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Abstract

This article gives an algorithm to recover the absolute factorization of a

bivariate polynomial, taking into account the geometry of its monomials.

It is based on algebraic criterions inherited from algebraic interpolation

and toric geometry.

1 Introduction

The study of the factorization of a multivariate polynomial f and the produc-
tion of software dedicated to the effective solving of this problem has received
much attention in Computer Algebra. Whereas the rational factorization is only
concerned by factors of f in Q[x] := Q[x1, . . . , xn], the absolute factorization
provides all the irreducible factors of f with coefficients in Q[x], Q denotes the
algebraic closure of Q. For example the polynomial x2

1 − 2x2 is irreducible in
Q[x1, x2], but it has two absolute factors x1 −

√
2x2 and x1 +

√
2x2.

The bivariate case contains most of difficulties of the multivariate one. In
theory, by Bertini’s theorem and via Hensel liftings, the multivariate problem
reduces to the bivariate one. In the present article we will concentrate on the
bivariate case but our techniques naturally extend to n variables case for any
n > 2.

During more than 30 years of Computer Algebra, the polynomial factoriza-
tion has been considered from many point of view (see [3, 5, 7] and the references
within). In the last decade, two main strategies of absolute polynomial factor-
ization have been quite successful. On the one hand, an algebraic approach relies
on the study of Ruppert-Gao matrix [19, 12]. It has been improved in [7, 16]
to provide an algorithm with a quasi-optimal complexity. On the other hand, a
geometric approach based on a zero-sum criterion (derived from the study of the
monodromy group, of a projection of the curve C := {a ∈ C2 : f(a) = 0} defined
by f on a line, acting on a smooth fiber) provides very efficient semi-numerical
probabilistic algorithms able to deal with polynomials having degree up to 200
[20, 4, 5]. A similar strategy was developed and implemented in [22, 23], and
its use was extended for obtaining the irreducible decomposition of an algebraic
set. The zero-sums considered in [21] admit more general interpretations in
Algebraic Geometry as traces.

The aim of this article is first to reinterprete the vanishing traces criterions
in the geometric approach as a consequence of Wood’s theorem on algebraic
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interpolation of a family of analytic germs of curves. Second, to provide a gen-
eralization of Wood’s theorem inspired by [25] and adapted to the factorization
of polynomials with fixed Newton polytopes. Third, to outline an algorithm for
toric absolute factorization that we experimented successfully on examples.

When the polynomial f of degree d is given by the collection of its coefficients
which are all nonzero, its representation is called dense. Whereas when we know
that some coefficients of f are zero, we consider its Newton polytope (i.e. the
convex hull of exponents of monomials of its nonzero coefficients) and we say
that its representation is toric or sparse. Adapted algorithms are developed to
take advantage from this representation, e.g. toric elimination received much
attention [13, 9].

To our knowledge most of the existing articles on the polynomial factoriza-
tion deal with dense polynomials, without taking into account the sparseness
structure of f . In [1] a study of the toric rational polynomial factorization was
presented. It is based on an adapted Hensel lifting. Our aim is to rely on this
article, assuming that f is already irreducible in Q[x], and then we compute its
absolute factorization. As we shall see in that case, all the Newton polytopes
of absolute factors of f are equal and are homothetic to that of f . Hence the
combinatorial task is simplified and the difficulty concentrates on the geometry
over a fixed toric variety. We mention also [24] where the authors reduce the
multivariate sparse factorization to the dense bivariate or univariate polynomial
factorization.

The paper is organized as follows. In the next section, we show the special
shape of absolute factors of an irreducuble rational polynomial. In section 3,
we explain the use of interpolation of analytic germes of curves via a Burger’s
PDE to derive a vanishing trace criteria in P2(C), and we recall the use of mon-
odromy action. In section 4 we provide a generalization of this trace criteria
to a (possibly singular) toric surface. In section 5 we outline an algorithm for
toric absolute factorization. It is based on algebraic criterions inherited from
interpolation problems in toric geometry, and computations of traces. It gen-
eralizes and improves the algorithm developed for dense polynomials in [20, 5].
Then we illustrate its different steps on an example. We finish with concluding
remarks and future improvements. At the end of this paper a short Appendix
collects some properties on abstract toric surfaces needed for our developments.

Hereafter Pn denotes the projective space over C of dimension n. For a
polynomial map (f, q) in C2, Jac(f, q) is its jacobian. The Newton polytope of
a polynomial f is denoted by Nf . We denote the mixed volume of two polytopes
P and Q by MV(P, Q).

2 Factorization and Newton polytopes

We recall that the Minkowski sum of two polytopes P and Q is

P + Q = {p + q : p ∈ P, q ∈ Q}.

The crucial observations for our purpose are the following two results.

Proposition 1 (Ostrowksi theorem [18]) The Newton polytope of the product
of two polynomials g and h is the Minkowski sum of Newton polytopes of its
factors: Ngh = Ng + Nh.
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So if the irreducible polynomial f ∈ Q[x] has a polytope which is integrally
indecomposable, f is absolutely irreducible. For a study of the irreducibility of
a polynomial from the Newton polytope point of view, see [11].

Proposition 2 Let f ∈ Q[x] be an irreducible polynomial and f = f1 . . . fq

be its absolute factorization. Then the irreducible absolute factors fi of f are
conjugate over Q.

Proof. Up to a linear change of coordinates, we can assume that f is monic in
x2, and consequently its absolute factors are also monic in x2. Let G be the
Galois group of the smallest extension of Q containing all the coefficients of f1.
If σ ∈ G, the conjugate polynomial σ(f1) of f1 also divides f . Now as f is
an irreducible element in Q[x], the polynomial

∏
σ∈G σ(f1) = f , and so each

absolute factor fj of f is equal to σ(f1) for some σ ∈ G. �

The determination of Newton polytopes of absolute factors of an irreducible
polynomial in Q[x] is highly simplified by the following corollary.

Corollary 1 Let f ∈ Q[x] be an irreducible polynomial and f = f1 . . . fq be its
absolute factorization. Then Nf1 = · · · = Nfq

and Nf = qNf1 .

