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Havre Normandie, France, herve.franklin@univ-lehavre.fr 
 
 
Abstract - The effective wavenumber model of Linton and Martin [1] for the dilute monodisperse case 
(obstacles of identical sizes) is used to calculate the effective modulus and mass density of a polydisperse 
assembly of poroelastic spheres. We focus on the Rayleigh limit (low frequency regime) where the 
wavelengths can be considered very large compared to the size of the obstacles. In order to show the 
influence of the distribution in size of the obstacles, the special case of Schulz probability density function 
is considered. 
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1. INTRODUCTION 
 

The properties of the coherent wave propagating 
in a fluid containing randomly distributed poroelastic 
spheres are studied. The polydispersity - defined as 
the variation in size of the obstacles in a 
representative volume - is taken into account. The 
starting point is the effective wavenumber model of 
Linton and Martin (LM) [1] in the monodisperse case 
(identical sizes). This model based on a closure 
assumption often called the Quasi-Crystalline 
Approximation (QCA) of Lax, is an improvement of 
the models of Foldy [2] and Waterman and Truell [3] 
initially which were built for the dilute case (low 
concentrations). The following effective quantities 
will be derived: wavenumber, modulus and mass 
density of a polydisperse suspension in the low 
frequency regime where the wavelength can be 
assumed very large compared to the size of the 
obstacles (or large with regard to the representative 
volume). The monodisperse case (all the obstacles 
have the same radius) can then be seen as a particular 
case of polydispersity.  

The phenomenon of polydispersity is met in 
dispersions [4] and colloids [5-6]. It also manifests in 
the flowing and transport of solid particles [7] and in 
the distribution of air bubbles in fluids [8-10]. An 
understanding of the effects induced by the 
distribution in size of the obstacles on the effective 
acoustic properties of the dispersions can be of great 
interest, especially to higher orders in concentration - 
it should be noted that so far, the most used formulas 
are those of Foldy which only accounts first order 
terms in concentration and Waterman and Truell 
which contains an incorrect second order term. 
Moreover, considering porous obstacles, previous 
results on elastic spheres are extended. 
 

2. BACKGROUND 
 

The fluid surrounding the porous obstacles has a 
mass density 0  and a speed of sound 0c . The fluid 

saturating the porous space has a mass density f , a 

speed of sound fc  and a kinematic viscosity  . It 

will be assumed for the sake of simplicity that 

0f   and 0fc c . We denote by s  the mass 

density of the material constituting the solid grains 
and by   01 s       the density of the fluid 

saturated porous medium of porosity  . The porous 

medium obeys Biot's theory and is also characterized 
by a tortuosity   sometimes referred to as the 
structure factor [11] (see also Table 1, Ref. [12] for a 
complete list of the parameters constituting the 
saturated porous medium).  

Let  be the angular frequency and 0 0k c  the 
wavenumber of the longitudinal incident wave in the 
absence of the obstacles. When it encounters the 
obstacles, the incident wave is partially reflected. The 
part of the wave penetrating the obstacles is converted 
into three waves according to Biot’s theory of 
poroelastic media : two longitudinal waves of 
respective wavenumbers 1 1k c  (fast) and 

2 2k c  (slow) and a transverse wave of 

wavenumber t tk c . Since the three 
wavenumbers are all complex-valued, the waves 
attenuate when propagating in the porous space.      
The scattering of an incident plane wave by a 
spherical obstacle of radius a  is described by the 
scattering coefficients nT  ( n nT T  ) where n  is a 

relative integer (cf. Appendix A). The nT s depend     

on spherical Bessel and Hankel functions which in 
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tour depend on one of the normalized wavenumbers 
k a  ( 0,1,2,t  ).  

The far-field scattering function  f   is a modal 

series depending on the angle of observation   and 
on the coefficients nT  as follows 

 

     1
2 1 cos

00
f n T Pn nik n
 


 


.  (1) 

 
It is used in the LM model discussed later. The 

Legendre polynomial  cosnP   of order n  is equal 

to 1 for 0   (forward scattering) or    
(backscattering). At low frequencies the normalized 
wavenumbers k a  are such that 1k a                         

( 0,1,2,t  ). Taylor series expansions for these 
functions show that 
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      3 5
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i
T a k a B O k a           (3) 

 

    5
0nT a O k a  if 2n           (4) 

 
The coefficients 0B  and 1B  are given in Appendix 

B. The expansions Eqs. (2-4) for a single obstacle are 
usually called "Rayleigh limits". The study for any 
assembly of obstacles presented here remaining 
restricted to low frequencies, we keep this 
denomination below. 

 
3. LINTON AND MARTIN EFFECTIVE 
WAVENUMBER. POLYDISPERSITY. 

 
In 1967, using calculations based on methods of 

nuclear physics, Lloyd and Berry [13] extended the 
model of the effective wavenumber of Waterman and 
Truell for the case of spherical obstacles. They added 
to the second order in concentration of this 
wavenumber an integral formula which accounts for 
a summation on all the scattering angles. Four 
decades later, working on a new proof of the results 
of Lloyd and Berry from a more classical approach, 
LM [1] proposed in the case of cylindrical obstacles 
a rewrite of the effective wavenumber equivalent to 
that of Lloyd and Berry, the integral on the angles 
being transformed into a double series whose general 
term is proportional to the product n mT T  of the 

scattering coefficients. Although extended to any 

order in 0n  for cylinders [14] and for spheres [15], 

we consider here only the initial formula of LM which 
stops at the second order in 0n . 

