
HAL Id: hal-02137318
https://normandie-univ.hal.science/hal-02137318

Submitted on 22 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Osculation and Application to Factorization of
Sparse Polynomials

Martin Weimann

To cite this version:
Martin Weimann. Algebraic Osculation and Application to Factorization of Sparse Polynomials.
Foundations of Computational Mathematics, 2012, 12 (2), pp.173-201. �10.1007/s10208-012-9114-z�.
�hal-02137318�

https://normandie-univ.hal.science/hal-02137318
https://hal.archives-ouvertes.fr


ALGEBRAIC OSCULATION AND APPLICATION TO

FACTORIZATION OF SPARSE POLYNOMIALS

by

Martin Weimann

Abstract. — We prove a theorem on algebraic osculation and apply our result to

the computer algebra problem of polynomial factorization. We consider X a smooth

completion of C2 and D an effective divisor with support the boundary ∂X = X \
C2. Our main result gives explicit conditions that are necessary and sufficient for a

given Cartier divisor on the subscheme (|D|,OD) to extend to X. These osculation

criterions are expressed with residues. When applied to the toric setting, our result
gives rise to a new algorithm for factoring sparse bivariate polynomials which takes

into account the geometry of the Newton polytope.

1. Introduction

This article is originally motivated by the wellknown computer algebra problem of
polynomial factorization. We introduce here a new method to compute the absolute
factorization of sparse bivariate polynomials, which is based on criteria for algebraic
osculation in toric varieties.

Since the 1980s, several deterministic or probabilistic algorithms have been ob-
tained to compute the irreducible absolute factorization of dense bivariate polyno-
mials defined over a number field K ⊂ C. We refer the reader to [17] and [9] for a
large overview of the subject. In many cases, these algorithms - referred to here as
LR-algorithms - are based on a Lifting and Recombination scheme, which detects the
irreducible absolute factors of a polynomial f ∈ K[t1, t2] in its formal decomposition
in K̄[[t1]][t2]. Although this approach a priori necessitates an exponential number
of possible recombinations, researchers succeeded in the last decade to develop LR-
algorithms running now in a quasi-optimal polynomial complexity (see for instance
[8], [9] and the reference therein).

In general, an LR-algorithm needs a generic affine change of coordinates. When f
has many zero coefficients in its dense degree d monomial expansion - we say that f is
sparse - this step loses crucial information carried by the Newton polytope Nf of f .
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2 MARTIN WEIMANN

We propose here a new method which avoids this generic change of coordinates. We
use an osculation criteria at the toric infinity in order to detect and compute the irre-
ducible absolute factors of f from the factorization of its univariate facet polynomials
lifted to analytic factors with a suitable precision. This allows us to use the geometry
of the Newton polytope and to reduce the number of possible recombinations of the
local factors when compared to the Galligo-Rupprecht algorithm [13]. This approach
recently led to the first deterministic algorithm that factors rational bivariate poly-
nomials in small polynomial time in the volume of the Newton polytope (see [33]).
Let us present our main results.

Algebraic Osculation. A natural way to take advantage of the Newton polytope
information is to embed the complex curve of f in a smooth toric compactification
X of the complex plane. For a well chosen X, we can recover Nf (up to translation)
from the Picard class of the Zariski closure C ⊂ X of the affine curve of f and we
want to use this information. The boundary ∂X = X \ C2 of X is a normal crossing
divisor whose Picard group satisfies

Pic(∂X) ' Pic(X).

Thus, it’s natural to pay attention to the restriction of C to some effective Cartier
divisor D (more precisely, to the subscheme (|D|,OD)) with support |∂X|. In order
to detect the irreducible components of C, we need to find conditions for when a
Cartier divisor on D extends to X. This is achieved in our main result:

Theorem 1.1. — Let X be a smooth projective compactification of C2, whose bound-
ary ∂X = X \ C2 is a normal crossing divisor. Let D be an effective Cartier divisor
with support |∂X| and let Ω2

X(D) be the sheaf of meromorphic 2-forms with polar
locus bounded by D.

There exists a pairing 〈·, ·〉 between the group of Cartier divisors on D and the
vector space H0(X,Ω2

X(D)) with the property that a Cartier divisor γ on D extends
to a Cartier divisor E on X if and only if

〈γ,Ψ〉 = 0 ∀ Ψ ∈ H0(X,Ω2
X(D)).(1)

The divisor E is unique up to rational equivalence.

Not surprisingly, we’ll construct such a pairing by using Grothendieck residues
(see for instance [21] where the authors study the interplay between residues and
zero-dimensional subscheme extensions). When X is a toric surface we obtain an
explicit formula for 〈γ,Ψ〉, generalizing a theorem of Wood [35] who considers the
projective case X = Pn. Although the proof of Wood’s theorem follows from a direct
calculation in a unique affine chart, the proof of Theorem 1.1 requires to compute
the cohomological obstruction to extend line bundles from D to X. We use then the
Dolbeault ∂̄-resolution and the residue currents to make explicit the conditions.

Application to polynomial factorization. If two algebraic curves of fixed degree
osculate each other with sufficiently large contact orders on some finite subset, they
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necessarily have a common component. This basic observation permits us to derive
from Theorem 1.1 an algorithm which computes the absolute factorizion of a bivariate
polynomial f . The polynomial f is assumed to be defined over a subfield K ⊂ C and
we look for its irreducible decomposition over C.

Under the assumption f(0) 6= 0, we can associate to f a smooth toric completion
X of C2 whose boundary

∂X = D1 + · · ·+Dr

is a normal crossing toric divisor and such that the curve C ⊂ X of f does not contain
any torus fixed points of X. A Minkowski sum decomposition

Nf = P +Q

of the Newton polytope of f corresponds to a line bundle decomposition

OX(C) ' LP ⊗ LQ,
where LP and LQ are both globally generated with at least one non trivial global
section.

We prove the following result (Subsection 3.2):

Theorem 1.2. — There exists a unique effective divisor D with support |∂X| and
rationally equivalent to C + ∂X. Let γ be the restriction of C to D and suppose that
Nf = P + Q. There exists an absolute factor q of f with Newton polytope Q if and
only if there exists 0 ≤ γ′ ≤ γ such that

deg(γ′ ·Di) = degLQ|Di
, i = 1, . . . , r

and so that the osculation conditions (1) hold for the pair (D, γ′). The factor q is
computed from γ′ by solving a sparse linear system of 2 Vol(Q)+deg(γ′ ·∂X) equations
and Card(Q ∩ Z2) unknowns.

When the facet polynomials (Subsection 3.1) of f are square-free over K̄, we can
derive from Theorem 1.2 a vanishing-sum LR-algorithm (Subsection 3.4). It first
computes the Newton polytope decomposition

Nf = Q1 + · · ·+Qs

associated to the absolute decomposition of f . Then it computes the associated
irreducible absolute factorization

f = q1 × · · · × qs
with floating point computations and with a given precision. The numerical part of
our algorithm reduces to the absolute factorization of the univariate exterior facet
polynomials and the algorithmic complexity depends now on the Newton polytope
Nf instead of the degree d = deg(f). In particular, we fully profit from the com-
binatoric restrictions imposed by Ostrowski’s conditions Npq = Np + Nq (see [28])
and the number of possible recombinations decreases when compared to the Galligo-
Rupprecht algorithm [13]. Let us mention that Theorem 1.1 concerns also non-toric
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C2-completions. This permits in theory to take advantage of the singularities of C
along the boundary of X when f has non-reduced facet polynomials (see Subsection
3.6).

Related results. Our results consitute the heart of a deterministic algorithm de-
veloped later by the author in [33] for factoring rational bivariate polynomials in
low-degree polynomial time in the volume of the Newton polytope. Our method is in-
spired by an originally work of the author with M.Elkadi and A.Galligo [12] where we
use toric interpolation criterions [32] in an open neighborhood of ∂X (see Subsection
3.5). By using tools from combinatorics, the authors in [1] obtain a comparable facet
lifting process which takes too into account the geometry of the Newton polytope, but
no efficient complexity bounds are given. In [3], the authors reduce the factorization
of a sparse polynomial to smaller dense factorizations in polynomial time in the input
size.

Organization. The article is organized as follows. Section 2 is devoted to algebraic
osculation. We introduce the problem in Subsection 2.1 and we construct the residue
pairing in Subsection 2.2. We give the precise statement of Theorem 1.1 in Subsection
2.3 and we give the proof in Subsection 2.4. We give an explicit formula for the
osculation criterions when X is a toric surface in Subsection 2.5. In Section 3 we
pay attention to polynomial factorization. We prove Theorem 1.2 in Subsections 3.2
and 3.3 and we develop the sketch of a sparse polynomial factorization algorithm
in Subsection 3.4. We compare the underlying algorithmic complexity with related
results in Subsections 3.5 and discuss non toric information in Subsection 3.6. We
conclude in the last Subsection 3.7.

Aknowledgment. We would like to thank Michel Brion, Stéphane Druel, José Igna-
cio Burgos and Martin Sombra for their helpful comments. We also thank Mohamed
Elkadi and André Galligo who suggested to us to pay attention to the interplay be-
tween toric geometry and sparse polynomial factorization.

2. Algebraic osculation

2.1. Notations and motivation. — In the sequel, (X,OX) denotes a smooth
projective surface where

X = X0 t |∂X|

is the disjoint union of an affine plane X0 ' C2 with the support of a simple normal
crossing divisor

∂X = D1 + · · ·+Dr.