Remark 1 For instance, a polynomial f ∈ Q[x] of bidegree (d1, d2) which is
irreducible over Q is irreducible over C if d1 and d2 are relatively prime.

Proposition 2 implies in particular that the irreducible rational polynomial
f has no multiple factor over C.

Another important algorithmic consequence of Proposition 2 is that the ab-
solute factorization of f is completely determined by the number of factors
q, an irreducible univariate polynomial g(t) ∈ Q[t] defining a finite extension
K = Q[t]/

(
g(t)

)
, and the coefficients of f1 which belong to K and are indexed

by the lattice points in the polytope 1
q
Nf ⊂ N2.

3 Factorization and Algebraic Interpolation

Let f be an irreducible bivariate rational polynomial of total degree d. Since f is
reduced over C, its absolute irreducible factors are in one-to-one correspondence
with irreducible components of the affine curve C defined by f :

C = {(x1, x2) ∈ C2 : f(x1, x2) = 0}.

Sard-Bertini theorem combined with Bézout’s theorem ensure that for t = [t0 :
t1 : t2] generic in the dual projective space (P2)∗, the affine line

Lt = {(x1, x2) ∈ C2 : t0 + t1x1 + t2x2 = 0}

intersects C transversely in d distinct points whose coordinates vary holomor-
phically with t by the implicit function theorem. Thus Lt defines a degree d
reduced 0-cycle of C:

Lt · C = p1(t) + · · · + pd(t).

The principle of unicity of analytic continuation and Bézout’s theorem imply
that f admits a factor of degree k ≤ d if and only if there exists

I = {i1, . . . , ik} ⊂ {1, . . . , d}
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and an algebraic curve CI ⊂ C2 of degree k such that (as shown in Figure 1)
for t in a small open set of (P2)∗:

Lt · CI = pi1(t) + · · · + pik
(t).

Hence, we are brought to consider the following question: let t ∈ (P2)∗ distinct

C1

Ck

p1

pik

Lt

Figure 1:

from the point at infinity [1 : 0 : 0] and let C1 ∪ . . . ∪ Ck be an union of germs
of smooth analytic curves (algebraic in our case) of C2 transverse to the line Lt

at pairwise distinct points p1(t), . . . , pik
(t). Does there exist an algebraic curve

of total degree k which contains all these germs Ci ?
The following result solves precisely this problem.

Theorem 1 (Wood’s theorem [26]) The union of analytic curves C1∪. . .∪Ck is
contained in an algebraic curve of degree k if and only if the germ of holomorphic
function trace on the first coordinate defined by

(Tr x1)(t) :=

k∑

i=1

x1(pij
(t))

is affine in the constant coefficient t0 of Lt.

Geometrically, this result asserts that an analytic curve is algebraic if and only if
the barycenters of intersection points with a generic line L lie on a line (called a
diameter of the curve, see the line D in Figure 2) when L moves parallel to itself,
as shown in Figure 2. Newton had already remarked in [17] this property for
algebraic plane curves of degree 3. The proof of Theorem 1 in [26] is simple but
relies on a tricky use of a Burger’s PDE. It will be generalized for our purpose
in section 4.
In [20, 5] an algorithm for absolute dense factorization was developed based on
vanishing partial sums. This algorithm uses topological considerations about
the complex plane C2. Its proof relies on Harris uniform position theorem and
Van Kampen theorem which establish the link between the irreducibility of an
affine algebraic curve and the transitive action of a monodromy group (see [5] for
details). It turns out that this condition on vanishing partial sums is equivalent
to the interpolation criterion given by Wood’s theorem. Let us recall briefly
the principle of this method. Up to a linear change of variables, we assume
that f is monic as a polynomial in x2 of degree d. For x1 = a generic, let
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x2,1(a), . . . , x2,d(a) be the roots of the univariate polynomial f(a, x2). For each
i = 1 . . . d, let

φi(x1) =
∑

j

αj,i(a)(x1 − a)j

be the power series satisfying φi(a) = x2,i(a) and f(x1, φi(x1)
)

= 0. Then

f(x) = f(x1, x2) =
∏d

i=1

(
x2 − φi(x1)

)
. Every absolute factor of f has the form

fI =
∏

i∈I

(
x2 − φi(x1)

)
= xδ

2 + aI,1(x1)x
δ−1
2 + · · · + aI,δ(x1),

with I ⊂ {1, . . . , d}, card(I) = δ and deg aI,i(x1) ≤ i for i = 1 . . . δ. In particu-
lar, the degree of aI,1(x) = −∑

i∈I φi(x1) is at most 1, then
∑

i∈I α2,i(a) = 0.
Because of the genericity, it turns out that this last condition is also suffi-
cient for f to have an absolute factor. So in order to find absolute factoriza-
tion of f it suffices to search minimal zero sums between the complex numbers
α2,1(a), . . . , α2,d(a).

The brute force resulting algorithm requires 2d trace tests to detect factors of
f . Strategies relying on LLL were developed and implemented in [4] to decrease
this high number of tests.

4 Interpolation in toric surfaces

In [25] a necessary and sufficient condition was given for a family of germs of
analytic hypersurfaces in a smooth projective toric variety X to be interpolated
by an algebraic hypersurface with a prescribed class in the Chow ring of X .
Here we establish a similar result in a toric surface which can be singular. It
will be useful for our approach to the absolute factorization problem.

4.1 Toric surfaces

Let us denote by T the algebraic torus (C∗)2. The Newton polytope P of a
Laurent polynomial f gives information about the asymptotic behavior of the
curve

C := {x ∈ T, f(x) = 0}.
For example, if f is not identically zero for x1 = 0, C meets (asymptotically)
the divisor x1 = 0 in d points (taken into account multiplicities), where d is the
number of integer points of the facet ({0} × R+) ∩ P .
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We say that a curve D ⊂ T is supported by an integer convex polyope Q if
it is the zero set of a Laurent polynomial with Newton polytope Q.

