y ) p = µ p (C) + d p -1
where µ p stands for the Milnor number of C at p, that is

µ p (C) := (C x • C y ) p ,
with C x the polar curve ∂ x f = 0. The Milnor number and the delta invariant of a germ of curve are related by the Milnor-Jung formula [17, Thm. 6.5.9]

µ p (C) = 2δ p (C) -n p (C) + 1,
where n p (C) stands for the number of branches of C at p. Finally, we get:

ord 0 ∆ y (f ) = p∈Z0 (2δ p (C) -n p (C) + d p )
Proposition 2.3 then follows from equality p d p = d y . 

ord α ∆ Y (F ) ≤ (2d X -1)(d Y -1) -2g.
Moreover, equality holds if and only if C has a unique place on the line X = α and is smooth outside this place.

Proof. Since C has at least one branch along the line X = α, the ramification number r α is bounded above by d y -1. Hence Proposition 2.3 implies that

ord α ∆ Y (F ) ≤ 2 p∈Sing(C) δ p (C) + d y -1.
It is well known that a curve C ⊂ P 1 × P 1 defined by a bihomogeneous polynomial of bidegree (d x , d y ) has arithmetic genus

p a (C) = (d x -1)(d y -1)
(see for instance [START_REF] Fulton | Introduction to toric varieties[END_REF], Section 4.4). The upper bound of Proposition 2.4 then follows from the adjunction formula [START_REF] Chadzyński | Properness and the Jacobian conjecture in C 2[END_REF]. Equality holds in Proposition 2.4 if and only if both invariants δ α and r α are maximal once the genus is fixed. This is equivalent to the equalities

δ α = p∈Sing(C) δ p (C) and r α = d y -1.
The first equality is equivalent to δ β = 0 for all β = α, meaning geometrically that C is smooth outside the line X = α. The second equality is equivalent to the fact that C has a unique branch along this line.

Proof of Theorem 1.3. Theorem 1.3 follows by combining the equality

deg x ∆ y (f ) = deg X ∆ Y (F ) -ord ∞ ∆ Y (F )
with the inequality of Proposition 2.4.

Corollary 2.5. Let f ∈ K[x, y] be an irreducible polynomial of partial degree d y > 0. Then

deg x ∆ y (f ) ≥ d y -1
and equality holds if and only if the curve C ⊂ P 1 × P 1 is rational, with a unique place over the line x = ∞, and smooth outside this place. 

d y = 2d x (d y -1) -2δ ∞ -r ∞ .
Since δ ∞ ≤ (d x -1)(d y -1) by the adjunction formula, it follows that r ∞ ≥ d y -2. But we have r ∞ ≤ d y -1 and equality can not hold for a parity reason. Hence the only solution is r ∞ = d y -2 and δ ∞ = (d x -1)(d y -1). This exactly means that C is rational with two places over the line x = ∞ and smooth outside these two places.

3. Classification of minimal monic polynomials. Proof of Theorem 1.2. Definition 3.1. We say that f ∈ K[x, y] is minimal (with respect to y) if it is irreducible and satisfies the equality deg x ∆ y (f ) = d y -1. Definition 3.2. We say that f ∈ K[x, y] is monic with respect to y (resp. to x) if its leading coefficient with respect to y (resp. to x) is constant. Take care that in the literature, this terminology often refers to polynomials with leading coefficient equal to 1. (c) The affine curve f = 0 is smooth rational, and has a unique place at infinity of P 2 . (d) There exists σ ∈ Aut(A 2 ) such that f • σ = y.

Thanks to Jung's Theorem [START_REF] Jung | Über ganze birationale Transformationen der Ebene[END_REF], we have an explicit description of the group Aut(A 2 ) of polynomial automorphisms of the plane. Namely, it is generated by the transformations (x, y) → (y, x) and (x, y) → (x, λy + p(x)) with λ ∈ K * and p ∈ K[x]. Hence Theorem 3.3 gives a complete and explicit description of all minimal monic polynomials. Note the remarkable fact that for monic polynomials, minimality with respect to y is equivalent to minimality with respect to x. This symmetry can be extended to nonmonic polynomials by taking into account the number of roots of the leading coefficients, see Appendix A.

Proof. (a) ⇒ (b). If d x = 0, the assertion is trivial. If d y = 0 then by the irreducibility assumption, we have f = ax + b for some a ∈ K * and b ∈ K so that (b) trivially holds too. Suppose now that d y > 0 and d x > 0. By Theorem 1.3, the curve C ⊂ P 1 × P 1 defined by f has a unique place p on the line x = ∞ and is smooth outside this place. Since f is supposed to be monic with respect to y and d x > 0, the curve C intersects the line y = ∞ at the unique point (∞, ∞). This forces equality p = (∞, ∞). Hence C is rational with a unique place over the line y = ∞ and smooth outside this line. Thus f has minimal discriminant with respect to x by Theorem 1.3. Since C has a unique place on the divisor at infinity B := P 1 × P 1 \ A 2 , usual arguments (see Lemma 4.2) ensure that the Newton polytope of f has an edge that connects the points (d x , 0) and (0, d y ). In particular, f is necessarily monic with respect to x.

(b) ⇒ (a). Follows by the symmetric roles played by the variables x and y.

(a) ⇔ (c). If d y = 0 or d x = 0, then the result is trivial. Suppose now that d x and d y are positive. We just saw that this is equivalent to the fact that C is rational, with (∞, ∞) as unique place on the divisor at infinity B := P 1 × P 1 \ A 2 and smooth outside this place. The result then follows from the fact that the number of places at the infinity of P 2 is equal to the number of places on the boundary B of P 1 × P 1 .

(c) ⇔ (d) This is an immediate consequence of the embedding line theorem [START_REF] Abhyankar | Embeddings of the line in the plane[END_REF] (see also [START_REF] Suzuki | Affine plane curves with one place at infinity[END_REF]).

3.2. The monic reducible case. Proof of Theorem 1.2. Proposition 3.4. Let g, h ∈ K[x, y] be two monic minimal polynomials. Then

Res y (g, h) ∈ K * ⇐⇒ h = µg + λ for some nonzero constants µ, λ ∈ K * .