We say that X is a completion of the complex plane with boundary ∂X.

An osculation data on the boundary of X is a pair (D, γ) where

D = (k1 + 1)D1 + · · ·+ (kr + 1)Dr
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is an effective divisor with support |D| = |∂X| and γ is a Cartier divisor on the sub-
scheme (|D|,OD). For convenience, we will identify D and the subscheme (|D|,OD).

An osculating divisor for (D, γ) is a Cartier divisor E on X which restricts to γ
on D. That is

i∗(E) = γ,

where i : D → X is the inclusion map. In other words, we are looking for a divisor
E with prescribed restriction to the kthi -infinitesimal neighborhood of Di. In general,
such an osculating divisor does not exist and we are interested here to determine the
necessary extra conditions.

We say that γ has support |Γ|, where Γ designs the zero-cycle γ · ∂X. Thus, γ can
be uniquely written as a finite sum

γ =
∑
p∈|Γ|

γp,

each γp being the restriction to D of a germ of an analytic cycle of X at p

γ̃p = div(fp),

with fp a germ of meromorphic function. When γ̃p is smooth and intersects transver-
sally ∂X, a curve restricts to γp at p if and only if it has contact order at least kp
with γ̃p, where kp + 1 is the multiplicity of D at p. This observation motivates the
terminology of algebraic osculation.

2.2. Residues. — It’s a classical fact that Grothendieck residues play a crucial
role in osculation and interpolation problems. Let us mention for instance [19], [23],
[31] and [32] for interpolation results and [21] for the interplay between residues and
subscheme extensions. Not surprisingly, residues will appear here too.

Let Ω2
X be the canonical bundle of X. We identify the line bundle Ω2

X(D) with the
sheaf of meromorphic forms with polar locus bounded by D. Thus, any global section
Ψ of Ω2

X(D) restricts to a closed 2-form on X0. Since X0 ' C2 is simply connected,
there exists a rational 1-form ψ on X such that

Ψ|X0
= dψ|X0

.

For p ∈ |Γ|, we denote by ψp the germ of ψ in the chosen local coordinates. Let hp
be a local equation of D at p. Thus hpψp is holomorphic at p. Suppose for a while that
fp is holomorphic and irreducible. Then, following [20], we define the Grothendieck
residue at p of the germ of meromorphic 2-form dfp ∧ ψp/fp as

resp

[dfp
fp
∧ ψp

]
:= lim

ε→0

1

(2iπ)2

∫
up(ε)

dfp
fp
∧ ψp,(2)

where up(ε) = {x close to p, |fp(x)| = ε1, |hp| = ε2}.
This definition does not depend on the choice of local coordinates [20]. By the

Stokes theorem, it only depends on dψ = Ψ. Moreover, the transformation law [20]
implies that (2) only depends on fp modulo (hp). That is, (2) depends on γp and not
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on the chosen lifting γ̃p = {fp = 0}. By linearity, we can extend (2) to any germ of
analytic cycle γ̃p = div(fp) and it follows finally that (2) defines a bilinear operator

〈γ,Ψ〉p := resp

[dfp
fp
∧ ψp

]
between the group of Cartier divisor of D and the C-vector space H0(X,Ω2

X(D)). We
refer to the proof of Theorem 1.1 (Subsection 2.4) for more details.

2.3. Criterions for algebraic osculation. — We keep previous notations. Our
main result is the following precise formulation of Theorem 1.1:

Theorem 2.1. — Let X be a smooth projective completion of C2 with a normal
crossing boundary ∂X and consider an osculating data (D, γ) on ∂X.

1. There exists a Cartier divisor E on X which restricts to γ on D if and only if∑
p∈|Γ|

〈γ,Ψ〉p = 0 for all Ψ ∈ H0(X,Ω2
X(D)).(3)

The divisor E is unique up to rational equivalence.
2. If moreover γ is effective and

H1(X,OX(E −D)) = 0,

then there exists an effective divisor of X which restricts to γ on D.

The necessity of (3) follows from the theorem of residues [20]. The difficult part
consists in showing that these conditions are also sufficient. The proof will be given
in the next Subsection 2.4. Let us first illustrate Theorem 2.1 on a simple example.

Example 2.2. — (The Reiss relation). Let X = P2 and consider a finite collection
of d > 0 smooth analytic germs γ̃p transversal to a line L ⊂ P2. Suppose that we look
for an algebraic curve C ⊂ P2 of degree d which osculates each germ with a contact
order ≥ 2. This problem leads to the osculation data (D, γ), where D = 3L and γ is
the restriction to D of

∑
p∈|Γ| γ̃p. There is an isomorphism

H0(P2,Ω2
P2(3L)) ' H0(P2,OP2) ' C

and we can check that a generator is given by the form Ψ whose restriction to C2 =
P2 \ L is equal to Ψ|C2 = dt1 ∧ dt2 in affine coordinates (t1, t2). Thus we can choose
ψ|C2 = t1dt2. Letting t1 = T1/T0 and t2 = T2/T0 we obtain

ψ =
T1(T0dT2 − T2dT0)

T 3
0

in the P2 homogeneous coordinates [T0 : T1 : T2]. Up to an affine change of coor-
dinates, we can suppose that γ is supported in the affine chart T2 6= 0. In the new
affine coordinates x = T0/T2 and y = T1/T2, the line L has local equation x = 0 and
ψ = −ydx/x3. Moreover, we can choose a Weierstrass equation

γ̃p = y − φp(x)
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for the smooth germ γ̃p, where φp ∈ C{x}. By the Cauchy formula, we obtain

resp

[ydx ∧ d(y − φp)
x3(y − φp)

]
= res0

[
φp(x)

dx

x3

]
=

1

2
φ′′p(0),

where res0 is a univariate residue and φ′′p is the second derivative of φp. Finally, (3)
is here equivalent to that ∑

p∈|Γ|

φ′′p(0) = 0.(4)

For degree reasons, any osculating divisor is rationally equivalent to dL. Since
H1(OP2(d − 3)) = 0, the relation (4) is finally equivalent to that there exists an
osculating curve C for (D, γ).

It’s easy to see directly the necessity of (4). An osculating curve is given by a
degree d polynomial C = {f(x, y) = 0} that can be factorized

f(x, y) =
∏
p∈|Γ|

(y − up(x))

in C{x}[y]. Since deg(f) = d, the sum
∑
p∈|Γ| up(x) is a degree 1 polynomial and the

relation ∑
p∈|Γ|

u′′p(0) = 0

holds. If C osculates γ̃p with contact order 2, then φp and up have the same Taylor
expansion up to order 2, which directly shows necessity of (4). When we express the
second derivative of up in terms of the partial derivative of f , we recover the classical
Reiss relation [18]. This result is obtained by Griffiths-Harris in [20], Chapter 6.

2.4. Proof of Theorem 2.1. — Let us give first a brief overview of the proof.
The given Cartier divisor γ on D corresponds to a line bundle L ∈ Pic(D) together
with a global meromorphic section f of L. An osculating divisor E for the pair (D, γ)

corresponds to a line bundle L̃ ∈ Pic(X) together with a global meromorphic section

f̃ which restrict respectively to L and f on D. The problem of lifting the section f
will follow easily from the Serre vanishing theorem. Thus, in order to extend γ from
D to X, the main point is to understand the cokernel of the restriction map Pic(X)→
Pic(D). By using the exponential sequences of D and X and Cech cohomology, we
show first that we can associate to the line bundle L a cocycle ζ ∈ H2(X,OX(−D))
such that L extends from D to X if and only if ζ = 0. Then, we use the Dolbeault
∂̄-resolution of the sheaf Ω2

X and residue currents in order to make explicit the Serre
Duality Pairing between the two vector spaces H2(X,OX(−D)) and H0(X,Ω2

X(D)).
One obtains in such a way the formula (3) of Theorem 2.1. The second point of
Theorem 2.1 follows directly from basic exact sequences.

Let us come now to the proof of Theorem 2.1. All sheaves are considered here
as analytic sheaves and any sheaf on a subscheme Y ⊂ X is implicitly considered
as a sheaf on X by zero extension. The following lemma gives the cohomological
obstruction for extending the line bundle L from D to X.
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Lemma 2.3. — There is a decomposition of Pic(D) in a direct sum

Pic(D) = Pic(X)⊕H1(D,OD).

Proof. — The classical exponential exact sequence exists for any curve of X (reduced
or not, see [5] p.63). We obtain the commutative diagram

(5)
0 −→ ZX −→ OX

exp(2iπ·)−→ O∗X −→ 0
↓ ↓ ↓

0 −→ ZD −→ OD −→ O∗D −→ 0

where ZD ⊂ OD is the subsheaf of Z-valued functions (so that ZD ' Z|D|) and vertical

arrows are surjective restriction maps. Since X is rational, Hi(X,OX) = 0 for i > 0.
Using the associated long exact cohomological sequences, we obtain the commutative
diagram
(6)

0 → Pic(X)
δX→ H2(X,ZX) → 0

↓ ↓ r ↓ r′ ↓
H1(D,ZD) → H1(D,OD)

e→ Pic(D)
δD→ H2(D,ZD) → H2(D,OD).

Here r, r′ are restriction maps, δD, δX are the coboundary maps corresponding to
Chern classes on D and X (see [5], Ch. 1 for the non reduced case), and e is induced
by the exponential map.