Let Q be an integer convex polytope such that Q ∩ Z2 = {m0, . . . , ml}.
Consider the morphism

φQ : T −→ Pl

x = (x1, x2) 7−→ [xm0 : · · · : xml ].

The Zariski closure XQ of φQ(T) ⊂ (C∗)l in Pl is the projective toric variety
associated to Q. See [10] or Appendix at the end of this paper where the
definition of an abstract toric surface and some of their properties are provided.

Without lost of generality we assume that m0 = 0. The following Lemma
will be useful.

Lemma 1 We have dimXQ = dimQ. If dimQ = 2, the map φQ is an injective
immersion if and only if the gcd of integers dk,p = det(mk, mp), 1 ≤ k, p ≤ l, is
equal to 1. In particular, this is the case if the finite set Q∩Z2 = {m1, . . . , ml}
generates the free Z-module Z2.

Proof. For k = 1 . . . l, let mk = (mk1, mk2). If x = (x1, x2) and y = (y1, y2) are
in T,

φQ(x) = φQ(y) ⇐⇒ [1 : xm1 : · · · : xml ] = [1 : ym1 · · · : yml ]

⇐⇒ ∀k, p = 1 . . . l,
(x1

y1

)mk1mp2−mk2mp1

=
(x2

y2

)mk1mp2−mk2mp1

= 1.

Thus the complex numbers ci := xi

yi
, i = 1, 2 satisfy c

dk,p

i = 1 and c1 = c2 = 1
if and only if the greatest common divisor of the integers dk,p, 1 ≤ k, p ≤ l is
1. In particular, this is the case if there exist two vectors mk and mp such that
det(mk, mp) = 1. Moreover, the minor Mk,p(φQ) of the jacobian matrix of φQ

corresponding to mk and mp is equal to

Mk,p(φQ) = (m1km2p − m1pm2k)xmk+mp−(1,1),

so that φQ has rank two (on T) if and only if dim Q = 2. �

Remark 2 This proof also shows that φQ is an N-to-one map on its image,
where N = [Z2 : MQ] is the index of the lattice MQ generated by Q∩Z2 in the
lattice Z2.

4.2 Traces for curves in toric surfaces

4.2.1 Notations

Here we set notations that we will keep in the sequel of the paper.
Let Q ⊂ R2 be a 2-dimensional integer convex polytope with lattice points

m0 = 0, m1, . . . , ml. We assume that Q satisfies the assumption:

Z2 is generated on Z by {m1, . . . , ml}. (1)

The convex polytopes Q which do not satisfy this property are rare and have a
very special shape.
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Let X = XQ be the projective toric surface associated to Q, and [u0 : · · · : ul]
be homogeneous coordinates on Pl. Every Laurent polynomial

qa(x) =

l∑

i=0

aix
mi

supported by Q determines a curve Ca := {qa = 0} ⊂ T. Since φQ is assumed
to be one-to-one (Lemma 1), by Lemma 3 in Appendix, for a generic, Ca can
be identified with the hyperplane section of X ∩ (C∗)l defined by the projective
hyperplane

Ha = {u ∈ Pl :

l∑

i=0

aiui = 0}.

We denote by a = [a0 : · · · : al] the point of the dual space (Pl)∗ corresponding
to Ca.

For the definition of the mixed volume in the following lemma and its prop-
erties, see [13].

Lemma 2 Let C ⊂ T be a reduced curve supported by a lattice polytope P .
For a ∈ (Pl)∗ generic, Ca is smooth, irreducible and intersects C transversely
in d = MV(P, Q) distinct points p1(a), . . . , pd(a), where MV(P, Q) denotes the
mixed volume of (P, Q).

Proof. Let us denote by C and Ca the Zariski closure in X of the affine curves
φQ(C) and φQ(Ca). We know from Lemma 3 in Appendix that Ca coincides
for generic a with the hyperplane section Ha ∩ X of X . Thus Bertini’s theo-
rem implies that the curve Ca is generically smooth irreducible and intersects
C in its Zariski open set φQ(C). Since by Lemma 1 φQ is an embedding, we
deduce that Ca is generically smooth, irreducible and intersects C transversely
in d = deg(Ha · X · C) points. Bernstein’s theorem asserts that this degree
d = deg

(
OX(1)

)
|C

= MV(P, Q). �

From this lemma, we have the following definition.

Definition 1 For any holomorphic function h near Cα ∩ C, the trace of h on
C relatively to the polytope Q is

(TrCh)(a) :=

d∑

j=1

h(pj(a)).

This function is defined and holomorphic for a near α.

4.2.2 A necessary condition to interpolate germs of curves

We provide a necessary condition for a family of germs of curves to be interpo-
lated by an algebraic curve C.

Since m0 = 0 is a vertex of the polytope Q, the generic polynomial qa has a
nonzero constant term a0.
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Theorem 2 Let C ⊂ T be an algebraic curve, and α ∈ (Pl)∗ satisfying the
hypothesis of Lemma 2. We denote by Γ the union of facets of Q not containing
0. For n ∈ N∗ and s ∈ n(Q ∩ Z2), we have

∂(n)
a0

(
TrC xs

)
= 0 if s ∈ n(Q \ Γ), (2)

∂(n+1)
a0

(
TrC xs

)
= 0 if s ∈ nΓ.