Proof. We have Res y (g, h) ∈ K * if and only if the curves C 1 , C 2 ⊂ P 1 × P 1 respectively defined by g and h do not intersect in the open set A 1 × P 1 . Let σ ∈ Aut(A 2 ) and let g = g • σ and h = h • σ. Assume that deg y g > 0. Since g is assumed to be monic minimal, so is g by Theorem 3.3. It follows that the respective curves C1 and C2 of g and h do not intersect in A 1 × {∞}. Since C 1 and C 2 do not intersect in A 2 by assumption, the curves C1 and C2 can not intersect in A 2 since σ is an automorphism of the plane. Hence C1 and C2 do not intersect in A 1 × P 1 , that is [START_REF] Cox | Toric Varieties[END_REF] Res y (g, h) ∈ K * .

By Theorem 3.3, there exists σ ∈ Aut(A 2 ) such that g = y. Combined with [START_REF] Cox | Toric Varieties[END_REF], this implies that h(x, 0) ∈ K * . Since h is a coordinate polynomial by Theorem 3.3, it is irreducible, as well as h(x, y)-h(x, 0), forcing the equality deg y h = 1. Since h is monic, so is h and the condition h(x, 0) ∈ K * implies that h = µy + λ = µg + λ for some constant µ, λ ∈ K * . The result follows by applying σ -1 .

Proof of Theorem 1.2. Let f be a monic squarefree polynomial with r irreducible factors f 1 , . . . , f r of respective degrees d 1 , . . . , d r . Corollary 2.5 combined with the multiplicative properties of the discriminant gives the inequality

deg y (∆ y (f )) = r i=1 deg y (∆ y (f i ))+ r i =j deg y (Res y (f i , f j )) ≥ r i=1 (d i -1) ≥ d y -r.
Moreover, equality holds if and only if all factors f i are minimal and satisfy Res y (f i , f j ) ∈ K * for all i = j. If f is monic, all its factors are also monic. We conclude thanks to Theorem 3.3 and Proposition 3.4 that there exists an automorphism σ ∈ Aut(K 2 ) such that f • σ is a degree r univariate polynomial. Note that r automatically divides d y .

4. GL 2 (K[x])-orbits of minimal polynomials. We saw that monic minimal polynomials are particularly easy to describe and construct since they coincide with coordinate polynomials. What can be said for nonmonic minimal polynomials? Thanks to the relation ( 3), an easy way to produce nonmonic minimal polynomials is to let act G := GL 2 (K[x]) on a monic minimal polynomial. It is natural to ask if all nonmonic minimal polynomials arise in such a way. We prove here that the answer is no, a counterexample being given by f = x(x -y 2 ) 2 -2λy(x -y 2 ) + λ 2 (Theorem 1.5 of the introduction). However, we will show that if we assume that d y is prime, then the answer is yes (Theorem 1.6). Both results will follow from divisibility constraints on the partial degrees of a minimal polynomial (Theorem 4.3 and Theorem 4.14). Definition 4.1. Let f, g ∈ K[x, y] be two irreducible polynomials with partial degrees deg y f > 1 and deg y g > 1. We say that f and g are Gequivalent, denoted by f ≡ g, if there exists σ ∈ G such that f = σ(g), the action of σ being defined in (2). where Supp(f ) stands for the support of f , i.e the set of exponents that appear in its monomial expansion. It is well known that the edges of the generic polytope that do not pass throw the origin give information about the singularities of f at infinity. In our context, we have the following lemma: The remaining part of this subsection is dedicated to the proof of Theorem 4.3.

We say that f is in normal position if b ≤ a, that is if (d x , c) = (a, b).

The characteristic polynomial. It turns out that Newton-Puiseux

Theorem gives strong information about the edge polynomial of f attached to the right hand side of P (f ). Namely, we have: Lemma 4.5. Suppose that f is minimal with parameters (d y , a, b). Then [START_REF] D'andrea | The Newton polygon of a rational plane curve[END_REF] f (x, y) = x b (αy p + βx q ) n + j≤pn pi+qj<pqn+np c ij x i y j where p ∈ N * and q ∈ Z are coprime integers such that

(8) pn = d y , qn = a -b,
where α, β ∈ K * . We call the polynomial f ∞ := (αy p + βx q ) n the characteristic polynomial of f at x = ∞.

Proof. By Corollary 2.5, the Zariski closure in P 1 × P 1 of the curve defined by f has a unique place along the line x = ∞. Thus, it follows once again from the Newton-Puiseux Theorem applied along the line x = ∞ that the edge polynomial attached to the right hand edge of P (f ) is of the form x b g(x, y) where g is the power of an irreducible quasi-homogeneous polynomial [4, Chap. 6]. Hence, without loss of generality, we can suppose that f is in normal position, that is (d x , c) = (a, b). By (8) in Lemma 4.5, we get that q ≥ 0 and that d y divides d x -c if and only if p = 1. In such a case, the polynomial g(x, y) := f (x, y -β/αx q ) satisfies b(g) = b(f ) and a(g) < a(f ). Since g is equivalent to f , it is also minimal of partial degree d y , and we deduce from Lemma 4.2 that

V (g) = d y (a(g) + b(g)) 2 < V (f ) = d y (a(f ) + b(f )) 2 .
The corollary follows. 

d x (g) = max(c(f ) + d y (f ) deg σ, d x (f )) and c(g) = c(f ) (2) If f is not in normal position then d x (g) = d x (f ) + d y (f ) deg σ and c(g) = d x (f ).
In both cases, g is in normal position.