We claim that r′ is an isomorphism. Let j : X0 → X be the inclusion map of
X0 = X \ |D|. The short exact sequence

(7) 0→ j!(ZX0
)→ ZX → Z|D| → 0

gives rise to the long exact cohomological sequence

H2
c (X0)→ H2(X,ZX)→ H2(|D|,Z|D|)→ H3

c (X0)

where H∗c (X0) is the compact support cohomology of X0. The cohomology H∗c (X0) is
dual to the singular homology H∗(X0) which vanishes in degree 1, 2, 3 since X0 ' C2,
and the claim follows. Thus

δD ◦ r = r′ ◦ δX
is an isomorphism, and Pic(X) is a direct summand of Pic(D). The exponential
cohomological sequence for X is exact in degree 0 so that H1(X,ZX)→ H1(X,OX)
is injective and H1(X,ZX) = 0. We have just seen that H2

c (X0) = 0, and finally (7)
implies H1(|D|,Z|D|) = 0. It follows that ker(δD) ' H1(D,OD).

In all what follows, one keeps the notations of the proof of Lemma 2.3.

Corollary 2.4. — There is an isomorphism Pic(X) ' Pic(∂X).

Proof. — By Lemma 2.3, it’s enough to show that H1(Dred,ODred
) = 0 where ∂X =

Dred is the reduced part of D. Since H1(Z,ZZ) = 0 for a finite set Z, there is a
surjection

H1(|D|,Z|D|)→
r⊕
i=1

H1(Di,ZDi
).
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Since H1(|D|,Z|D|) = 0 by the proof of Lemma 2.3, one thus has H1(Di,ZDi
) = 0

for all i and each Di is a rational curve. In particular, H1(ODi) = 0. Moreover,
H1
c (X0) = 0 so that H0(X,ZX) → H0(|D|,Z|D|) is surjective and |D| is connected.

Since D is simply connected too (because H1(|D|,Z|D|) = 0), one obtains that |D|
is a connected tree of rational curves. There thus exists i so that Dred = Di + D′,
where |Di| ∩ |D′| is a point and D′ remains a connected and simply connected tree.
By induction on the number of irreducible branches of Dred, it’s thus enough to show
that H1(ODred

) ' H1(OD′). The short exact sequence

0→ ODred
→ ODi

⊕OD′ → ODi·D′ → 0

gives the long exact sequence in cohomology

0 → H0(ODred
)→ H0(ODi

)⊕H0(OD′)→ H0(ODi·D′)

→ H1(ODred
)
α→ H1(ODi

)⊕H1(D′,OD′)→ H1(ODi·D′).

By assumption, Dred is a normal crossing divisor and Di · D′ = {pt} as a reduced
subscheme. The diagram then begins by 0→ C→ C⊕ C→ C, which forces α to be
injective. Since H1(ODi

) = H1(O{pt}) = 0, this gives H1(ODred
) ' H1(OD′).

By Corollary 2.4, there exists a unique line bundle L̃ ∈ Pic(X) so that L̃|∂X '
L|∂X . Let us consider the line bundle

L0 := L ⊗ L̃−1
|D .

Of course, L lifts to X if and only if L0 lifts. But L0|Dred
being trivial by construc-

tion, L0 lifts to X if and only if L0 ' OD. Since the Chern class δD(L0) = 0 (by
construction), we deduce from the diagram (6) that there exists β ∈ H1(D,OD) with
e(β) = L0. Moreover e is injective and finally

L extends to X ⇐⇒ L0 ' OD ⇐⇒ β = 0.

There remains to make explicit the condition β = 0 in terms of the given data (D, γ).
We first use Cech cohomology. Suppose that L0 is given by the 1-cocycle class g =
{gUV } ∈ H1(D,O∗D), relative to some open covering U of X. We can suppose U fine
enough to ensure a logarithmic determination

h̃UV :=
1

2iπ
log(g̃UV ) ∈ OX(U ∩ V ),

where g̃UV ∈ O∗X(U ∩ V ) is some local lifting of gUV . Since δD(g) = 0, the classes

hUV ∈ OD(U ∩ V ) of h̃UV define a 1-cocycle class {hUV } ∈ H1(D,OD) which rep-
resents β (this definition does not depend on the choice of the liftings). Since X is
rational, the structural sequence for D

0 −→ OX(−D) −→ OX −→ OD −→ 0

gives rise to a coboundary isomorphism δ : H1(D,OD) → H2(X,OX(−D)) while
Serre Duality gives a non degenerate pairing

H2(X,OX(−D))⊗H0(X,Ω2
X(D))

(·,·)−→ H2(X,Ω2
X)

Tr' C,
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where Tr is the trace map [5]. We identify OX(−D) with the sheaf of functions
vanishing on D and Ω2

X(D) with the sheaf of meromorphic 2-forms with polar locus
bounded by D. The Serre pairing (δ(β),Ψ) with Ψ ∈ H0(X,Ω2

X(D)) is represented
by the 2-cocyle class

ζΨ :=
{

(h̃UV + h̃VW + h̃WU )Ψ|U∩V ∩W

}
∈ H2(X,Ω2

X)

and β = 0 if and only if

Tr(ζΨ) = 0 ∀ Ψ ∈ H0(X,Ω2
X(D)).

To make explicit the complex numbers Tr(ζΨ), we use the Dolbeault ∂̄-resolution of

Ω2
X . We denote by D(p,q)

X the sheaf of germs of (p, q)-currents on X. Let ψ be a germ
of meromorphic q-form at p ∈ X. We recall for convenience that the principal value

current [ψ] ∈ D(q,0)
X,p and the residue current ∂̄[ψ] ∈ D(q,1)

X,p have the Cauchy integral
representations

〈[ψ], θ〉 := lim
ε→0

1

2iπ

∫
U∩{|u|>ε}

ψ ∧ θ

and

〈∂̄[ψ], θ〉 := lim
ε→0

1

2iπ

∫
U∩{|u|=ε}

ψ ∧ θ,

where θ is some test-form with appropriate bidegree and u = 0 is a local equation for
the polar divisor of ψ in a small neighborhood U of p (see [30] for instance). If ψ1

and ψ2 are two germs of meromorphic 1-forms at p ∈ X whose polar locus intersect
properly at p, one can multiply the two residue currents ∂̄[ψ1] and ∂̄[ψ2]. If θ is a
test-function so that θ ≡ 1 in a neigborhood of p, we recover the usual Grothendieck
residue introduced in formula (2) of Subsection 2.2

〈∂̄[ψ1] ∧ ∂̄[ψ2], θ〉 = resp[ψ1 ∧ ψ2].(8)

The Dolbeault resolution of Ω2
X is given by the exact complex of sheaves

0 −→ Ω2
X

[·]−→ D(2,0)
X

∂̄−→ D(2,1)
X

∂̄−→ D(2,2)
X −→ 0.

This sequence breaks in the two short exact sequences

0→ Ω2
X → D

(2,0)
X

∂̄→ Z(2,1)
X → 0 and 0→ Z(2,1)

X → D(2,1)
X

∂̄→ D(2,2)
X → 0,

where Z(2,1)
X ⊂ D(2,1)

X is the subsheaf of ∂̄-closed (2, 1)-currents. Since the sheaves

D(p,q)
X are fine, we obtain the two coboundary isomorphisms

H0(X,D(2,2)
X )

∂̄H0(X,D(2,1)
X )

δ1−→ H1(X,Z(2,1)
X ) and H1(X,Z(2,1)

X )
δ2−→ H2(X,Ω2

X).

For any Ψ ∈ H0(X,Ω2
X(D)), there thus exists a global current TΨ ∈ H0(X,D(2,2)

X )
whose class [TΨ] modulo ∂̄ is the unique solution to ζΨ = δ2 ◦ δ1([TΨ]), and we have
equality

Tr(ζΨ) = 〈TΨ, 1〉.
To make explicit TΨ, we need the following lemma.
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Lemma 2.5. — 1. There exists a Cartier divisor γ̃ on a small open neighborhood B
of |D| which restricts to γ on D.

2. There exists a Cartier divisor E on X which restricts to Γ on Dred and there
is an isomorphism L̃ ' OX(E).

Proof. — 1. By means of a partition of unity, we can construct a C∞ function u on
X which vanishes exactly on |D|, giving an open tubular neighborhood of D

Bε = {|u| < ε}.

Let f = {fU} be a meromorphic section of L with Cartier divisor γ, and consider

some local meromorphic liftings f̃U . We can choose V a sufficiently fine covering of

Bε so that f̃U ∈ OX(U)∗ for U ∩ |Γ| = ∅ and so that U ∩ V ∩ |Γ| = ∅ for distinct

U, V ∈ V. If U now intersects |Γ|, we can choose ε′ < ε small enough so that f̃U has

no poles nor zeroes on U ∩V ∩Bε′ . In such a way, f̃U/f̃V is invertible on U ∩V ∩Bε′ ,
giving a Cartier divisor γ̃ on Bε′ which restricts to γ on D.