Proof. Suppose that C = {f = 0}, for a Laurent polynomial f =
∑

cmxm. The
trace function TrC xs is a rational function on Pl, it is homogeneous of degree 0
in a. If we denote by resp and Res respectively the local Grothendieck residues
at p and the global Grothendieck residue (see [14], §5), then for a in a small
neighborhood of α,

(
TrC xs

)
(a) =

∑

p∈T

resp

xsdf ∧ dqa

fqa

= Res

[
xsdf ∧ dqa

f qa

]
. (3)

Since

df ∧ dqa =
( ∑

(m,mi)

ai cm det(m, mi)x
m+mi−(1,1)

)
dx1 ∧ dx2,

we obtain

(
TrC xs

)
(a) =

∑

(m,mi)

ai cm det(m, mi) Res

[
xs+m+mi dx1∧dx2

x1x2

f qa

]
. (4)

Using Cauchy formula for residues and Stokes theorem [14],

∂(n)
a0

(
Res

[
xs+m+mi dx1∧dx2

x1x2

f qa

])
= (−1)n n! Res

[
xs+m+mi dx1∧dx2

x1x2

f qn+1
a

]
. (5)

If P 0 denotes the interior of a polytope P , then by the toric version of Abel-
Jacobi theorem [15], we have

s + m + mi ∈
(
Nf + (n + 1)Q

)0
=⇒ Res

[
xs+m+mi dx1∧dx2

x1x2

f qn+1
a

]
= 0, (6)

where Nf is the Newton polytope of f .
Let us denote by Q1 = [0, s1] and Q2 = [0, s2] the two facets of Q containing

the origin 0, so that Q = Q0 ∪ Q1 ∪ Q2 ∪ Γ. To finish the proof we consider
different cases:

1. If s ∈ (nQ)0, then for all m ∈ Nf and mi ∈ Q,

s + m + mi ∈
(
Nf + (n + 1)Q

)0
, so that ∂

(n)
a0 (TrC xs) = 0.

2. Let s ∈ Q1 \ {ns1} = [0, ns1[. Since we are dealing with residues in the
torus, we check easily that (3) depends on f up to multiplication by any
Laurent monomial. Thus we can assume that Nf is contained in the cone
generated by Q and intersects the ray R+s1 in a non empty set N ⊂ Nf

(consisting in one vertex or one facet of Nf ). In this case, it is easy
to check that for all m ∈ Nf and mi ∈ Q such that m + mi /∈ R+s1,
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s + m + mi ∈
(
Nf + (n + 1)Q

)0
. Moreover, m + mi ∈ R+s1 if and only if

m and mi are in R+s1, that is det(m, mi) = 0. The formulas (4) and (6)

show that ∂
(n)
a0 (TrC xs) = 0.

The same argument hols for s ∈ [0, ns2[.

3. If s ∈ nΓ \ {ns1, ns2}, Nf is contained in the cone R+Q and we check

that for all mi ∈ Q and m ∈ Nf , s + m + mi ∈
(
Nf + (n + 2)Q

)0
, so

∂
(n+1)
a0 (TrC xs) = 0.

4. Let s = ns1, as for the case 2, we choose Nf ⊂ R+Q such that N =
Nf ∩ R+s1 is non empty. Then we check easily that if m or mi does not

belong to R+s1, s + m + mi ∈
(
Nf + (n + 2)Q

)0
and if m and mi are in

R+s1, det(m, mi) = 0. So when s = ns1, ∂
(n+1)
a0 (TrC xs) = 0.

The same argument is valid for s = ns2.

These items combined with (4), (5) and (6) imply (2).
�

4.3 Criterion for algebraic interpolation

Now we give a necessary and sufficient criterion of interpolation generalizing
Theorem 1 to our setting. Recall that Q satisfies the condition (1). To simplify
the exposition and without lost of generality we further assume that the vectors
m1 ∈ Q and m2 ∈ Q generate the lattice Z2 and a1, . . . , at code the vertices
of Q other than 0. Hence at+1, . . . , al code the other points of Q, where l =
card(Q ∩ Z2) − 1.

Theorem 3 Let α ∈ (Pl)∗ such that Ca ⊂ T is an irreducible smooth curve
supported by Q for any a near α. Let

C = C1 ∪ · · · ∪ Cd

be an union of germs of smooth analytic curves at pairwise distinct points
p1, . . . , pd of Cα. Suppose that none of the germs Ci is contained in a curve
{xm1 − c = 0}, c ∈ C∗. Then, there exists an algebraic curve C̃ ⊂ T, contain-
ing C and supported by a polytope P whose mixed volume with Q is d, if and
only if, for generic (a1, . . . , al) in a neighborhood of (α1, . . . , αl), the germ of
holomorphic function

a0 7−→
(
TrC xm1

)
(a0)

is polynomial of degree at most 1 in the constant coefficient a0.

Proof. Suppose that C̃ = {f = 0}, where f is a Laurent polynomial with

Newton polytope P such that MV(P, Q) = d. As C ⊂ C̃, the two sets C ∩ Ca

and C̃ ∩ Ca coincide for a in a sufficiently small neighborhood Uα ⊂ (Pl)∗ of
α, since by Lemma 2 they have the same cardinal d = MV(P, Q). Thus, for
a ∈ Uα,

∀ s ∈ Z2, TrC xs = Tr eC
xs,
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and the necessary condition follows from Theorem 2.
Conversely, since the curve Cα is supported by Q, none of the coefficients

(α0, . . . , αt) vanish.
Let us denote by pj(a) the intersection point of the germ Cj at α with Ca

and we define the following germs of holomorphic function at α ∈ (Pl)∗

X
(j)
i (a) := xmi(pj(a)), i = 0 . . . l, j = 1 . . . d.

We have

y ∈ Cj ∩ Ca =⇒ X
(j)
i (−

l∑

i=1

aiy
mi , a1, . . . , al) = ymi , ∀a ∈ Uα, (7)

where Uα is a neighborhood of α. Differentiating the right side of this implica-
tion according to a1, we obtain:

(
∂a1X

(j)
i − ym1∂a0X

(j)
i

)(
−

l∑

i=1

aiy
mi , a1, . . . , al

)
= 0.

Replacing y ∈ Cj by pj(a) ∈ Cj , and using the equality −∑l
i=1 aiy

mi
(
pj(a)

)
=

a0, we obtain a Burger’s PDE:

∂a1X
(j)
i (a) − X

(j)
1 (a)∂a0X

(j)
i (a) = 0.

So for i = 1,

∂a1X
(j)
1 =

1

2
∂a0

[
X

(j)
1

]2
.

This PDE is summable on j and gives rise, to

∂a1

(
TrC xm1

)
=

1

2
∂a0

(
TrC x2m1

)
.