Proof. Let us write σ(f ) = f (x, λy + µx k + r(x)), with λ, µ ∈ K * , k = deg σ ≥ 0 and deg r < k and let us write f = c ij x i y j . We have

(9) g(x, 0) = f (x, µx k + r(x)) = i+kj=M c ij µ j x i+kj + R(x)
where M := max

(i,j)∈Supp(f ) (i + kj) and deg R < M,
Since the line i + kj = 0 has negative slope -1/k (vertical if k = 0), Lemma 4.2 forces M to be reached at one of the two vertices (a(f ), 0) or (b(f ), d y ) of N f , forcing the equality

M = max(a(f ), b(f ) + kd y ).
Suppose that f is not in normal position. Then a(f ) < b(f ) and M = b(f ) + kd y is reached at the unique point (b(f ), d y ) of N f . Thus, there is a unique monomial in ( 9) with maximal degree. This forces the equality a(g)

:= deg x (g(x, 0)) = b(f ) + kd y ,
On another hand it is clear that for any f , we have lc y (g) = λ dy lc y (f ).

In particular, b(g) = b(f ) = a(g) -kd y ≤ a(g) forcing equality (a(g), b(g)) = (d x (g), c(g)). Since f is not in normal position, we have (a(f ), b(f )) = (c(f ), d x (f )). Claim (2) follows. Suppose now that f is in normal position and that d y does not divide d x -c. In particular, we have a(f ) = b(f ) + kd y so that once again M is reached at a unique point of N f , forcing equality

a(g) := deg x (g(x, 0)) = max(b(f ) + kd y , a(f )). Since b(g) = b(f ) ≤ a(g) we have (a(g), b(g)) = (d x (g), c(g)). Since f is in normal position, we have (a(f ), b(f )) = (d x (f ), c(f )). Claim (1) follows. 4.1.5. Decomposition of GL 2 (K[x]). Let V := GL 2 (K) ⊂ G. It is well known that GL 2 (K[x]
) is the amalgamated free product of the subgroups U and V along their intersections [START_REF] Nagao | On GL 2 (k[X])[END_REF]: every elements of GL 2 (K[x]) can be uniquely written as a finite alternating product of elements of U and V , with no elements in U ∩ V except possibly the first or last factor. On another hand, it is a classical fact that V is generated by translations y → y + λ, homotheties y → λy, λ ∈ K * and the inversion τ . Since translations and homotheties lie in U ∩ V , it follows that any transformation σ ∈ G can be decomposed as an alternate product

(10) σ = σ n τ σ n-1 τ • • • σ 2 τ σ 1 ,
with σ i ∈ U for all i. We can assume moreover that

σ i / ∈ U ∩ V except possibly for i = 1 or i = n, that is deg σ i > 0 ∀ i = 2, . . . , n -1.
Let now σ ∈ G having decomposition [START_REF] Gwozdziewicz | On the singularities at infinity of plane algebraic curves[END_REF] and let f ∈ K[x, y]. We introduce the notation

f 1 = σ 1 (f ) and f i = (σ i τ )(f i-1 ), i = 2, . . . , n.
and we write for short

d i = d x (f i ) and c i = c(f i ).
The following proposition has to be compared to [START_REF] Wightwick | Equivalence of polynomials under automorphisms of C 2[END_REF] where the author considers the behaviour of the total degree of a bivariate polynomial under the action of Aut(A 2 ).

Proposition 4.9. Let f be a minimal polynomial in normal position such that d y does not divide d x -c and let σ ∈ G. With the notation introduced before, we have

d x ≤ d 1 < d 2 < • • • < d n-1 ≤ d n and c = c 1 < c 2 < • • • < c n-1 ≤ c n . Moreover d y does not divides d n -c n if and only if (d n , c n ) = (d x , c).
Proof. By Lemma 4.8, the proposition is true if n = 1. We have a(f ) > b(f ) by assumption so that a(f 1 ) > b(f 1 ) by Lemma 4.8. By Lemma 4.7, it follows that τ (f 1 ) is not in normal position. If σ 2 is an homothety, then n = 2 and f 2 = σ(τ (f 1 )) has the same parameters than f 1 , proving the proposition in that case. If σ 2 is not an homothety, then 

d 2 > d 1 , c 2 > c
n > 2 =⇒ deg σ 2 > 0 =⇒ a(f 2 ) > b(f 2 )
the second implication using again Lemma 4.8. Thus n > 2 implies moreover that τ (f 2 ) is not in normal position. The Proposition then follows by induction.

Proof of Theorem 4.3. We have (1) ⇒ (3) by Corollary 4.6 while the implication (3) ⇒ (2) is an immediate consequence of Proposition 4.9. The remaining implication (2) ⇒ (1) follows from equality V = d y (c + d x )/2 that holds for minimal polynomials thanks to Lemma 4.2.

As announced at the beginning of the section, Theorem 1.5 is an easy corollary of Theorem 4.3.

Proof of Theorem 1.5. A direct computation shows that the polynomial f = x(x -y 2 ) 2 -2λy(x -y 2 ) + λ 2 is minimal with parameters (d y , d x , c) = (4, 3, 1) for all λ ∈ K * (for λ = 0, the polynomial f is reducible). Since d y does not divide d x -c, f is reduced by Theorem 4.3. Hence c = c min = 1 = 0 and f is not equivalent to a monic polynomial by Theorem 4.3.

4.2.

Cremona equivalence of minimal polynomials. Theorem 1.5 shows that we can not hope that a nonmonic minimal polynomial can be transformed to a coordinate via a composition of an element of GL 2 (K[x]) with an element of Aut(A 2 ). However, both groups act on the curve of f as subgroups of the Cremona group Bir(A 2 ) of birational transformations of the plane, and both Theorem 3.3 and GL 2 (K[x])invariance of the degree of the discriminant leads us to ask the natural following question: Question 4.10. Do minimal polynomials define curves Cremona equivalent to lines ? Theorem 3.3 gives a positive answer in the case of monic polynomials, and more generally for all members of their GL 2 (K[x])-orbits. This is also the case for the nonmonic minimal polynomial of Theorem 1.5 as it will be shown in the next Proposition. Note that being Cremona equivalent to a line does not imply minimality. In a close context, it has recently been proved in [START_REF] Koras | The Coolidge-Nagata Conjecture[END_REF] that any rational cuspidal curve of P 2 is Cremona equivalent to a line, solving a famous problem of Coolidge and Nagata. In the present context, minimal polynomials define rational unicuspidal curves of P 1 × P 1 (Corollary 2.5) and we may ask whether the result of Koras-Palka extends to this case. These kind of problems are closely related to the geometry of the minimal embedded resolution.