2. Let F be an effective divisor of X which intersects properly |Dred| and so that
the line bundle F = OX(F ) is very ample. The isomorphisms

ODred
(Γ) ' L|Dred

' L̃|Dred

combined with the structural sequence for Dred gives the exact sequence

0→ L̃ ⊗OX(nF −Dred)→ L̃ ⊗OX(nF )→ ODred
(Γ + nΓF )→ 0

for any integer n, where ΓF = F ·Dred. For n big enough, we have

H1(L̃ ⊗ OX(nF −Dred)) = 0

by the Serre vanishing theorem so that Γ + nΓF lifts to some Cartier divisor G on
X. Then, the Cartier divisor E = G − nF restricts to Γ on Dred. By construction
OX(E) and L = OD(γ) have the same restriction to Dred = ∂X, and Corollary 2.4

implies L̃ ' OX(E).

Let B, γ̃, and E be as in Lemma 2.5, with V as the associated open covering of B.
One keeps the notations of the proof of Lemma 2.5. Since OB(γ̃)⊗OB(−E) restricts
to L0 on D, we can choose the liftings g̃UV introduced after the proof of Corollary
2.4 to be g̃UV = mU/mV , where m = {mU}U∈V is the global meromorphic section of
OB(γ̃)⊗OB(−E) with Cartier divisor

div(m) = γ̃ − E|B
on B. For B small enough and for distincts U, V ∈ V, one has mU |U∩V ∈ O∗B(U ∩ V )
and there exists a logarithmic determination

log(mU |U∩V ) :=

∞∑
n=1

1

n

(
1−mU |U∩V

)n
.

Since div(m)·Dred = 0, the restriction of m to Dred is a constant, that we can suppose
to be 1. There thus exists n0 ∈ N such that the meromorphic function (1 − mU )n

vanishes on the divisor D ∩ U for all n ≥ n0 and all U ∈ V.
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Let Ψ ∈ H0(X,Ω2
X(D)). We can multiply a principal value current (or a residue

current) with a residue current as soon as the supports of their singular sets have a
proper intersection. Then, by the theorem of duality [30], we have here[(

1−mU

)n]
∂̄
[
ΨU

]
= 0 ∀n ≥ n0

so that the principal value currents

SU :=

n0∑
n=1

1

n

[(
1−mU

)n]
satisfy

(SU − SV )∂̄
[
ΨU∩V

]
=
[

log(g̃U∩V )
]
∂̄
[
ΨU∩V

]
(9)

for all U, V ∈ V. We obtain in such a way a global (2, 2)-current TB ∈ Γ(B,D(2,2)
B )

on B, locally given by

TU = ∂̄SU ∧ ∂̄[ΨU ]

for all U ∈ V. Since Ψ is holomorphic outside |D|, we have TU = 0 when U ∩ |D| = ∅
and we can extend TB by zero to a global current T on X. Using (9) and the definition
of the coboundary maps, we check easily that T is by construction solution to

δ2 ◦ δ1(T ) = ζΨ.

Let now ψ be some rational 1-form on X so that dψ|X0
= Ψ|X0

. For all U ∈ V, we
define the local currents

RU :=
(
dSU −

[dmU

mU

])
∧ ∂̄
[
ψU
]

and T ′U = ∂̄
[dmU

mU

]
∧ ∂̄
[
ψU
]
.

From (9) we deduce equalities RU |U∩V = RV |U∩V , and the RU ’s define a global
(2, 1)-current RB on B. By assumption, mU/mV is invertible on U ∩ V so that
T ′U |U∩V = T ′V |U∩V , giving a global (2, 2)-current T ′B on B. Both currents RB and T ′B
are supported on |D| ⊂ B and can be extended by zero to global currents R and T ′

on X.
Since TU has support a finite set, the Stokes theorem gives equalities

〈TU , 1〉 = 〈∂̄SU ∧ ∂̄[ΨU ], 1〉
= 〈∂̄SU ∧ ∂̄d[ψU ], 1〉
= 〈∂̄(dSU ) ∧ ∂̄[ψU ], 1〉 = 〈T ′U + ∂̄RU , 1〉.

Thus, 〈T, 1〉 = 〈T ′ + ∂̄R, 1〉 = 〈T ′, 1〉. Since div(m) = γ̃ − E|B , the Lelong-Poincaré
equation gives equality

〈T ′, 1〉 = 〈T ′B , 1〉 = 〈[γ̃] ∧ ∂̄[ψ]|B , 1〉 − 〈[E]|B ∧ ∂̄[ψ]|B , 1〉,

where [·] designs here the integration current associated to analytic cycles. The current
[E]|B∧∂̄[ψ]|B is supported on the compact subset |Γ| ⊂ B, and the integration current

is ∂̄-closed. We deduce

〈[E]|B ∧ ∂̄[ψ]|B , 1〉 = 〈[E] ∧ ∂̄[ψ], 1〉 = 〈∂̄([E] ∧ [ψ]), 1〉 = 0.
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The analytic set B ∩ γ̃ is a disjoint union of analytic cycles γ̃p = {fp = 0}. If ψp is
the germ of ψ at p in the chosen local coordinates, we obtain finally

Tr(ζΨ) = 〈T, 1〉 =
∑
p∈|Γ|

〈[γ̃p] ∧ ∂̄[ψp], 1〉

=
∑
p∈|Γ|

〈∂̄[dfp/fp] ∧ ∂̄[ψp], 1〉

=
∑
p∈|Γ|

resp
(dfp
fp
∧ ψp

)
=
∑
p∈|Γ|

〈γ,Ψ〉p,

where the third and fourth equalities follow respectively from the Poincaré-Lelong
equation and formula (8). Finally, (3) is equivalent to that L = OD(γ) extends to

L̃ ∈ Pic(X). Note that the complex number
∑
p∈|Γ|〈γ,Ψ〉p only depends on the line

bundle OD(γ) and on Ψ by construction. If L extends to L̃, we can use the Serre
vanishing theorem as in Lemma 2.5 (with (D, γ) instead of (Dred,Γ)) and show that

L̃ ' OX(E) for some Cartier divisor E on X which restricts to γ on D. The lifting

bundle L̃ being unique (up to isomorphism), the osculating divisor E is unique up to
rational equivalence. This ends the proof of the first point.

If conditions (3) hold, then L ' OD(E) for some Cartier divisor E on X. By

tensoring the structural sequence of D with L̃ = OX(E), we obtain the short exact
sequence

0→ OX(E −D)→ OX(E)→ OD(E)→ 0.

If γ is effective and H1(X,OX(E − D)) = 0, the global section f ∈ H0(D,OD(E))

with zero divisor γ automatically lifts to f̃ ∈ H0(X,OX(E)) and C := div0(f̃) is an
effective osculating divisor for (D, γ). This ends the proof of Theorem 2.1. �

2.5. An explicit formula in the toric case. — We show now that we can make
explicit the osculation conditions (3) in the case of a toric variety X. We refer the
reader to [14] and [11] for an introduction to toric geometry.

2.5.1. Preliminaries. — Let us suppose now that X is a toric surface. The surface X
is a disjoint union of a copy of the torus (C∗)2 with some toric divisors D0, . . . , Dr+1

that are the Zariski closures of the 1-dimensional orbits of X under the torus action.
Let us suppose moreover that X0 ' C2 is stable under the torus action. Then, we
can order the Di’s so that

∂X = D1 + · · ·+Dr

is the boundary of X and D0 and Dr+1 are the Zariski closures of the two 1-
dimensional orbits contained in X0.

Let Σ be the fan of X. We denote by ρi ∈ Σ the ray associated to the toric divisor
Di. Since X is smooth, its fan Σ is regular and we can order the Di’s in such a way
that the generators ηi of the monoids ρi ∩ Z2 satisfy

det(ηi, ηi+1) = 1
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(with convention ηr+2 = η0). We denote by Ui the affine toric chart associated to the
two-dimensional cone ρiR+ ⊕ ρi+1R+. Thus,

Ui = SpecC[xi, yi] ' C2,

where torus coordinates t = (t1, t2) and affine coordinates (xi, yi) are related by
relations

tm = x
〈m,ηi〉
i y

〈m,ηi+1〉
i

for all m = (m1,m2) ∈ Z2, where tm = tm1
1 tm2

2 (see [11]). With these conventions,
the toric divisors Di and Di+1 have respective affine equations

Di|Ui
= {xi = 0} and Di+1|Ui

= {yi = 0}

and |Dj | ∩ Ui = ∅ for j 6= i, i+ 1.