We have a propagation of the behavior in the variable a0: if TrC xm1 is affine
in a0 then obviously ∂a1(TrC xm1) is affine in a0. By this PDE, ∂a0(TrC x2m1)
is also affine in a0, hence the degree of TrC x2m1 in a0 equals at most 2. By
induction on n, the map

a0 7→ TrC xnm1

is a polynomial of degree at most n in a0.
Consider the following polynomial in X :

P (X, a) :=
(
X − X

(1)
1 (a)

)
× · · · ×

(
X − X

(d)
1 (a)

)

= Xd − σ1(a)Xd−1 + · · · + (−1)dσd(a),

the σi’s are the elementary symmetric functions of xm1
(
p1(a)

)
, . . . , xm1

(
pd(a)

)
.

Replacing a0 by −∑l

i=1 aix
mi , and denoting a′ := (a1, a2, . . . , al) and a” =

(a1, . . . , at), we obtain a function

Qa′(x) =
(
xm1 − X

(1)
1 (−

l∑

i=1

aix
mi , a′)

)
× · · · ×

(
xm1 − X

(d)
1 (−

l∑

i=1

aix
mi , a′)

)
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which vanishes on C for any a′ near α′, using (7).
Now, Newton formulas relating the coefficients of P with the traces of the

power of the Laurent monomial xm1 imply that the analytic functions

(a0, a
′′) 7→ σi(a0, a

′′, αt+1, . . . , αl)

are polynomial in a0 (with degree at most n) for any a′′ := (a1, . . . , at) near α′′.
Thus the function

Ra′′(x) := Qa′′,αt+1,...,αl
(x)

is a Laurent polynomial in x vanishing on C. So that the algebraic set defined
by the following infinite numbers of equations:

C̃ := {x ∈ T : Ra′′(x) = 0, ∀ a′′ nearα′′}

contains C. We need to show that Ca ∩ C̃ = {p1(a), . . . , pd(a)} for all a in a

neighborhood of α. By construction, a point q belongs to C̃ ∩ Cα if and only if
there exists j ∈ {1, . . . , d} such that for all a′′ near α′′

xm1(q) = xm1
(
pj(−a1x

m1(q) − a2x
m2(q) −

l∑

i=3

αix
mi(q), a1, a2, α3 . . . , αl)

)
. (8)

Let us suppose that Cj is locally parameterized by

Cj = {p(t), |t| < ǫ, p(0) = pj}.

We consider the affine system in (a0, a2):

{
a0 + α1x

m1
(
p(t)

)
+ a2x

m2
(
p(t)

)
= cp

a0 + α1x
m1(q) + a2x

m2(q) = cq

(9)

where we define cq := −∑l
i=3 αix

mi(q) for any q ∈ T. Suppose that there exists
q ∈ Cα \ {pj} which satisfies (8). Then xm1(q) = xm1(pj) and, since m1 and
m2 generate Z2, q 6= pj implies xm2(q) 6= xm2(pj). Thus, it is easy to check
that there is an unique solution (a0(t), a2(t)) to (9) which converges to (α0, α2)
when |t| goes to zero. Thus, the map

a2 7−→ pj

(
−α1x

m1(q) − a2x
m2 −

l∑

i=3

αix
mi(q), α1, a2, α3, . . . , αl

)

is surjective from a neighborhood of α2 to Cj , so that

xm1(q) = xm1(p), ∀ p ∈ Cj .

This situation has been excluded by hypothesis. Thus we have proved that

C̃ ∩ Cα = C ∩ Cα.

By hypothesis, the last reasoning is valid when replacing (α0, . . . , αt) by a vector
in its neighborhood. Thus for (a0, a”) close to (α0, α”)

C̃ ∩ Ca0,a”,αt+1,...,αl
= C ∩ Ca0,a”,αt+1,...,αl

.

11



Since the coefficients (a0, a3, . . . , at) correspond to the vertices of Q, the Zariski
closure of Ca0,a”,αt+1,...,αl

in the toric variety X = XQ can avoid any finite
subset of the divisor at infinity X \ T by choosing a generic value of (a0, a”).

Thus the Zariski closure in X of the two curves C̃ and Ca0,a”,αt+1,...,αl
intersect

transversely in the torus for a” generic. This open condition remains valid for
any a in a neighborhood of α so that for all a near α, C̃ ∩ Ca = C̃ ∩ Cα. By
Lemma 2, C̃ is supported by a polytope P whose mixed volume with Q is d.

�

5 Algorithm for toric absolute factorization

We describe an algorithm for the absolute factorization of a bivariate irreducible
polynomial f ∈ Q[x] with Newton polytope P .

We denote by X = T ∪ D1 · · · ∪ Dr the abstract toric variety associated to
P , where the divisor Di corresponds to the facet Pi of P (see Appendix or [10]).
We assume that the origin is a vertex and that P1 and P2 contain it.

Algorithm:

Input: A bivariate irreducible polynomial f ∈ Q[x].
Output: The absolute irreducible decomposition of f (i.e. its irreducible factor-
ization in C[x]).

1. Determine the representation of P as intersection of affine half-planes:

P = {m ∈ R2, 〈m, ηi〉 + ki ≥ 0, i = 1 . . . r}

such that Pi = {m ∈ Q, 〈m, ηi〉 + ki = 0}, i = 1 . . . r, support the facets
of P .

2. Find the smallest integer polytope Q such that P = dQ, d ∈ N∗. Let q be
a generic Laurent polynomial supported by Q, and for t ∈ C generic, we
denote by Ct ⊂ X the curve defined by q(x) − t. Determine the 0-cycle
Ct · C = p1(t) + · · · + pN (t) on X .

3. For each i = 3 . . . r, determine the set C · Di = {pi1, . . . , pili} (each pij is
repeated according to its multiplicity).

4. Find the unique partition of {1, . . . , N}

J := (J31 ∪ · · · ∪ J3l3) ∪ · · · ∪ (Jr1 ∪ · · · ∪ Jrlr)

such that card(Jik) = k′
i = ki

d
∈ N and lim|t|→∞ pj(t) = pik ⇐⇒ j ∈ Jik.