Proposition 4.11. The curve defined be the polynomial f = x(xy 2 ) 2 -2λy(x -y 2 ) + λ 2 is Cremona equivalent to a line.

Proof. Since the polynomial f is minimal with parameters (d x , d y , c) = (3, 4, 1), it is easy to see that it defines a unicuspidal curve of P 2 . Hence the claim follows from [START_REF] Koras | The Coolidge-Nagata Conjecture[END_REF]. It has to be noticed that we can 'read' the underlying birational transformation on the Newton polytope of f . We have f 1 (x, y) := f (x + y 2 , y) = x 3 + (xy -λ) 2 and f 2 (x, y) := f 1 (x, y/x + λ) = x 3 + y 2 defines a curve which is clearly Cremona equivalent to f = 0. Let C ⊂ P 2 be the projective plane curve defined by the homogenization

F (X, Y, Z) = X 3 + Y 2 Z of f 2 .
Consider the rational map

P 2 P 2 (X : Y : Z) → (XY 2 : Y 3 : X 3 + Y 2 Z).
The restriction of σ to the chart Y = 1 coincides with the affine map (x, z) → (x, x 3 + z) which is clearly invertible. Hence σ ∈ Bir(P 2 ) is a Cremona transformation that satisfies σ -1 (Y = 0) = C.

Divisibility constraints for minimal reduced polynomials.

Proof of Theorem 1.6. Thanks to Theorem 1.2, monic minimal polynomials coincide with coordinate polynomials. In particular, it follows from [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF] that they obey to the crucial property: Proposition 4.12 (Abhyankar-Moh's Theorem reformulated). Let f be a monic minimal polynomial. Then d x divides d y or d y divides d x .

Proposition 4.12 is another reformulation of the embedding line theorem of Abhyankar-Moh [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF]. Indeed, this property allows to reduce the degree of f with translations x → x -αy k or y → y -αx k . Since these translations preserve the property of being simultaneously monic and minimal, we can reach f = y. In the nonmonic case, a similar reduction process requires a positive answer to the following question:

Question 4.13. If f is minimal, is it true that d x -c divides d y or d y divides d x -c ?
Here, the parameter c is the one defined in the previous Subsection 4.1. This property holds for all polynomials in the G-orbit of a monic minimal polynomial by Proposition 4.12 and Proposition 4.9. It also holds for the minimal reduced polynomial f of Theorem 1.5 (d x -c = 2 divides d y = 4), and might be seen as a key point in the explicit construction of the birational map of Proposition 4.11. Although Questions 4.10 and 4.13 are closely related, translations on x do not preserve the minimality of a nonmonic minimal polynomial, and it is not clear that a positive answer to Question 4.13 leads to a positive answer to Question 4.10. Anyway, it would be an important property for reducing minimal polynomials to a "nice canonical form". We prove here a partial result that shows that if f is minimal and d y does not divide d x -c then d y and d x -c are not coprime as soon as d x > 1 . There remains to show that d y and d x -c are not coprime. We will use the theory of toric varieties. Since they appear only in this proof, we do not give a detail account on toric varieties, but we rather refer the reader to the books of Fulton [START_REF] Fulton | Introduction to toric varieties[END_REF] and Cox, Little, Schenck [START_REF] Cox | Toric Varieties[END_REF]. Let P := P (f ) be the generic Newton polytope of a bivariate polynomial f such that f (x, 0) is non constant. Consider the map

φ P : A 2 -→ P N t -→ [t m0 : • • • : t m N ],
where P ∩ Z 2 = {m 0 , . . . , m N }. Since (0, 0), (1, 0), (0, 1) ∈ P by hypothesis, the map φ P is an embedding. The projective toric surface X = X P associated to P is by definition the Zariski closure of φ P (A 2 ). Set theoretically, we have that

X = A 2 (D 1 ∪ • • • ∪ D r )
where the divisors D i P 1 are in one-to-one correspondence with the edges Λ 1 , . . . , Λ r of P that do not pass through the origin. Moreover, if we let C ⊂ X be the Zariski closure of the image of the affine curve f = 0, then C intersects properly the divisors D i with total intersection degree deg(C

• D i ) = Card(Λ i ∩ Z 2 ) -1.
Let us return to our context of f minimal. We can assume that P (f ) is in normal position so that P (f ) satisfies the previous conditions. Moreover, since c > 0, P has exactly four edges by Lemma 4.2. Let E ⊂ X be the divisor corresponding to the right hand edge Λ of P . Since P has two horizontal edges and one vertical edge passing throw the origin (see figure I), the normal fan of P refines the fan of A 1 × P 1 (see [START_REF] Fulton | Introduction to toric varieties[END_REF], Section 1.4) and it follows that

X \ E = A 1 × P 1 .
In particular we have by minimality of f that C is smooth in X \ E.

One the other hand, we have that

deg(C • E) = Card(Λ ∩ Z 2 ) -1 = gcd(d x -c, d y ).
Suppose that gcd(d x -c, d y ) = 1. Then deg(C • E) = 1 forces C to intersect E transversally at a unique point. In particular it is smooth along E, hence smooth in X by what we said before. The arithmetic genus formula for curves in toric surface [START_REF] Khovanskii | Newton polyhedra, and the genus of complete intersections[END_REF], combined with the fact that C ⊂ X is smooth and rational leads to the equality

0 = g(C) = p a (C) = Card(Int(P ) ∩ Z 2 ),
where Int(P ) stands for the interior of P . But this contredicts the fact that P is the convex hull of (0, 0), (0, d y ), (c, d y ), (d x , 0) with d x > 1, c > 0 and d y ≥ 2.

5.