We can associate to any toric divisor E =
∑r+1
i=0 eiDi a polytope

PE = {m ∈ R2, 〈m, ηi〉+ ei ≥ 0, i = 0, . . . , r + 1},(10)

where 〈·, ·〉 designs the usual scalar product in R2. Each Laurent monomial tm defines
a rational function on X with divisor

div(tm) =

r+1∑
i=0

〈m, ηi〉Di

and there is a natural isomorphism

H0(X,OX(E)) '
⊕

m∈PE∩Z2

C · tm,(11)

where OX(E) is the sheaf of meromorphic functions with polar locus bounded by E.
Similary, the rational form Ψm defined by

Ψm|(C∗)2 = tm
dt1 ∧ dt2
t1t2

has divisor div(Ψm) = div(tm)−KX where−KX := D0+· · ·+Dr+1 is an anticanonical
divisor, and there is equality

H0(X,Ω2
X(E)) =

⊕
m∈PE+KX

∩Z2

C · Ψm.(12)

2.5.2. Explicit osculating criterions. — Let (D, γ) be an osculation data on ∂X. We
note Γ = γ · ∂X and Γi = γ · Di. By (12), the conditions (3) of Theorem 2.1 are
equivalent to that ∑

p∈|Γ|

〈γ,Ψm〉p = 0 ∀m ∈ PD+KX
∩ Z2.(13)

We give here an explicit formula for the residues 〈γ,Ψm〉p when the following hypoth-
esis holds:

(H1) The zero-cycle Γ is reduced and does not contain any torus fixed points.
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In such a case, the germs γ̃p are smooth, irreducible, and have transversal intersection
with ∂X. For each p ∈ |Γ|, there is a unique component Di containing p and we can
choose the Weiertrass equation

fp(xi, yi) = yi − φp(xi)

for the germ γ̃p in the affine coordinates of Ui. The analytic function φp ∈ C{xi} is

well-defined modulo (xki+1
i ) and does not vanish at 0. We obtain the following

Proposition 2.6. — Suppose that Γ satisfies (H1) and let m ∈ PD+KX
∩Z2. Then,

〈γ,Ψm〉p =
1

(−〈m, ηi〉)!
∂−〈m,ηi〉

∂x
−〈m,ηi〉
i

(
φ
〈m,ηi+1〉
p

〈m, ηi+1〉

)
(0)(14)

for all p ∈ |Γi| and all i = 1, . . . , r. We use here conventions φkp/k := log(φp) for

k = 0 and ∂a/∂xa(φkp/k) := 0 for a < 0.

Since 0 /∈ PD+KX
, equality 〈m, ηi+1〉 = 0 implies 〈m, ηi〉 6= 0 and previous expres-

sion is well-defined since it depends only on the derivatives and logarithmic derivatives
of φp evaluated at 0 (recall that φp(0) 6= 0). Moreover, −〈m, ηi〉 ≤ ki and (14) only

depends on φp modulo (xki+1
i )

Example 2.7. — (Wood’s theorem). We keep the same hypothesis and notations of
Example 2.2, now with an osculating order k ≥ 2. Thus D = (k + 1)L. Hypothesis
(H1) holds and by Proposition 2.6 , there exists an osculating divisor for (D, γ) if and
only if

∂m1+m2

∂xm1+m2

( ∑
p∈|Γ|

φm1
p

m1

)
(0) = 0, ∀m ∈ (N∗)2, m1 +m2 ≤ k.(15)

Since H1(OP2(d− k− 1)) = 0 it follows that (15) is also sufficient for the existence of
an osculating curve. When k ≤ d+ 1, we recover a theorem of Wood, [35].

2.5.3. Proof of Proposition 2.6. — Let m ∈ PD+KX
. In particular 〈m, η0〉 ≥ 1 and we

can suppose that m2 6= 0. The form Ψm is holomorphic in X0 and Ψm|X0
= d(ψm|X0

)
where ψm is the rational 1-form on X determined by its restriction

ψm|(C∗)2 =
tm

m2

dt1
t1

to the torus. Let p ∈ |Γi|. We compute the associated residue in the chart Ui. If we
let (e1, e2) be the canonical basis of R2, we obtain

ψm|Ui
= x

〈m,ηi〉
i y

〈m,ηi+1〉
i

1

m2

[
〈e1, ηi〉

dxi
xi

+ 〈e1, ηi+1〉
dyi
yi

]
.

If 〈m, ηi〉 > 0, the form ψm is holomorphic at p ∈ |Γi| and resp(
dfp
fp
∧ψm) = 0. Suppose

now that 〈m, ηi〉 ≤ 0. The Cauchy integral representation for Grothendieck residues
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of meromorphic forms does not depend on ε for εi small enough, thanks to the Stokes
theorem. Thus, for sufficiently small εi’s, we obtain

resp

[
x
〈m,ηi〉
i y

〈m,ηi+1〉
i

dfp
fp
∧ dyi
yi

]
= − 1

(2iπ)2

∫
|xi|=ε1,|yi−φp|=ε2

x
〈m,ηi〉
i y

〈m,ηi+1〉
i

dφp
yi − φp

∧ dyi
yi

=
1

(2iπ)2

∫
|xi|=ε1

(∫
|yi−φp|=ε2

y
〈m,ηi+1〉−1
i

dyi
yi − φp

)
x
〈m,ηi〉
i dφp

=
1

2iπ

∫
|xi|=ε

x
〈m,ηi〉
i φ〈m,ηi+1〉−1

p φ′pdx

=
1

(−〈m, ηi〉 − 1)!

[
∂−〈m,ηi〉

∂x
−〈m,ηi〉
i

(
φ
〈m,ηi+1〉
p

〈m, ηi+1〉

)]
xi=0

where the two last equalities are application of the Cauchy formula. In the same way,
but simpler, we find

resp

[
x
〈m,ηi〉
i y

〈m,ηi+1〉
i

dfp
fp
∧ dxi
xi

]
=

−1

(−〈m, ηi〉)!

[
∂−〈m,ηi〉

∂x
−〈m,ηi〉
i

(
φ〈m,ηi+1〉
p

)]
xi=0

,

the minus sign coming from the chosen ordering of the numerator’s factors. We deduce

resp

(dfp
fp
∧ ψm

)
=

C

m2
× 1

(−〈m, ηi〉)!

[
∂−〈m,ηi〉

∂x
−〈m,ηi〉
i

(
φ
〈m,ηi+1〉
p

〈m, ηi+1〉

)]
xi=0

where

C = 〈e1, ηi〉〈m, ηi+1〉 − 〈e1, ηi+1〉〈m, ηi〉 = m2 det(ηi, ηi+1) = m2.

This ends the proof of Proposition 2.6. �

If two algebraic curves of fixed degree osculate each other on a finite subset with
sufficiently big contact orders, they necessarily have a common component. We show
in the next section that this basic fact permits to apply Theorem 2.1 and Proposition
2.6 to the classical Computer Algebra problem of polynomial factorization.

3. Application to polynomial factorization.

This section is devoted to develop a new algorithm to compute the absolute fac-
torization of a bivariate polynomial f . The method we introduce is comparable to a
toric version of the Hensel lifting. It is in the spirit of the Abu Salem-Gao-Lauder
algorithm [1], but uses vanishing-sums as in the Galligo-Rupprecht algorithm [13].
Our main contribution is that the underlying algorithmic complexity depends now
on the Newton polytope Nf instead of the degree deg(f). We prove our main re-
sults Theorem 3.3 and Proposition 3.5 in Subsections 3.2 and 3.3. We describe the
algorithm in Subsection 3.4 and we comment and compare it with related results in
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Subsection 3.5. We discuss non-toric singularities in Subsection 3.6 and we conclude
in the last Subsection 3.7.

3.1. Preliminaries and notations. — Let f ∈ K[t1, t2] be a bivariate polyno-
mial with coefficients in some subfield K ⊂ C. By absolute factorization of f , we
mean its irreducible decomposition in the ring C[t1, t2], computed by floating point
computation with a given precision.

Suppose that f has the monomial expansion

f(t) =
∑
m∈N2

cmt
m.

We denote by Nf the Newton polytope of f , defined to be the convex hull of the
exponents m ∈ N2 for which cm 6= 0. We recall that by a theorem of Ostrowski [28],
we have relations

Nf1f2 = Nf1 +Nf2(16)

for any polynomials f1, f2, where + designs here the Minkowski sum.

We assume that the following hypothesis holds.

(H2) The Newton polytope of f contains the origin.

This equivalent to that f(0, 0) 6= 0.

Remark 3.1. — We can always find s ∈ Z2 so that the Laurent polynomial ft−s

becomes a polynomial f ′ ∈ C[u1, u2] with f ′(0, 0) 6= 0 after some monomial change
of affine coordinates (t1, t2) 7→ (u1, u2). This transformation preserves the sparse
structure of f so that hypothesis (H2) is not restrictive for our purpose.

An exterior facet of Nf is a one-dimensional face F of Nf whose normal inward
primitive vector has at least a negative coordinate. The associated normal ray of Nf
is called an exterior ray. The associated facet polynomial fF of f is defined to be

fF =
∑

m∈F∩Z2

cmt
m.

The facet polynomials have a one dimensional Newton polytope and become univari-
ate polynomials after a monomial change of coordinates.

We construct now a toric completion of C2 associated to the exterior facets of Nf .
To this aim, we consider the complete simplicial fan Σf of R2 whose rays are

Σf (1) = {exterior rays of Nf} ∪ {(0, 1)R+, (1, 0)R+}.

The toric surface Xf = XΣf
is a simplicial toric completion of C2 = SpecC[t1, t2]

whose boundary ∂Xf = Xf \C2 is the sum of the irreducible toric divisors associated
to the exterior rays of Nf . The intersection of the Zariski closure Cf ⊂ Xf of the
affine curve {f = 0} ⊂ C2 with the irreducible components of the boundary ∂Xf

corresponds to the non trivial roots of the exterior facet polynomial of f (see [24] for
instance). In particular, the curve Cf does not contain any torus fixed points (it’s
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clear for those contained in ∂Xf and the remaining torus fixed point of X0 does not
belong to Cf by (H2)).

We say that f satisfies hypothesis (H1) of Subsection 2.5 when the zero-cycle
Γf = Cf · ∂Xf does. This corresponds to the case of exterior facet polynomials of f
with a square free absolute decomposition in C[t, t−1].