5. Find the biggest divisor δ of d such that for each i = 3 . . . r, there exists
Ji ⊂ {1, . . . , li} of cardinal li

δ
satisfying

Tδ,J3,...,Jr
:=

r∑

i=3

∑

k∈Ji

∑

j∈Jik

fx2

Jac(f, q)

(
pj(t)

)
= 0. (10)
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6. Theorem 1 implies that f admits δ absolute irreducible factors whose
traces on the facets P3, . . . , P3 are given by the partition J . Explicit these
factors using Hensel’s liftings as in [1] but with approximate coefficients
as in [5, 20].

7. From the approximate factorization, compute the extension K in section
2 and recognize the exact factorization as explained in [5, 6].

Remark 3 Before the proof of the algorithm, let us give some remarks and
comments on some of these different points.

Our main target is not polynomials with too small polytopes (which can be
treated by other means), so we assume that (1, 0) is not a vertex of Q.

The curve C ⊂ X determined by f belongs to the linear system |DP | =
|dDQ|, where DQ = k′

3D3 + · · · + k′
rDr.

The number of points N in the cycle Ct ·C is equal by Bernstein’s theorem
to d(DQ · DQ) = 2dvol(Q) (see [2]). The curve Ct ⊂ X is the zero set of

the homogeneous polynomial Qh(U) − t
∏r

i=3 U
k′

i

i , where U = (U1, . . . , Ur) are
homogeneous coordinates on X associated to the edges of Q and Qh is the Q-
homogeneization of q (see [8]). When |t| goes to infinity, Ct degenerates to the

effective divisor at infinity DQ = div0(
∏r

i=3 U
k′

i

i ), and

p1(t) + · · · + pN(t) −→ k′
3(p31 + · · · + p3l3) + · · · + k′

r(pr1 + · · · + prlr).

In the examples, to determine the partition of {1, . . . , N} in the algorithm, we
fix t with |t| big and we solve the polynomial system f = q − t = 0.

Proof of the algorithm. Let d′ be a divisor of d and set N ′ := N
d′

= 2 d
d′

vol(Q).
To any subset J = {j1, . . . , jN ′} of {1, . . . , N}, we associate the 0-cycle

pj1(t) + · · · + pjN′
(t).

Since (1, 0) /∈ Γ (Γ is defined in Theorem 2), and absolute irreducible factors
of f are supported by a polytope homothetic to Q, the curve C = {f = 0}
intersects properly the Zariski closure of any line x1 = c, c ∈ C. Thus, Theorem
2 and Theorem 3 imply that there exists an algebraic curve CJ ⊂ X such that
for any t ∈ C,

CJ · Ct = pj1(t) + · · · + pjN′
(t)

if and only if the trace of x1

TJ(t) := x1(pj1(t)) + · · · + x1(pjN′
(t))

does not depend on t. Such a curve is contained in C and is supported by
(d/d′)Q. If d′ is the biggest divisor of d for which there exists a vanishing
sum as in (10), CJ = CJ (d′) is an irreducible component of C, and f has d′

irreducible factors.
Let us compute the finite sum TJ =

∑
j∈J x1

(
pj(t)

)
. The functions

uj(t) = x1(pj(t)) and vj(t) = x2(pj(t))

13



are holomorphic and satisfy for j = 1 . . .N ,

f(uj(t), vj(t)) = 0 , q(uj(t), vj(t)) = t.

Differentiating this system, we deduce that

uj
′(t) = − ∂x2f

Jac(f, q)
(pj(t)) , vj

′(t) =
∂x1f

Jac(f, q)
(pj(t)).

Thus

TJ
′(t) = −

∑

j∈J

∂x2f

Jac(f, q)
(pj(t)).

The existence of the curve CJ ⊂ C is then equivalent to TJ
′(t) = 0 for q generic.

It remains to show the validity of step 4 in the algorithm. If CJ is a compo-
nent of C, it has the same asymptotic behavior than C, i.e. the 0-cycle Ct · CJ

converges to

DQ · CJ = k′
3(D3 · CJ ) + · · · + k′

r(Dr · CJ ).

The 0-cycle Ct · CJ = pj1(t) + · · · + pjN′
(t) is a sum of effective 0-cycles

Z1(t), . . . , Zr(t), where Zi(t) has degree k′
i

li
d′

and Zi(t) → k′
iDi · CJ . �

5.1 Example

We apply our algorithm to the following simple (but not trivial) example:

f = 49 + 30 y x − 90 y x2 − 130 x y2 + 126 y + 56 x + 30 x2 − 3 y2 + x4 + 8 x3

+36 y4 − 108 y3 − 127 y2 x2 + 32 y2 x3 − 54 y x3 + 84 y3 x2 + 37 y2 x4

−12 y x4 + 30 y3 x3 + 13 x2 y4 + 24 x y4.

The Newton polytope P of f represented in Figure 3 is the convex hull of
{(0, 0), (4, 0), (4, 2), (2, 4), (0, 4)}.

P3

P4

P5
η5

η3

η4

2

2

4

4

Figure 3:

The vectors η3 = (0,−1), η4 = (−1,−1), η5 = (−1, 0), the integers k3 = 4, k4 =
6, k5 = 4, d = 2, and Q is the convex hull of {(0, 0), (2, 0), (2, 1), (1, 2), (0, 2)}.
Let

q = −5 + 8x − 2y + x2 + y2 + 2xy2 + 6yx2.