A uniform lower bound for reducible polynomials. We now focus on the non monic reducible case and we prove Theorem 1.7 of the introduction: all polynomials f ∈ K[x, y] with non constant discriminant satisfy deg x ∆ y (f ) ≥ d y -1 2 and we have a complete classification of polynomials for which equality holds. The proof requires some preliminary lemmas. In order to study the discriminant of reducible polynomials, it is more convenient to consider homogeneous polynomials in Y = (Y 0 : Y 1 ). The homogeneity in x is not necessary. We thus consider polynomials

F ∈ K[x][Y ]. Lemma 5.1. Let F ∈ K[x][Y ] be a squarefree polynomial of degree deg Y F = d ≥ 0 with no factor in K[x].
Assume that F has only linear factors. Then exactly one of the following occurs:

(1) deg x ∆ Y F = 0 and F is G-equivalent to some polynomial of K[Y ]. (2) d = 2 and deg x ∆ Y F ≥ 2 > d 2 . (3) d ≥ 3 and deg x ∆ Y F ≥ 2(d -2) > d 2 .
Proof. The cases d = 0 and d = 1 are trivially in case [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF]. We now assume that d ≥ 2. We have

F = d i=1 F i with F i = a i Y 0 + b i Y 1 , for some a i and b i in K[x]
. For all nonempty subset I ⊂ {1, . . . , d}, we write F I = i∈I F i . If I has only 1 element, then clearly ∆ Y F I ∈ K. Among all subsets I such that ∆ Y F I ∈ K, we consider one with a maximal number of elements and write m for its cardinality. We have 1 ≤ m ≤ d.

Consider first the case m = 1. For all i = j, we have deg

x Res Y (F i , F j ) ≥ 1. This implies that deg x ∆ Y F ≥ d(d -1). This proves the case (2) if d = 2 and the case (3) if d > 2.
q, with u and v in K[x]. We have Res y (p, q) = Res y (uy + v, q) = (v -au/2) 2 -a 2 -4b 4 u 2 . By assumption, this is an element of K. Since deg x a 2 -4b is odd, inspecting degrees shows that this is possible only if u = 0 and v -au/2 ∈ K. This gives the conclusion.

We are now ready to prove Theorem 1.7 that we reformulate in a more convenient form for the proof:

Theorem 5.5. Let F ∈ K[x][Y ] be a squarefree polynomial of degree deg Y F = d ≥ 0 with no factor in K[x].
Then exactly one of the following occurs:

(1) deg x ∆ Y F = 0 and F is G-equivalent to some polynomial of K[Y ]. (2) d ≥ 2 and deg x ∆ Y F ≥ d-1 2 . Furthermore, if d ≥ 2, equality deg x ∆ Y F = d-1
2 occurs if and only if F is G-equivalent to one of the following polynomials: 

• (case d odd): Y 1 n i=1 (Y 2 0 + (x + a i )Y 2 1 ) (a i ∈ K). • (case d even): n i=1 (Y 2 0 + (x + a i )Y 2 1 ) (a i ∈ K). • (case d = 4): Y 1 (Y 3 0 + aY 0 Y 2 1 + (x + b)Y 3 1 ) (a, b ∈ K) • (case d = 4): Y 0 Y 1 (Y 2 0 +(ax+b)Y 0 Y 1 +Y 2 1 ) (a ∈ K * and b ∈ K).
x ∆ Y F ≥ deg Q + deg P 1 -1 2 + i≥2 deg P i 2 = d -1 2 
Consider now the question of equality. The easiest case is when d is odd. In this situation, all inequalities in [START_REF] Jung | Über ganze birationale Transformationen der Ebene[END_REF] are equalities. This implies that deg

P i = 2 for all i ≥ 2 and deg F 1 is odd with deg x ∆ Y F 1 = deg F1-1 2 
. By Lemma 5.3, we can therefore assume that 

F 1 = Y 1 (Y 2 0 + (x + a 1 )Y 2 
(f ) = d y + n y -1. (b) deg y ∆ x (f ) = d x + n x -1.
(c) The Zariski closure C ⊂ P 1 × P 1 of the affine curve f = 0 is rational, unicuspidal and smooth outside (∞, ∞).

Moreover, the equivalence (c) ⇔ (a) ∩ (b) still holds for degenerate polynomials.

Proof. Let us first prove (c) ⇔ (a) ∩ (b). Hence f is allowed to be degenerate.

• (c) ⇒ (a) ∩ (b). By Proposition 2.3, we have the equality

deg x ∆ y (f ) = 2d x (d y -1) -2δ ∞ -r ∞
where δ ∞ and r ∞ stand respectively for the delta invariant and the ramification index of f over x = ∞. Since C is assumed to be rational with a unique possible singularity at (∞, ∞), the adjunction formula leads to the equality δ ∞ = p a (C) = (d x -1)(d y -1).

Moreover, the curve is assumed to be everywhere locally irreducible. Hence the number of places of C over x = ∞ coincides with the number of intersection points of C with x = ∞, that is n x + 1. It follows that By assumption, the curve C of f has at least n y + 1 places over x = ∞ so that r ∞ ≤ d y -n y -1.

Combined with [START_REF] Khovanskii | Newton polyhedra, and the genus of complete intersections[END_REF], we get the inequality 2δ ∞ ≥ 2(d x -1)(d y -1).

On the other hand, the genus being nonnegative, the adjunction formula leads to the inequality δ ∞ = p a (C) -g ≤ p a (C) = (d x -1)(d y -1).

This forces δ ∞ = p a (C). Hence g = 0 and the singularities of C are located along the line x = ∞. This forces also r ∞ = d y -n y -1 so that the curve C has exactly n y + 1 places over x = ∞, hence is locally irreducible along the line x = ∞. If moreover (b) holds, we get by symmetry that C has all its singularities located on the line y = ∞, and that C has exactly n x + 1 places over y = ∞. Hence (a) ∩ (b) forces C to be rational, with a unique possible singularity at (∞, ∞), this singularity being irreducible.

To finish the proof, we need to show that implication (a) ⇒ (c) holds when f is nondegenerate. We just proved that (a) implies that C is rational with all its singularities irreducible and located on the line x = ∞. The nondegenerate assumption ensures that C is transversal to the line x = ∞ (hence smooth) except possibly at (∞, ∞). Hence (c) holds.