Let us start from a fluid medium containing 0n  

obstacles per unit volume. The distribution of radius 
a  is assumed to be continuous and extends from 

1 0a   to 2a   . It is characterized by a probability 

density function   such that  
0

1a da


 . The 

effective wavenumber of LM is given by [1] 
 

 2 2 2 3
0 0 1 0 2 0LM k n n O n           (5) 

where 

     2

1
1

0 0

4
2 1

a
na

n

n T a a da
ik

 



       (6) 

and 
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       (7) 
In Eq. (7) 
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where G  is the Gaunt coefficient. The sum on the 
index q  is in steps of two with n m q   even. 

Algorithms are provided for the fast calculation of 
Gaunt coefficients [16]. 

When the frequency domain of study is arbitrary, 
one must evaluate numerically the single and double 
integrals appearing in Eqs. (6-7). The low-frequency 
approximations of the scattering coefficients nT  

given above make it possible to simplify considerably 
the computations of the integrals. Considering Eqs. 
(2-4) and (5-7) we obtain 

 

 2 2
0 1 21LM k I I                  (9) 

where 

  3
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Above, we have introduced the notation 
 

 
0

n na a a da


               (12) 

 
which represents the moment of order n  of the 
probability density function (if 1n   it is the average 

radius a  of the obstacles). Note that 

 2
01 10 3 16K K    and  2

11 3 4K   are also 

used. Equations (10-11) show that there are only two 

integrals to compute, 2a  and 3a . In the 

following   3
0 4 3V n a  will denote the 

average concentration. It is clear that the 
concentration does not depend on the physical 
parameters of the media. 

 
3.1. Concentrations  

 
We will examine the effect of polydispersity in the 

case of the Schulz distribution, Fig. 1, and then 
deduce the formula of the concentration. In their 
work, Leroy et al. [9] considered the log-normal 
distribution, Mascaro et al. [10] the Gaussian 
distribution which can be seen as a particular case of 
the Schulz distribution. The Schulz distribution [18-
21] is a special case of the Gamma distribution. It 
probability density function is given by 
 

   
   
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exp 1

1

jjj a a
a j
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    (13) 

 
where  .  is Euler's gamma function. The number 

j  measures the width of the distribution and is 

connected to the polydispersity because 

1 1p a j    ( 2  is the variance). The 

case 0j   gives 1p   and corresponds to the 

exponential distribution (where the number of small-
radius diffusers is preponderant).  

When j  is large, p  is small; the dispersion is 

small and the distribution is close to a Gaussian. In 
the following, j  is a positive integer and we use the 

relation  1 !j j   . The moment of order n  is then 

given by 
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The average concentration for a distribution of 
spherical obstacles is 
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where 34 3a . The special case of 

monodispersity is obtained when j   or 0p   

(the probability density function then tends towards 
an increasingly narrow peak of increasing amplitude 
and centered on the value 1). The result is the 

following limits nn na a a   ( 1n  ), 0   

and 0V n V . 

 

 
Figure 1. The Schulz distribution 

 
 

3.2. Effective wavenumber 
 
Making the appropriate substitutions in Eq. (9), 

one arrives at a formula for the effective wavenumber 
going up to the second order in concentration of the 
form  
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As long as terms of order 3
V  and higher can be 

neglected, Eqs. (16) can be rewritten as [12, 22] 
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4. EFFECTIVE MODULUS 
 
4.1. Porous obstacles 
 
In the absence of obstacles, the square of the 

wavenumber in the fluid medium is given by 
2 2 2
0 0k c , where 2

0 0 0c K   ( 0K  is the bulk 

modulus). We define, by analogy with this last 
formula, the square of the effective wavenumber 

 2 2
LM LM LMM    of the medium containing 

the obstacles, where LM  represents the effective 

mass density and LMM  the effective modulus. The 

ratio of the squared wavenumbers gives [22]: 
 

2
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0 0

LM LM

LM

K

k M

 

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 
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Comparing with Eq. (17), we deduce that  

2 2
1 1

0
1 3 6LM

V VB B

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and that  

 

0
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Accounting for the explicit form of V , Eq. (15), 

we have also 
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and 
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from which the monodisperse case can be derived by 
putting 0p  . It can be seen that the ratio 0LM   

only takes into account 1B  while LMM  only takes 

into account 0B . In Appendix B, substituting Eqs. 
(B4-B7) in Eqs. (B2-B3) we arrive at the static 
expressions of 0B  and 1B  given in Eqs. (B8-B9). We 

thus obtain simplified forms of Eqs (19-20) showing 

the role played by the parameters characterizing the 
porous medium 
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where 
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and 
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The interpretation of the bulk modulus, Eq. (22), 

is the following: the trace of the mean deformation is 
given by LMTr P M    if P  represents the 

hydrostatic pressure. Equations (31-32) do not 
depend on the viscosity of the fluid saturating the 
pores nor on the permeability. However, they still 
depend on the porosity. 