Figure 4 helps the understanding of the principle of our algorithm on this
example.
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For t = 103, the intersection 0-cycle of the curve Ct defined by q − t and the
curve C defined by f is Ct · C = p1 + · · · + p14, with

p1 = (−3.788354357 − 22.18782564 I, 0.1524031261 + 0.049759143 I)

p2 = (−3.788354357 + 22.18782564 I, 0.1524031261 − 0.049759143 I)

p3 = (−2.389966107 − 4.663138871 I, 7.365424369 + 1.227961352 I)

p4 = (−2.389966107 + 4.663138871 I, 7.365424369 − 1.227961352 I)

p5 = (−1.986201832 − 22.37900395 I, 0.1619217298 − 0.0018513709 I)

p6 = (−1.986201832 + 22.37900395 I, 0.1619217298 + 0.0018513709 I)

p7 = (−1.535681765 − 1.726064601 I, −9.102030424 + 7.399506679 I)

p8 = (−1.535681765 + 1.726064601 I, −9.102030424 − 7.399506679 I)

p9 = (−1.045747272 − 3.489978116 I, −5.189003901 + 9.662581013 I)

p10 = (−1.045747272 + 3.489978116 I, −5.189003901 − 9.662581013 I)

p11 = (−0.7687604288 − 1.155834857 I, 14.36735548 − 7.960507788 I)

p12 = (−0.7687604288 + 1.155834857 I, 14.36735548 + 7.960507788 I)

p13 = (5.894022105 − 0.6210086653 I, −6.648718394 + 5.938892046 I)

p14 = (5.894022105 + 0.6210086653 I, −6.648718394 − 5.938892046 I).

Now to determine C · Di, i = 3, 4, 5, we use toric affine coordinates (see Ap-
pendix) to find the three facet polynomials of f . Using the chart corresponding
to the vertex s3 = (2, 4) with the coordinates u = 1

x
, v = x

y
, we find

f3(u) = 36u2 + 24u + 13 and f4(v) = 37v2 + 30v + 12.

In the chart associated to s4 = (2, 4) with the coordinates z = y
x
, w = 1

y
, we

obtain f5(w) = w2 − 12w + 37. So we have

C · D3 = {p3,1, p3,2} , C · D4 = {p4,1, p4,2} , C · D5 = {p5,1, p5,2},

where

u(p3,1) = −1

3
+

1

2
I , v(p3,1) = 0 , u(p3,2) = −1

3
− 1

2
I , v(p3,2) = 0 ,

v(p4,1) = −15

37
+

16

37
I , u(p4,1) = 0 , v(p4,2) = −15

37
− 16

37
I , u(p4,2) = 0 ,

w(p5,1) = 6 + I , z(p5,1) = 0 , w(p5,2) = 6 − I , z(p5,2) = 0,

and

f3(u) = 36
(
u − u(p3,1)

)(
u − u(p3,2)

)
,

f4(v) = 37
(
v − v(p4,1)

)(
v − v(p4,2)

)
,

f5(w) =
(
w − w(p5,1)

)(
w − w(p5,2)

)
.

Now we collect the factors of fi’s to recover the factorization of f on the border
Γ = P3 ∪ P4 ∪ P5 of the Newton polytope P of f .

Since Ct ·C = p1(t)+ · · ·+ p14(t), and Ct → 2D3 +3D4 +2D5, then 4 (resp.
6, and 4) points among these 14 converge to the 2 points in C ·D3 (resp. C ·D4,
and C · D5), that is

p1(t) + · · · + p14(t) → 2(p3,1 + p3,2) + 3(p4,1 + p4,2) + 2(p5,1 + p5,2).

More precisely, using the toric coordinates, we observe that the points p1, p6

(resp. p3, p10, p13, and p8, p12) converge to p5,1 (resp. p4,1, and p3,1). We
deduce that

J3,1 = {8, 12} , J4,1 = {3, 10, 13} , J5,1 = {1, 6} ,

J3,2 = {7, 11} , J4,2 = {4, 9, 14} , J5,2 = {13, 14}.
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g = 0

h = 0D3

D4

D5

Ct

Figure 4:

Finally testing the vanishing of the expression (10), we find δ = 2, J3 = {1}, J4 =
{1}, J5 = {1}. We deduce that the polynomial f admits 2 absolute irreducible
factors g and h, and that the restriction of g on the 3 facets of P constituting
Γ are (up to monomials)

g3(u) = u − u(p3,1), g4(v) = v − v(p4,1), g5(w) = w − w(p5,1).

We easily recognize that the extension K = Q[I] with I2 = 1. In this exten-
sion, the coefficients of polynomials are easily recognized from their decimal
approximation.

Coming back to the toric coordinates (x, y), we find that the facet polyno-
mials gΓ (the restriction of g to Γ) and hΓ are respectively

gΓ = 6xy2g1 + xy2g3 = (2 − 3I)xy2 + 6y2 + (6 − I)x2y − x2,

hΓ = (2 + 3I)xy2 + 6y2 + (6 + I)x2y − x2.

Remark 4 In this example to detect a partition of points defining the absolute
factors of f we test

(
2
1

)(
2
1

)(
2
1

)
= 6 traces instead of

(
6
3

)
= 20 suggested by the

original approach (see section 3, [20], [5]). In general using our approach based
on the partition given in the step 4 of the algorithm, we have to test at most

N =
∑

δ|n

r∏

i=1

(
ei

δ

ei

)

traces instead of the initial number

M =
∑

δ|n

(
d
δ

d

)
.

Since d = e1 + · · · + er and
(

a
b

) (
c
d

)
<

(
a + c
b + d

)
,

this shows that N < M, and the difference being increasing with the number
of facets of the Newton polytope of f . Our algorithmic approach will bring
efficiency in absolute factorization problem and improves subsequently the ap-
proach presented in [20, 5].
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6 Conclusion

In this first paper, we established the mathematical bases of our algorithmic
approach to toric factorization, and we verified that it works on some examples.
However we still have to tune and improve the presented algorithm. This will be
done in a future work together with improvements which will speed up it in many
cases of interest. The method is symbolic-numeric and produces approximate
absolute factors. To lift the approximate factorization to the exact one we can
follow the approach in [20] and with some additional work, adapt [6].

Let us for instance notice that we could replace the polytope Q = 1
d
Nf by a

smaller one Q̃ having parallel facets. In particular in the bidegree case, we will
take Q̃ equals to the unit square.

We will also investigate the possibility of cutting the curve C defined by f
by special families of curves which will ease the computations.