Corollary A.2. Let f ∈ K[x, y] be an irreducible bivariate polynomial such that f (∞, ∞) = 0. Then

deg x ∆ y (f ) = d y -1 =⇒ deg y ∆ x (f ) = d x + n x -1 n y = 0
and the converse holds for nondegenerate polynomials. In particular, polynomials vanishing at (∞, ∞) and minimal with respect to y are monic with respect to x.

Proof. If f is minimal, its curve C ⊂ P 1 × P 1 is rational unicuspidal with a unique place on x = ∞ by Theorem 1.3. This place has to be (∞, ∞) by assumption. This forces n y = 0. The equality deg y ∆ x (f ) = d x + n x -1 follows from Proposition A.1. If f is nondegenerate, the converse holds again by Proposition A.1.

B. Parametrization of minimal polynomials. Let f = α ij x i y j ∈ K[x, y] be a polynomial with parameters (d x , d y , c) and with indeterminate coefficients α = (α ij ) (i,j)∈P (f )∩Z 2 .

The discriminant of f is a polynomial in (x, α) of degree 2d x (d y -1) in x. Thus, in order to find which specializations of α lead to a minimal polynomial, one needs to compute ∆ y (f ) and then to solve a system of unknowns. This polynomial system turns out to be very quickly too complicated to be solved on a computer, even for reasonable size of d x and d y . Moreover, there remains to perform an irreducibility test for each solution. However, we know that minimal polynomials define a rational curve, a strong information that is not used in the previous basic strategy. In particular, the curve admits a rational parametrization, that is to say there exist two rational functions u, v ∈ K(s) such that the equality f (u(s), v(s)) = 0 holds in K(s). The following result summarizes the relations between minimality and parametrization.

Proposition B.1. An irreducible polynomial f ∈ K[x, y] is minimal if and only if there exist two rational functions u, v ∈ K(s) such that:

(1) f (u, v) = 0 in K(s) (rationality) (2)

K(s) = K(u, v) (proper parametrization) (3) u ∈ K[s] (unique place along x = ∞) (4) K[s] = K[u, v] ∩ K[u, v -1 ] (smoothness in A 1 × P 1 ).
of the implicit equation of the parametrization (u, v) with indeterminate coefficients that satisfies items (1), ( 2), (3) and solving a system of (2d unknowns. When compared to the previous approach, we reduce drastically the number of unknwons and we avoid the irreducibility tests. This is the approach which allowed us to find the crucial example of Theorem 1.5 by computer. It has to be noticed however that the degree of the polynomial system then increases. Finally, let us mention that item (4) (hence minimality) can also be checked directly by requiring that the so-called D-resultant of the pair (u, v) is constant [START_REF] Gutierrez | D-resultant for rational functions[END_REF], a computational problem of an a priori equivalent complexity.

2. 2 .

 2 The ramification number. Let p ∈ C. A branch of C at p is an irreducible analytic component of the germ of curve (C, p).

2. 3 .

 3 The delta invariant. Let B be a branch. The local ring O B has finite index in its integral closure ŌB . The quotient ring is a finite dimensional vector space over K whose dimension δ(B) := dim K ŌB /O B is called the delta invariant of B. More generally, we define the delta invariant of C at p as the nonnegative integer

  and the degree of the discriminant is GL 2 (K[x])-invariant. This action also preserves the irreducibility. It induces by dehomogenization a well defined action on the set of irreducible polynomials in K[x, y] with d y > 1, and more generally on the set of polynomials with no linear factors in y. = (cy + d) dy f x, ay + b cy + d .

2. 6 .

 6 Adjunction formula. Let C be an irreducible algebraic curve on a smooth complete algebraic surface. We denote by p a (C) = dim H 0 (C, Ω C ) the arithmetic genus of C and by g(C) = dim H 0 ( C, Ω C ) its geometric genus, where Ω C and Ω C stand respectively for the canonical sheaves of C and of its normalization C. The adjunction formula measures the difference between both integers, namely (5) p a (C) = g(C) + p∈Sing(C) δ p (C), see for instance [3, Sec. 2.11]. This formula generalizes the famous Plücker formula that computes the geometric genus of a projective plane curve with ordinary singularities. We deduce the following bound for the valuation of the discriminant: Proposition 2.4. Let α ∈ P 1 and F ∈ K[X, Y ] an irreducible bihomogeneous polynomial of partial degree d Y > 0. Let g be the geometric genus of the curve C ⊂ P 1 × P 1 defined by F = 0. We have the inequality

3. 1 .

 1 Characterization of monic minimal polynomial. Theorem 3.3. Let f ∈ K[x, y] be a nonconstant irreducible bivariate polynomial. The following assertions are equivalent: (a) d y = 0, or deg x ∆ y (f ) = d y -1 and f is monic with respect to y. (b) d x = 0, or deg y ∆ x (f ) = d x -1 and f is monic with respect to x.

4. 1 . 5 .

 15 G-reduction of minimal polynomials. Proof of Theorem 1.In this subsection, we focus on the G-reduction of minimal polynomials: what is the 'simplest' form of a polynomial in the G-orbit of a minimal one ? 4.1.1. Newton polytope. We define the generic Newton polytope of f ∈ K[x, y] as the convex hull P (f ) := Conv (0, 0) ∪ (0, d y ) ∪ Supp(f ) ,

Lemma 4 . 2 .

 42 Suppose that f is minimal. Then P (f ) := Conv (0, 0), (0, d y ), (b, d y ), (0, a) for some integers a, b. Proof. Since f has a unique place along x = ∞, the claim follows from Newton-Puiseux Factorization Theorem applied along the line x = ∞. See for instance [4, Chap. 6]. The integers a = a(f ) and b = b(f ) of Lemma 4.2 coincide with the respective degrees in x of the constant and leading coefficients of f with respect to y. Thanks to the previous lemma, we have the relation d x = max(a, b) for any minimal polynomial f and we define the integer c = c(f ) as c := min(a, b).
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 14124344 Figure 1. The generic Newton polytopes of a minimal polynomial in normal and non normal position.
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 46 If V = V min , then d y does not divide d x -c. Proof. By Lemma 4.7 below, the parameters (d x , d y , c, V ) are invariant under the inversion τ while the parameters (a, b) are permuted.