The boundary of Xf contains the singular locus S := Sing(Xf ) of Xf and is gen-
erally not a normal crossing divisor. To this aim, we consider a toric desingularization

X
π→ Xf

of Xf , whose exceptional divisor E satisfies S = π(|E|). The smooth surface X is
now a projective toric C2-completion with a toric normal crossing boundary

∂X = D1 + · · ·+Dr

whose support contains |E|. Since Cf ∩S = ∅, the total transform C = π−1(Cf ) of Cf
has a proper intersection with ∂X and the irreducible decomposition of C corresponds
to the absolute factorization of f . Note that C is not necessarily reduced.

As in Subsection 2.5, we denote by ρ0, . . . , ρr+1 the rays of the fan Σ of X, and
by η0, . . . , ηr+1 their primitive vectors. So η0 = (0, 1) and ηr+1 = (1, 0). The curve
C has a positive intersection C ·Di > 0 when ρi ∈ Σ(1) is an exterior ray of Nf , and
C ·Di = 0 when ρi ∈ Σ(1) \ Σf (1) (that is when π(|Di|) ⊂ S).

Lemma 3.2. — There is a unique effective divisor D linearly equivalent to C + ∂X
with support |∂X| and the polytope of the toric divisor D + KX defined in (10) has
lattice points

PD+KX
∩ Z2 = Nf ∩ (N∗)2.

Proof. — The polynomial f extends to a rational function on X whose polar divisor
div∞(f) is supported by |∂X|. Thus, the divisor

D := div∞(f) + ∂X

is effective, with support |∂X|, and rationally equivalent to C + ∂X. If D′ is another
candidate, then D−D′ = div(h) for some h ∈ C(X) with no poles nor zeroes outside
|∂X|. Since X\|∂X| ' C2, the rational function h is necessarily constant and D = D′.
By using affine charts, we check easily that the polar divisor of f is equal to

div∞(f) =

r∑
i=1

kiDi, ki = − min
m∈Nf

〈m, ηi〉.

By (11), it follows that Nf is contained in the polytope PG of G = div∞(f) and
intersects each face of PG. Since the fan of X refines both normal fans of G and Nf
(we use here hypothesis (H2)), it follows that PG = Nf . Then, equality D + KX =
G−D0 −Dr+1 implies that

PD+KX
= {m ∈ PG, 〈m, η0〉 ≥ 1, 〈m, ηr+1〉 ≥ 1} = PG ∩ (N∗)2.
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3.2. Computing the Newton polytopes of the absolute factors. — We show
here how to recover the Newton polytopes of the irreducible absolute factors of Nf .

We recall from (16) that the Newton polytope of a factor of f is necessarily a
Minkowski summand of Nf . For a general polytope Q, we denote by Q(i) the set of
m ∈ Q for which the scalar product 〈m, ηi〉 is minimal. We obtain the following

Theorem 3.3. — Let f ∈ K[t1, t2] which satisfies (H2). Let π, X and C be as before
and denote by γ the restriction of C to the divisor D of Lemma 3.2. Let Q be a lattice
Minkowski summand of Nf .

There exists an absolute factor q of f with Newton polytope Q if and only if there
exists γ′ ≤ γ an effective Cartier divisor on D with

deg(γ′ ·Di) = Card(Q(i) ∩ Z2)− 1, i = 1, . . . , r(17)

and such that (3) holds for the osculation data (D, γ′) on the boundary of X. The
polynomial q can be recovered from γ′.

Equation (17) means that the number of points (counted with appropriate multi-
plicity) in the support of γ′ that belong to Di has to be equal to the number of lattice
points of the i-th edge of Q minus one (the so-called lattice length of the edge). When
f satisfies hypothesis (H1), all the multiplicities are equal to one and the osculation
criterions (3) can be tested efficiently thanks to Proposition 2.6. Note that Q(i) is
reduced to a point and Card(Q(i) ∩ Z2) − 1 = 0 as soon as ρi is not an exterior ray
of Nf so that (17) only involves the original fan Σf of f .

Proof. — A Minkowski sum decomposition Nf = P +Q corresponds to a line bundle
decompostion

OX(G) = OX(GP )⊗OX(GQ),

where G, GP and GQ are the polar divisors of the rational functions determined by
polynomials with respective polytope Nf , P and Q. Note that G = GP +GQ. Since
Σ refines the normal fan of each polytope, we have equalities Nf = PG, Q = PGQ

and P = PGP
(see the proof of Lemma 3.2) and all involved line bundles are globally

generated over X (see [14]).
A factor of f with Newton polytope Q corresponds to a divisor C ′ ≤ C lying in the

complete linear system |OX(GQ)| of effective divisors rationally equivalent to GQ. It
defines a Cartier divisor γ′ = C ′|D ≤ C|D = γ on D. Thus, conditions (3) hold for the

osculation data (D, γ′) and

deg(γ′ ·Di) = deg(C ′ ·Di) = deg(OX(GQ)|Di
)

for all i = 1, . . . , r. Since OX(GQ) is globally generated over X, toric intersection
theory gives equalities

deg(OX(GQ)|Di
) = Card(Q(i) ∩ Z2)− 1

for all i = 1, . . . , r. This shows necessity of conditions.
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Suppose now that (D, γ′) satisfies (17) and (3) and let F be an osculating divisor
asociated to that data. We deduce equalities

deg(OX(F )|Di
) = deg(γ′ ·Di) = deg(OX(GQ)|Di

)

for all i = 1, . . . , r. Thus, there is an isomorphism

O∂X(F ) ' O∂X(GQ)

and OX(F ) ' OX(GQ) by Corollary 2.4 of Subsection 2.4. Thus, if (3) and (17) hold
for (D, γ′), one has an isomorphism OD(γ′) ' OD(GQ). There remains to show that
there exists in such a case an effective osculating divisor rationally equivalent to GQ.
The problem is that H1(X,OX(GQ −D)) does not necessarily vanish. To avoid this
difficulty, we introduce the effective divisor

DQ := GQ + ∂X ≤ G+ ∂X = D.

Then ODQ
(GQ) ' ODQ

(γ′|DQ
) and H1(X,OX(GQ−DQ)) ' H1(X,OX(−∂X)). Since

∂X is reduced and connected, the restriction map H0(OX)→ H0(O∂X) is an isomor-
phism and we deduce equality H1(X,OX(−∂X)) = 0. By Theorem 2.1, there thus
exists C ′ ∈ |OX(GQ)| with

C ′|DQ
= γ′|DQ

.(18)

Such a curve has proper intersection with the remaining toric divisors D0 and Dr+1

(otherwise the support of γ′ would contain a torus fixed point). We deduce that there
exists a unique Cartier divisor γ0 on D +D0 +Dr+1 so that

γ0|D = γ′ and γ0|D0+Dr+1
= C ′ ·D0 + C ′ ·Dr+1

We have equality D +D0 +Dr+1 = G−KX and we obtain

H1(X,OX(GQ −D −D0 −Dr+1) ' H1(X,OX(GQ −G+KX)

' H1(X,OX(G−GQ))ˇ

' H1(X,OX(GP ))ˇ = 0.

The second isomorphism is Serre Duality, and the last equality comes from the fact
that the H1 of a globally generated line bundle on a toric surface vanishes (see [14]).
Last equality combined with the short exact sequence

0→ OX(GQ −D −D0 −Dr+1)→ OX(GQ)→ OD+D0+Dr+1(γ0)→ 0,

implies that there exists C ′′ ∈ |OX(GQ)| which restricts to γ0 on D +D0 +Dr+1. A
fortiori, C ′′ restricts to γ′ on D. Since GQ−DQ = −∂X < 0, we have H0(X,OX(GQ−
DQ)) = 0. Thus C ′ = C ′′, the two curves having the same restriction to DQ.

There remains to show that C ′ ≤ C. Suppose that there exists an irreducible
component C0 of C ′ with proper intersection with C. Then, we can compute the
intersection multiplicity of C0 and C at any p ∈ X. It is given by

multp(C0, C) = dimC
OX,p

(fp, gp)

where fp and gp are respective local equations for C and C0 at p. By assumption,

C0|D ≤ C|D
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so that the class of gp in OD,p divides that of fp. We deduce that

fp = upgp + vphp

for some holomorphic functions up, vp, where hp is a local equation for D. Thus, we
obtain inequality

dimC
OX,p

(fp, gp)
≥ dimC

OX,p
(gp, hp)

= multp(C0, D),

for all p in the support of D. Finally,

deg(OX(C0))|C ≥
∑
p∈|D|

multp(C0, C) ≥
∑
p∈|D|

multp(C0, D) = deg(OX(C0))|D.

Since D is rationally equivalent to C + ∂X, this implies that C0 has a negative
intersection with the boundary. This leads to a contradiction. Thus C0 is necessarily
an irreducible component of C. By (18), the component C0 appears in C ′ with a
multiplicity smaller than in C and we deduce finally that C ′ ≤ C, corresponding to
an absolute factor q of f with Newton polytope Q.

Since GQ − DQ < 0, the restriction H0(OX(GQ)) → H0(ODQ
(GQ)) is injective.

Thus C ′ ∈ |OX(GQ)| can be uniquely recovered from its restriction γ′|DQ
to DQ (and

a fortiori from γ′). �

Remark 3.4. — If Nf does not contain the origin but only intersects both coordi-
nate axes, the osculating criterions still permit to detect an absolute factor q of f
associated to the choice of a summand Q of Nf . Nevertheless, although the Newton
polytope Nq of q still has the same exterior facets of Q, we can not conclude that
Nq = Q.