Appendix on abstract toric surfaces

Let Q ⊂ R2 be a 2-dimensional integer convex polytope satisfying the condition
of Lemma 1. Let us explain how to recover the embedded projective toric variety
XQ as an abstract algebraic one.

There exist unique primitive vectors1 η1, . . . , ηr in Z2 and unique positive
integers k1, . . . , kr in N, such that for i = 1 . . . r, the facet Qi of Q is included
in the affine line

Qi ⊂ {m ∈ R2, 〈m, ηi〉 + ki = 0},
where 〈·, ·〉 is the usual scalar product in R2. The polytope Q is then given by
the intersection of r affine half-planes:

Q = {m ∈ R2 : 〈m, ηi〉 + ki ≥ 0, ∀ i = 1 . . . r}.

The vertices s1, . . . , sr of Q are in one-to-one correspondence with the facets
of Q. If for i = 1 . . . r − 1, si = Qi ∩ Qi+1, and sr = Qr ∩ Q1, any vertex si

determines a 2-dimensional rational convex cone

σi := {m ∈ R2 : 〈m, ηi〉 ≥ 0, 〈m, ηi+1〉 ≥ 0}

dual to the cone ηiR
+ ⊕ ηi+1R+. Let

Xi := Spec(C[σi ∩ Z2])

be the biggest variety on which all the Laurent polynomials supported in σi can
be extended as regular functions. Such a variety is called an affine toric surface,
since the torus T = (C∗)2 is an open set of Xi and its action on itself extends
to Xi.

We can glue naturally the affine surfaces Xi and Xi+1, corresponding to
cones having a common 1-dimensional face, along their common set Xi ∩ Xi+1

containing the torus T. This natural gluing is compatible with the torus action
and gives a complete normal variety X containing T as a Zariski open set. This

1A vector v = (v1, v2) ∈ Z
2 is primitive if gcd(v1, v2) = 1.
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torus compactification is called the normal complete toric surface associated to
Q. It can be written as

X = T ∪ D1 · · · ∪ Dr,

where D1, . . . , Dr are the unique irreducible divisors of X invariant under the
torus action. Each Di is isomorphic to P1 and meets the affine toric variety Xk

if and only if k ∈ {i, i + 1}.
For any m ∈ Z2, the Laurent monomial xm is regular on the Zariski open

set T common to all the charts Xi. It defines a rational function on X giving
rise to a principal Cartier divisor div(xm) supported on X \ T, and equal to

div(xm) =
r∑

i=1

〈m, ηi〉Di.

More generally, any Laurent polynomial q gives rise to a principal Cartier divisor

div(f) = Cf − b1D1 − · · · − brDr,

where Cf is the Zariski closure in X of the effective divisor {f = 0} ⊂ T, and

bi = −min{〈m, ηi〉, m ∈ Nf} , i = 1 . . . r,

are integers, Nf is the Newton polytope of f . Conversely, to any toric divisor
D =

∑r
i=1 biDi, we can associate an integral polytope PD

PD = {m ∈ R2 : 〈m, ηi〉 + bi ≥ 0, i = 1 . . . r}

so that div(f) + D ≥ 0 if and only if the support of f is contained PD, for
any Laurent polynomial f . In other words, the set H0(X,OX(D)) of global
sections of the invertible sheaf corresponding to D is isomorphic to the set
of Laurent polynomials supported by PD, and admits the Laurent monomials
xm, m ∈ PD ∩ Z2, as a natural basis.

Let us denote by
DQ = k1D1 + · · · + krDr

the particular divisor associated to the given polytope Q (so that Q = PDQ
). It

is globally generated on X and gives rise to the Kodaira rational map

φDQ
: X −→ P(H0(X,OX(DQ)))ν

which sends a generic x on the point ζx corresponding to the hyperplane of
global sections vanishing at x. If x ∈ T, and Q ∩ Z2 = {m0, . . . , ml}, this
hyperplane is

{a = [a0 : · · · : al] ∈ P(H0(X,OX(D))) :

l∑

i=0

aix
mi = 0}.

So that the natural homogeneous coordinates of ζx for x ∈ T are

φDQ
(x) = ζx = [xm0 : · · · : xml ],

and φDQ
defines a morphism on the torus. The map φDQ

turns out to be an
embedding precisely when m1 − m0, . . . , ml − m0 generate the lattice Z2 (See
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Lemma 1), in this case the toric variety X is isomorphic to the projective variety
XQ previously constructed. The divisor DQ is then very ample and gives rise
to the isomorphism

H0(X,OX(DQ)) = φ∗
DQ

H0(Pl,OPl(1)) ≃ H0(XQ, (OPl(1))|XQ
), (11)

traducing that the closure in X of curves defined by generic Laurent polynomials
supported by Q are isomorphic to some hyperplane sections of XQ ⊂ Pl. We
notice that the genericity criterion is essential here: For example, if f(x) = xmi ,
then the curve defined by f is empty while the corresponding hyperplane section
XQ ∩ {ui = 0} is not. Let us explicit this genericity criterion.

Lemma 3 Assume that DQ is very ample and let f be a reduced Laurent poly-
nomial supported in dQ, d ∈ N∗. Then Cf ≃ XQ ·H, for a reduced hypersurface
H ⊂ Pl of degree d if and only if the support of f meets every facets of dQ.

Proof. The assumption Nf ⊂ dQ is equivalent to div(f) = Cf − Df , where
Df = b1D1 + · · ·+ brDr is an effective divisor bounded by dDQ. Thus div(f) =
Cf + (dDQ − Df ) − dDQ, and since Cf + (dDQ − Df ) ≥ 0, f defines a global
section of OX(dDQ). We deduce from the isomorphism (11), the existence of
an effective divisor H of degree d in Pl such that

Cf + (dDQ − Df ) = H|X ,

under the identification X = XQ. Then Cf = H|X if and only if dDQ = Df ,
that is if the equality bi = dki holds for every i = 1 . . . r. Moreover, as Cf is
reduced, H must be reduced. �
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