4. 1 . 4 .( 1 )

 141 Basic transformations. Let us first study the behaviour of the parameters d x and c under the inversion and the polynomial De Jonquières transformations. We define the inversion τ ∈ G by τ (f ) := y dy f (x, 1/y). We have the following obvious lemma: Lemma 4.7. Let f ∈ K[x, y] not divisible by y. The parameters d y , d x , c are invariant by τ and the parameters a and b are permuted. Proof. It is straightforward to check that d y (g) < d y (f ) if and only if f (x, y) = y k h(x, y) with k > 0, which is excluded by hypothesis. The remaining part of the lemma is straightforward. Let U ⊂ G stands for the polynomial De Jonquières subgroup of G, that is the subgroup of transformations σ of type σ(f ) : (x, y) -→ f (x, λy + h(x)), where λ ∈ K * and h ∈ K[x]. We define then deg(σ) := deg(h), with the convention deg(0) = 0. If σ is an homothety, that is if h = 0, then the Newton polytope and all the parameters of f and σ(f ) obviously coincide. Otherwise, we get: Lemma 4.8. Let f be a minimal polynomial of degree d x > 0 and let σ ∈ U not an homothety. Let g = σ(f ). Then: If f is in normal position and d y does not divide d x -c then

1

 1 and d y divides d 2 -c 2 by Lemma 4.8. Hence the Proposition follows for n = 2. Moreover we have
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 414 Let f be a minimal polynomial of degree d y ≥ 1. If f is nonreduced, then d y divides d x -c. If f is reduced, we have: (1) If d x = 0 then c = 0 and d y = 1. (2) If d x = 1 then c = 0 and d y > 1. (3) If d x > 1 and c = 0 then d x divides d y . (4) If d x > 1 and c > 0 then 2 ≤ gcd(d x -c, d y ) ≤ d y /2. Proof. If f is nonreduced, then d y divides d x -c by Theorem 4.3. Assume that f is reduced. If d x = 0, then c = 0 is obvious and d y = 1 since otherwise f would not be irreducible. If d x = 1, then c ≤ 1. Since f is reduced, we must have c = 0 and d y > 1 by Theorem 4.3 since otherwise d y would divide d x -c. Suppose now that d x > 1. If c = 0, then we can suppose that f is monic up to apply the inversion y → 1/y. The claim thus follows from Proposition 4.12 combined with the fact that d y can not divide d x since f is assumed to be reduced (Theorem 4.3). Suppose now that d x > 1 and c > 0. Then gcd(d x -c, d y ) ≤ d y /2 by Theorem 4.3.

Proof. 2 .

 2 Write F = P Q where Q has only linear factors and P has no linear factor. Let P = n i=1 P i be the decomposition of P into irreducible factors in K[x][Y ]. If n = 0 then the result is given by Lemma 5.1. Assume now that n ≥ 1. The polynomial F 1 = P 1 Q satisfies Lemma 5.3, hence deg x ∆ Y F 1 ≥ deg Q+deg P1-1 For i ≥ 2, the polynomials P i satisfy Theorem 1.3, hence deg x ∆ Y P i ≥ deg P i -1 ≥ deg Pi 2 . Putting these inequalities together gives (11) deg

r

  ∞ = d y -(n x + 1). Equality (a) then follows from Proposition 2.3. The implication (c) ⇒ (b) follows from (c) ⇒ (a) by symmetry.• (a) ∩ (b) ⇒ (c). Let us assume that (a) holds. By Proposition 2.3, we have:[START_REF] Khovanskii | Newton polyhedra, and the genus of complete intersections[END_REF] 2δ ∞ = 2d x (d y -1) -(d y + n x -1) -r ∞ .

  2d x (d y -1) -(d y -1) ∈ O(d x d y ) polynomial equations in α with Card(P (f ) ∩ Z 2 ) ∈ O(d x d y )

  x -1)(d y -1) ∈ O(d x d y )polynomial equations withd y + d x + c ∈ O(d x + d y )

  2.7. Almost minimal discriminants. Thanks to a parity reason, we can give also a geometrical characterization of polynomials with "almost minimal" discriminant, that is for which equality deg x ∆(f ) = d y holds. Corollary 2.6. Let f ∈ K[x, y] be irreducible. Then equality deg x ∆ y (f ) = d y holds if and only if the closed curve C ⊂ P 1 ×P 1 defined by f is rational, with two places over the line x = ∞ and smooth outside these places. Proof. By Proposition 2.3, we have deg x ∆ y (f ) = d y if and only if

  [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF] ). The P i 's have constant resultant with Y 1 roots of lc y (resp. of lc x ). We have the inequalitiesn x ≤ deg x lc y (f ) and n y ≤ deg y lc x (f )and we say that f is nondegenerate if both equalities hold, that is if both leading coefficients of f are squarefree. We write for short f (∞, ∞) = 0 if the bihomogenization F of f vanishes at the point X 1 = Y 1 = 0, that is if f has no monomial of bidegree (d x , d y ).

	Proposition A.1. Let f ∈ K[x, y] be a nondegenerate irreducible
	bivariate polynomial such that f (∞, ∞) = 0. The following assertions
	are equivalent:
	(a) deg x ∆ y

Consider now the case 2 ≤ m. We can assume that I = {1, 2, . . . , m}.

We have then Res(F 1 , F 2 ) ∈ K. The matrix σ = b 2 -b 1 -a 2 a 1 is therefore an element of GL 2 (K[x]). Via the action of σ, F 1 and F 2 are transformed into Y 0 and Y 1 . Without loss of generality, we assume that F 1 = Y 0 and F 2 = Y 1 . For all 3 ≤ i ≤ m, we have Res Y (F i , Y 0 ) ∈ K, hence b i ∈ K. Similarly, we have Res Y (F i , Y 1 ) ∈ K, hence a i ∈ K. This proves that F i ∈ K[Y ] for all i ∈ I. If m = d, then we have proved that F is equivalent to a polynomial in K[Y ], hence we are in case [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF].