3.3. Computing the absolute factors of f .— Suppose that γ′ ≤ γ satisfies
conditions of Theorem 3.3 for a Minkowski summand Q of Nf . We give here an
efficient way to compute the corresponding absolute factor q of f . The polynomial q
admits the monomial C-expansion

q(t) =
∑

m∈Q∩N2

amt
m,

and we look for the homogeneous class [a] ∈ PCard(Q∩N2)−1(C) of a = (am)m∈Q∩N2 .

We denote by Γ′ = γ′ · ∂X and by Γ′i = Γ′ ·Di. Let us fix p ∈ |Γ′| and let i = i(p)
be the unique index such that p ∈ |Γ′i|. If f satisfies the hypothesis (H1), the germ of
C at p has the Weirstrass equation

yi − φp(xi) = 0,

and we can define

αp(u, v) :=
∂uφvp
∂xui

(0) if u ≥ 0, αp(u, v) := 0 if u < 0,
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for all integers u, v (recall that φp(0) 6= 0). For k ∈ N and m ∈ Z2, we then define
the complex number

βp(k,m) := αp(k − 〈m, ηi〉 − ei, 〈m, ηi+1〉+ ei+1),

where ei := −minm∈Q〈m, ηi〉. We denote by Vol(Q) the euclidean volume of Q in
R2. We obtain the following

Proposition 3.5. — Suppose that f satisfies (H1) and (H2). The homogeneous vec-
tor [a] is uniquely determined by conditions∑

m∈Q∩Z2

amβp(k,m) = 0,

for all p ∈ |Γ′i|, all 0 ≤ k ≤ ei and all i = 1, . . . , r. The underlying linear system (Sγ′)
contains 2 Vol(Q) + deg(Γ′) equations of Card(Q ∩ Z2) unknowns and only depends
on the restriction of γ′ to the divisor GQ + ∂X.

Proof. — We keep the notations of the proof of Theorem 3.3. By [11], the curve C ′

of q has affine polynomial equation qi = 0 in the chart Ui = SpecC[xi, yi], where

qi(xi, yi) =
∑

m∈Q∩Z2

amx
〈m,ηi〉+ei
i y

〈m,ηi+1〉+ei+1

i .

Let p ∈ |Γ′i|. Since the germ of C ′ at p is contained in that of C it follows that

qi(xi, φp(xi)) ≡ 0

It’s easy to show that the kth-derivative of this expression evaluated at 0 is equal to
c×
∑
m∈Q∩Z2 amβp(k,m) for a non zero scalar c. Thus the coefficients of [a] determine

a non trivial solution of (Sγ′).
If ã = (ãm)m∈Q∩Z2 is another non trivial solution of (Sγ′), the polynomial q̃(t) =∑
m∈Q∩Z2 ãmt

m satisfies [ ∂k
∂xki

q̃i(xi, φp(xi))
]
xi=0

= 0

for all p ∈ |Γ′i|, all 0 ≤ k ≤ ei and all i = 1, . . . , r. By the duality theorem, this forces

the germ of q̃i at p to belong to the ideal (yi−φp(xi), xei+1
i ). It follows that the curve

C̃ ⊂ X of q̃ satisfies

C̃|
∑

(ei+1)Di
≥ C ′|∑(ei+1)Di

.

Since Nq̃ ⊂ Q = Nq, it follows that deg(C̃ · Di) ≤ deg(C ′ · Di) for all i. Combined
with previous inequality, this forces equality

C ′|
∑

(ei+1)Di
= C̃|

∑
(ei+1)Di

.

We have chosen the ei’s in order to that
r∑
i=1

(ei + 1)Di = GQ + ∂X,
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and both curves C ′ and C̃ belong to the linear system |OX(GQ)|. The restriction
map H0(X,OX(GQ))→ H0(X,OGQ+∂X(GQ)) being injective, the previous equality

forces C ′ = C̃. It follows that q̃ = cq for some c ∈ C∗ and [a] = [ã].

By construction, the linear system (Sγ′) only depends on the restriction of γ′ to
the divisor GQ + ∂X < G+ ∂X = D. It contains precisely

r∑
i=1

∑
p∈|Γ′i|

(ei + 1) =

r∑
i=1

(ei + 1) deg(C ′ ·Di) = deg(C ′ ·GQ) + deg(Γ′)

equations and deg(C ′ ·GQ) = deg(C ′ ·C ′) = 2 Vol(Q) unknowns (see [14] for instance).

Remark 3.6. — Each linear equation in Proposition 3.5 involves a reduced number
of unknowns and the linear system (Sγ′) has a very particular sparse structure. For
instance, letting k = 0, we obtain for each i = 1, . . . , r the linear subsystem∑

m∈Q(i)∩Z2

am[φp(0)]〈m,ηi+1〉+ei+1 = 0, ∀ p ∈ |Γ′i|.

It has Card(Q(i) ∩ Z2) − 1 equations with Card(Q(i) ∩ Z2) unknowns and permits
to determine the coefficients of the ith exterior facet polynomial of q. For k = 1, we
deduce relations on the coefficients {am, 〈m, ηi〉+ei = 1}. For a general k, we deduce
relations on the coefficients {am, 〈m, ηi〉+ei = k}. In general, there are no non trivial
solutions to (Sγ′). The vector subspace of solutions has dimension 1 precisely when
γ′ obeys to the osculation conditions (3) .

3.4. A sparse vanishing-sums algorithm. — We describe here a sparse
vanishing-sums algorithm associated to Theorem 3.3 and Proposition 3.5. When we
say compute, we mean compute by using floating point computation with a given
precision. When we say test a vanishing-sum, we mean test that a sum is ≤ ε for an
arbitrary small ε > 0.

Input: A polynomial f ∈ K[t1, t2] which satisfies f(0, 0) 6= 0 and with reduced exterior
facet polynomials.

Output : The irreducible factorization of f over C.

Step 1. Compute the Minkowski summands of Nf . Use for instance the algorithm
presented in [16]. If Nf has no non trivial Minkowski summands, f is irreducible and
the algorithm stops. Otherwise go to step 2.

Step 2. Compute the fan of X. Compute the canonical regular fan Σ that refines Σf
by using an Euclidean algorithm, or by computing some Hirzebruch-Jung continued
fraction (see [14]).
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Step 3. Compute the osculating data (D, γ). By Lemma 3.2, we have equality

D =

r∑
i=1

(ki + 1)Di, ki := − min
m∈Nf

〈m, ηi〉.

The Cartier divisor γ on D is obtained by computing the family of implicit functions
{φp, p ∈ |Γi|} up to order ki, for i = 1, . . . , r. Note that Γi = 0 when ρi is not an
exterior ray of Nf .

Step 4. Compute the Newton polytopes of the absolute irreducible factors. Proposition
3.5 combined with Theorem 3.3 gives an efficient way to compute the decompositions

γ = γ1 + · · ·+ γs, Nf = Q1 + · · ·+Qs

of γ and Nf associated to the irreducible absolute decomposition f = q1 · · · qs of f .

Step 5. Compute the irreducible absolute factors of f . Use Proposition 3.5. The
coefficients of the linear systems (Sγi), i = 1, . . . , s are obtained from the residues
〈γ,Ψm〉p, m ∈ Qi ∩ (N∗)2 already computed in step 4.

The numerical part of the algorithm reduces to the computation of the roots of the
univariate exterior facet polynomials of f . Then it detects the absolute factorization
of f with a probability which increases after each positive vanishing-test, up to obtain
the adequat decomposition of Nf . Finally, we compute the factors by solving some
linear systems. Roughly speaking, we obtain here a toric version of the Hensel lifting
(see Remark 3.6). A comparable algorithm has been obtained by Abu Salem-Gao-
Lauder in [1], by using combinatorial tools.

If we can decide formally if the sum underlying the osculation criterions (13) van-
ishes, there is no chance of failure in step 4 and the algorithm is deterministic. If we
test the osculating criterions (13) for a generic linear combination of the involved m’s,
the Newton polytope decomposition is valid only with probability one, in the vain of
the Galligo-Rupprecht and Elkadi-Galligo-Weimann algorithms [13] or [12].

As in [13] and [12], floating point computation and numerical approximation a
priori do not allow to decide in a deterministic way if the sum (13) is equal to 0,
but one rather decide if it is smaller than a given small ε. Thus, it can happen
that the Newton decomposition of Nf in step 4 does not correspond to the absolute
decomposition of f (and that for any choice of ε > 0) and there is a chance of failure
of the algorithm. Nevertheless, in the important case of a polynomial f defined and
irreducible over Q the authors in [7] show that we can recover the exact factorization
with formal coefficients in a finite extension of K from a sufficiently fine approximate
factorization. This problem will be explored in a further work.

3.5. Comparison with related results. — We compare here our algorithm with
those of Galligo-Rupprecht [13], Elkadi-Galligo-Weimann [12] and Weimann [33].

3.5.1. Comparison with the Galligo-Rupprecht GR-algorithm. — In [13], the authors
perform a generic change of affine coordinates and then compute the factorization of
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f

f(t1, t2) =

d∏
i=1

(t2 − φi(t1))

in C{t1}[t2] modulo (t31). They detect the factors of f with probability one by testing
the Reiss relation (4) on subfamilies F ⊂ {φi, i = 1, . . . , d}. Then they lift and
compute the candidate factors by using Hensel lemma. Let us compare with our
approach.