 
4.2. Elastic obstacles 
 
When the porosity tends towards zero ( 0  ), 

the medium becomes an elastic solid described by the 
Lamé constants s , s  and the bulk modulus 

2 3s s sK    . We have  

 
4

3
s

s sH H K
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   ,  s  , s sC C K   (23) 

 
and then  
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s

s
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                        (25) 

In Eqs. (24), we used the relations 

 2 22s s L Tc c     and 2
s s Tc  , where Lc  ( Tc  

respectively) represents the phase velocity of the 
longitudinal wave (transverse wave respectively) in 
the elastic medium. Substitutions of 0B  by 0E  and 

1B  by 1E  in Eqs. (19-20) give the static expressions 
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and 

0
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LM s sM K  
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 
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Equation (26) provides an extension to order 2 in 

concentration of the results given to order 1 by 
Aristégui and Angel who used the wavenumber of 
Waterman and Truell and considered a monodisperse 
distribution of obstacles (see Eqs. (37) and (41) of 
Ref. [23]). In the dilute case and to the first order in 
concentration, the results of Kuster and Toksöz [24] 
agree with those given here. The divergence observed 
from the second order in concentration between the 
effective mass densities of LM and of Kuster and 
Töksoz comes from the fact that the latter do not 
consider the multiple scattering phenomenon 
between the spheres. 

 
5. CONCLUSIONS 

 
In this paper, we have used the general formula of 

the effective wavenumber provided by LM to 
determine the properties - mass densities and 
effective moduli - of polydisperse media made up of 
poroelastic spherical obstacles immersed in a fluid. 
Schulz’s statistical distribution was considered for the 
size of the obstacles. Formulas are obtained for the 
effective wavenumber, modulus and mass density at 
low frequency. From there we derive formulas in the 
static case for porous obstacles and next for elastic 
obstacles. All formulas relative to the effective 
quantities depend on the fundamental parameter of 
concentration, which in turn depends closely on the 
statistical distribution considered for the size of the 
obstacles. 
 
APPENDIX A  
 

For a poro-elastic sphere surrounded and saturated 
by the same liquid, the application of the open-pore 
boundary conditions (Eq. (A1) of Ref. [12]) allows to 

write the scattering coefficients nT  as a ratio of 

determinants of order 4 nd  and  1
nd  : 
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n
n

d
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d
 .                       (A1) 
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(1)
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23 20 2( )f nd j x ,  24 0d  ,            (A3) 

2 (1)
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 
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41 0d  , 42 1 1 1( ) ( )n nd x j x j x  ,   

43 2 2 2( ) ( )n nd x j x j x  , 

  2
44 ( ) 1 1 2 ( )t n t t n td x j x n n x j x        (A5) 

The determinant  1
nd  is derived from nd  by 

replacing the elements of the first column of nd  with 

the following 
 

11 0 0( )nx j x   ,  21 0( )nj x  ,  
2

31 0 0( )t t nx j x  ;  41 0  .            (A6) 

 
Above, 1     ( 1, 2, t  ) are compatibility 

coefficients [25], x k a a c     ( 0,1, 2,t  ) 

are dimensionless wavenumbers and nj , (1)
nh  are the 

spherical Bessel and Hankel functions of order n  
[26]. Further, 
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denote dimensionless coefficients. The elastic moduli 
H ,   and C  (to which a fourth module M  must be 

associated) characterize the porous medium [25]. The 
coefficients t t     ( 0,1, 2  ) and 

0 0f f    , 0 0f f     ( 1, 2  ) 

represent mass density ratios [27] where 

0         1, 2, t  , 

0 1f 
  


 
  

 


  1, 2  .          (A8) 
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It is recalled that   is the dynamic tortuosity [11], 

  01 s       the mass density of the porous 

medium and   the porosity.  

 
APPENDIX B 
 

The coefficients 0B  and 1B  of Eqs. (1-2) are 

obtained from Taylor's expansions of the scattering 
coefficients nT  for x  ( 0,1, 2, t  ) small 

compared to one, Appendix A. We have 
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with f t f t     ( 1, 2  ).  

The above parameters as well as fast, slow and 
shear wave speeds all depend on the frequency. The 
same is true of the coefficients 0B  and 1B . At low 

frequencies the following approximations can be used 
(the porosity of the medium being fixed and different 
from zero) 
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where  0c     is a characteristic frequency 

built with the permeability   of the porous medium, 
the mass density 0  and the kinematic viscosity   of 
the saturating fluid. We obtain 
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and see that coefficients 0B  and 1B  no longer depend 

on the frequency. We are in the static limit where the 
only physical parameters playing a role are those of 

the fluid ( 0 , 2
0 0 0K c ) and the porous medium (

, , ,H M C  ). We have 
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where sK  (  , respectively) is the bulk modulus 

(shear modulus, respectively) of the frame material 
and bK  the bulk modulus of the skeletal frame. 
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