It remains to consider the case 2 ≤ m < d. This case is possible only if d ≥ 3. As before, we can assume that I = {1, 2, . . . , m} and F i ∈ K[Y ] for all i ∈ I. For an integer j ∈ I, there exists at most one value of i ∈ I such that Res Y (F i , F j ) ∈ K. Otherwise, using a similar argument as before, we would have F j ∈ K[Y ] and Res Y (F i , F j ) ∈ K for all i ∈ I, contradicting the maximality of I. Since each F j for j ∈ I has at least m -1 nonconstant resultants with

Assume that F is minimal. Consider an integer n and polynomials

Proof. It is enough to prove that the case n = 2 is impossible. Suppose that two such polynomials exist. Using the action of GL 2 (K), we can assume that F 1 = Y 0 and F 2 = Y 1 . We write

it can not be divisible by Y 0 , hence r 0 = 0. Without loss of generality, we can assume that r 0 = 1. The relation Res Y (Y 0 , F ) = 1 therefore implies that F (Y 0 , Y 1 ) is monic in Y 1 . By Theorem 3.3, F (1, y) is equivalent to y up to an automorphism of A 2 . This implies that F (1, y) is irreducible of degree d ≥ 2, as well as F (1, y) -r 1 . However, this last polynomial is by construction divisible by y. We get a contradiction. 

Proof. We write F = P Q. In order to shorten some expressions, we write d P = deg Y P and

The proof splits into different cases according to which case corresponds to the polynomial F in Lemma 5.1.

. Equality holds if and only if d = 2 and P is minimal. By Theorem 1.6, P is G-equivalent to a polynomial of the form

. In this case, the announced inequality is proved. We then observe that equality implies that P is minimal, d Q = d P -2, and Res Y (P, Q) ∈ K. By Lemma 5.2, this is possible only if d Q = 1 and d P = 3. By Theorem 1.6, we deduce that P is G-equivalent to a polynomial of the form

2 . This proves the inequality. 

and let Q 0 be another linear polynomial in

. Using interpolation at the Q i 's, we see that P can be written as

We clearly have deg x R 0 = deg x P = deg x F . We denote by r 0 ∈ K * the leading coefficient of R 0 . ∆ Y P is an homogeneous polynomial of degree 2(d P -1) in terms of the coefficients of P , hence of degree at most D = 2(d P -1) deg x P in x. The coefficient in x D in its expansion is equal to Disc Y (λQr 0 ), which is not zero since Q is squarefree. This proves that deg x ∆ Y P = 2(d P -1) deg x P . Since this is also equal to d P , the only possibility is deg x P = 1 and d P = 2. Using the action of GL 2 (K), we can therefore assume that Q = Y 0 Y 1 . Under all these conditions, P is of the form

It is impossible for P to have constant resultants with strictly more than d P linear polynomials in K[Y ], since otherwise, by interpolation, it would have coefficients in K, contradicting its irreducibility. This proves that deg

2 . This proves the announced inequality and in this case an equality is impossible.

Cases (2) and (3): in the remaining cases, we have

Proof. Let p = αq + uy + v be the euclidean division of p by and Y 2 0 + (x + a 1 )Y 2 1 . Using Lemma 5.4, we deduce that they are of the form

The constant b i can be removed using G-equivalence. This gives the conclusion for d odd.

If d is even, Lemma 5.3 shows that F can not have more that 2 linear factors. We have therefore three cases to consider:

• If F has no linear factor, then by 5.3 we can assume that P 1 = Y 2 0 + (x + a 1 )Y 2 1 for some a 1 ∈ K. The proof in this case is very similar to the previous case and left to the reader.

• If F has one linear factor, then by Lemma 5.3, it is enough to consider the case

1 for some a, b ∈ K. The other factors P i must be quadratic and minimal, and also have constant resultant with F 1 . The resultant with Y 1 shows that the P i 's are monic in Y 0 . If n ≥ 2, the resultant of P 2 and

1 is constant, and Lemma 5.4 imposes that P 1 = Y 0 P 2 + βY 3 1 with β ∈ K. This is incompatible with β = x + b, hence we must deduce that n = 1 and F = F 1 .

• If F has two linear factors, then by Lemma 5.3, it is enough to consider the case

1 for some a ∈ K * and b ∈ K. The other factors P i must be quadratic and minimal, and also have constant resultant with

with a 2 and c 2 in K. But this is incompatible with deg x ∆ Y P 2 = 1, hence we must deduce that n = 1 and F = F 1 .

Appendices

A. Small ∆ y versus small ∆ x . The equivalence (a) ⇔ (b) of Theorem 3.3 asserts that a monic polynomial is minimal with respect to y if and only it is monic and minimal with respect to x. We prove here a generalization of this statement to the case of nonmonic polynomials.

For f ∈ K[x, y] a nonconstant bivariate polynomial we let lc y (f ) (resp. lc x (f )) stand for the leading coefficient of f seen as a polynomial in y (resp. in x). We denote by n x (resp. n y ) the number of distinct Moreover, given such a pair u, v, we have the equality

Proof. We know by Theorem 1.3 that f is minimal if and only if the curve C ⊂ P 1 × P 1 is rational, with a unique place along x = ∞ and smooth outside this line. Rationality is equivalent to the existence of a proper parametrization, that is the existence of rational functions u, v ∈ K(s) such that items (1) and ( 2) hold. The rational map

extends to a morphism

whose image is C. Moreover, the parametrization being proper, this morphism establishes a one-to-one correspondence between P 1 and the places of C. The fact that C has a unique place along the line x = ∞ is equivalent to the fact that u has a unique pole on P 1 . Up to a Moebius transformation on P 1 , there is no less to assume that this pole is s = ∞, meaning precisely that u ∈ K[s]. The restriction of C to A 1 × P 1 is smooth if and only if its restrictions to the two affine charts U := A 1 × {y = ∞} A 2 and V := A 1 × {y = 0} A 2 . But this is also equivalent to the fact that the coordinate rings