The recombination number. We define the recombination number N (f) to be the
maximal number of choices γ′ < γ necessary to detect the absolute factorization of f
in step 4. By (17), it depends on the geometry of Nf and is subject to constraints
given by the possible Minkowski-sum decompositions of Nf . For instance, if f is
irreducible over K, its irreducible absolute factors necessarily have the same polytope
(see [8] for instance) and N (f) decreases drastically.

We denote by M(f) the recombination number of the GR-algorithm, that is the
number of possible choices for the families F when taking in account restrictions
imposed by the possible Minkowski-sums decompositions of Nf .

We have the following improvement:

Proposition 3.7. — Suppose that f is irreducible over K and satisfies hypothesis
(H1) and (H2). Let d = deg(f). Then

N (f) ≤M(f) ≤ 2d

with equality

N (f) =M(f) ⇐⇒ Nf = Conv{(0, 0), (d, 0), (0, d)},
where Conv designs the convex hull.

Proof. — Let n be the biggest integer so that Nf = nQ0 for a lattice polytope Q0.
Thus d = nl where l is the total degree of a polynomial with polytope Q0. By [8], an
irreducible absolute factor of f has Newton polytope kQ0 for some integer k which
divides n and the GR-algorithm looks for an irreducible factor of degree kl. This
gives the recombination number

M(f) =
∑
k|n

Cnlkl ,

where Cij is the usual number of combinations. We clearly haveM(f) ≤ 2d. Equality

M(f) = 2d holds if and only if f is a dense polynomial which is not assumed to be
irreducible over K.

Denote now by l1, . . . , lt the lattice lengths of the exterior facets of Q0. Then,
restrictions (17) imposed to the possible choice of γ′ ≤ γ induce equality

N (f) =
∑
k|n

t∏
i=1

Cnlikli
.



26 MARTIN WEIMANN

We have both inequalities

t∏
i=1

Cnlikli
≤ Cn(l1+···+lt)

k(l1+···+lt) and C
n(l1+···+lt)
k(l1+···+lt) ≤ C

nl
kl

for any k ≤ n. The first inequality is an equality if and only if there is only t = 1
exterior facet, and the difference strictly increases with t. The second inequality
follows from the fact that the sum

lf = nl1 + · · ·+ nlt

of the lattice lengths of the exterior facets of Nf is smaller or equal to d = deg(f).
Moreover, we can convince that there is equality lf = d if and only if the normal
fan Σf of Nf is regular. This is of course exceptional, and lf << d in general.
Finally, we have N (f) ≤ M(f) and equality holds if and only if Nf is regular with
one exterior facet. Since 0 ∈ Nf by assumption, this is equivalent to that Nf =
Conv{(0, 0), (d, 0), (0, d)}.

Note that there are fast factorization algorithms over a number field K (see [4],
[26]). The following example illustrates Proposition 3.7.

Example 3.8. — Suppose that f is irreducible over K and that Nf = nQ0, where
Q0 is the “undivisible” lattice polytope

Q0 = Conv{(0, 0), (a− 1, 0), (0, a− 1), (a, a)},

with a ≥ 2 and n prime. The lattice lenghts of the t = 2 exterior facets of Nf are
both equal to n. Since n is prime, the underlying recombination number is equal to

N (f) = n2.

In particular, it does not depend on a. The GR-algorithm considers f as a dense
polynomial of degree deg(f) = 2na and looks for an irreducible absolute factor of
degree 2a. The induced recombination number M(f) is thus equal to

M(f) = C2an
2a '

2a2a

(2a)!
n2a,

and growths exponentially with a.

The asymptotic estimation of N (f) for a “generic polytope”(1) Nf is a difficult
problem. It is related to the estimation of the number of exterior facets, and to
the estimation of “how singular” is the normal fan. Geometrically, these numbers
correspond to the Picard numbers of Xf and of a minimal resolution X.

Note that by Lemma 3.2 and Theorem 3.3, the maximal number of vanishing-sums
to test is equal to

Card(Nf ∩ (N∗)2)×N (f).

(1)The genericity has to be defined relatively to some invariant, as the cardinality of interior lattice

points, or the volume for instance.
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If we only want to detect absolute factors with probability 1, it’s enough to test (13)
on a generic linear combination of the involved m ∈ Nf ∩ Z2. In such a case, it’s
enough to test N (f) vanishing-sums.

The numerical part. The numerical part of our algorithm reduces to the computation
of the roots of the exterior facet univariate polynomials. It’s faster to factorize t
univariate polynomials of degree l1, . . . , lt than one univariate polynomial of total
degree d ≥ l1 + · · ·+ lt. Thus, the computation of C ·∂X is faster than with a generic
line as soon as N (f) <M(f).

The lifting step. Although we need to compute a reduced number of implicit func-
tions, we need in general a bigger precision on the φp’s than the upper bound deg(f)
precision required with the classical Hensel lifting. In Example 3.8, we need for in-
stance to compute the φp’s up to order na2 >> 2na = deg(f). Morally, the more
the recombination number is reduced, the more the required precision on the φp’s
increases. Thus, we should be very careful when comparing algorithmic complexity.
Nevertheless, we gain on both sides in the important case of a polynomial of bide-
gree (a, b). Formulas (13) and (14) shows that we need to compute a and b implicit
functions up to respective maximal orders b and a, while the GR-algorithm computes
a+ b implicit functions up to a maximal order a+ b.

3.5.2. Comparison with the Elkadi-Galligo-Weimann EGW-algorithm. — In [12], the
authors propose an algorithm with the recombination numberN (f) by using the inter-
polation criterions obtained in [31]. Their approach necessites to compute numerically
the intersection of C ⊂ X with a generic curve L in a very ample linear system which
is “close enough” to |∂X|. In other words, they pick a Newton polytope P whose nor-
mal fan is that of X and then solve a polynomial system f = εp+ 1 = 0, where p has
Newton polytope P and ε is a small positive real number. When ε goes to 0, the roots
of the system go to the boundary of X and they deduce an asymptotic distribution of
the zero-cycle C ·L which traduces the polytopal information. As in the GR-algorithm,
the generic choice of p in the EGW-algorithm permits to compute deg(C ·L) implicit
functions only up to order 2 in order to detect the absolute decomposition of f with
probability one. Roughly speaking, Theorem 3.3 corresponds to the limit case ε = 0
and permits to avoid the delicate problem of the “small enough ε” choice and of the
asymptotic distribution lecture. We compute only deg(C ·∂X) << deg(C ·L) implicit
functions (but with a precision >> 2) and we detect the absolute decomposition of f
deterministically.

3.5.3. Comparison with Weimann algorithm [33].— Our algorithm described in Sub-
section 3.4 has been improved later by the author who obtained a deterministic al-
gorithm that factors rational bivariate polynomials in low-degree polynomial time in
the volume of the Newton polytope. Nevertheless, although the algorithm described
in Subsection 3.4 has an exponential complexity, this complexity depends both on the
number of Minkowski summands and on the number of lattice points on the edges
of the polytope of f , these two numbers being quite small for a sparse polynomial
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(Subsection 3.5.1). On another hand, we use here a lifing precision D ' C + ∂X
(= deg(f) + 1 in the dense case) that is almost two times smaller than the lifting
precision D ' 2C (= 2 deg(f) in the dense case) required in [33]. Thus, in some par-
ticular cases, the exponential time algorithm we present here might be faster than the
polynomial time approach obtained in [33]. Moreover, recent works of the author tend
to show that the exponential complexity approach developed here generalizes well to
the singular case (see Subsection 3.6), although the polynomial time algorithm of [33]
does not, due to some problem of vanishing cohomology.

3.6. Using non toric information. — Suppose that C is reduced, but with singu-
larities along the boundary of X (so the exterior facet polynomials of f have multiple
roots). Thus Γ = C · ∂X is non reduced and the computations of residues is much
more delicate. In particular, we can not use formula (14).

Nevertheless, there exists in such a case a (non toric) smooth completion X̃ of C2

obtained from X by a series of blow-ups, and so that the proper transform C̃ ⊂ X̃

of C has a transversal intersection with the boundary of X̃. By choosing an effective

divisor D̃ supported on ∂X̃ and with sufficiently big multiplicities, we can then use

Theorem 2.1 efficiently to decompose C̃ and to recover the absolute factorization of f .
The added exceptional divisors give new restrictions on the possible choices of γ̃′ < γ̃

(where γ̃ = C̃|D̃) and the presence of singularities of C along ∂X finally turns out to

be an opportunity to reduce the recombination number. This will be explored in a
further work.

3.7. Conclusion. — We propose a new algorithm which computes the absolute
factorization of a bivariate polynomial by taking in account the geometry of the
Newton polytope. For a sparse polynomial, this permits to reduce the recombination
number when compared to the usual vanishing-sums algorithms. There remains to
implement such an algorithm and to compute formally its complexity. What we’ll
remind here is the general idea that

The more a curve is singular, the more it is easy to decompose.

For a sparse polynomial f , a naive embedding of the curve of f in P2 produces many
toric singularities on the line at infinity, and we have shown here that osculation
criterions in an appropiate toric resolution X permit to use this sparse information.
Moreover, Theorem 2.1 permits in theory to consider the case when C has singularities
along the boundary of X.
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