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Abstract

We put forward a principled variational approach for
up-sampling a single depth map to the resolution of the
companion color image provided by an RGB-D sensor. We
combine heterogeneous depth and color data in order to
jointly solve the ill-posed depth super-resolution and shape-
from-shading problems. The low-frequency geometric in-
formation necessary to disambiguate shape-from-shading
is extracted from the low-resolution depth measurements
and, symmetrically, the high-resolution photometric clues
in the RGB image provide the high-frequency information
required to disambiguate depth super-resolution.

1. Introduction

RGB-D sensors have become very popular for 3D-
reconstruction, in view of their low cost and ease of use.
They deliver a colored point cloud in a single shot, but
the resulting shape often misses thin geometric structures.
This is due to noise, quantisation and, more importantly,
the coarse resolution of the depth map. However, super-
resolution of a solitary depth map without additional con-
straint is an ill-posed problem.

In comparison, the quality and resolution of the compan-
ion RGB image are substantially better. For instance, the
Asus Xtion Pro Live device delivers 1280× 1024 px2 RGB
images, but only up to 640 × 480 px2 depth maps. There-
fore, it seems natural to rely on color to refine depth. Yet,
retrieving geometry from a single color image is another ill-
posed problem, called shape-from-shading. Besides, com-
bining it with depth clues requires the RGB and depth im-
ages to have the same resolution.

The resolution of the depth map thus remains a limit-
ing factor in single-shot RGB-D sensing. This work aims
at breaking this barrier by jointly refining and upsampling
the depth map using shape-from-shading. In other words,
we fight the ill-posedness of single depth image super-
resolution using shape-from shading, and vice-versa.

Input: one low-resolution depth map Our result
and its companion high-resolution image

Figure 1: We carry out single-shot depth super-resolution
for commodity RGB-D sensors, using shape-from-shading.
By combining low-resolution depth (left) and high-
resolution color clues (middle), detail-preserving super-
resolution is achieved (right). All figures best viewed in
the electronic version.

The rest of this paper is organized as follows. Section 2
reviews the single depth image super-resolution and shape-
from-shading problems, in order to motivate their joint solv-
ing in the context of RGB-D sensing. Section 3 then intro-
duces a principled Bayesian approach to joint depth super-
resolution and shape-from shading. This yields a noncon-
vex variational problem which is solved using a dedicated
ADMM algorithm. Our approach is evaluated against a
broad variety of real-world datasets in Section 4, and our
conclusions are eventually drawn in Section 5.

2. Motivation and related work
Let us first recall the ambiguities arising in single depth

image super-resolution and in shape-from-shading, and how
they have been handled in the literature.
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2.1. Ill-posedness in single depth image super-
resolution

A depth map is a function which associates to each 2D
point of the image plane, the third component of its conju-
gate 3D-point, relatively to the camera coordinate system.
Depth sensors provide out-of-the-box samples of the depth
map over a discrete low-resolution rectangular 2D grid
ΩLR ⊂ R2. We will denote by z0 : ΩLR → R, p 7→ z0(p)
such a mapping between a pixel p and the measured depth
value z0(p).

Due to hardware constraints, the depth observations z0

are limited by the resolution of the sensor (i.e., the number
of pixels in ΩLR). The single depth image super-resolution
problem consists in estimating a high-resolution depth map
z : ΩHR → R over a larger domain ΩHR ⊃ ΩLR, which
coincides with the low-resolution observations z0 over ΩLR
once it is downsampled. Following [14], this can be for-
mally written as

z0 = Kz + ηz. (1)

In (1), K : RΩHR → RΩLR is a linear operator combining
warping, blurring and downsampling [55]. It can be cali-
brated beforehand, hence assumed to be known, see for in-
stance [44]. As for ηz , it stands for the realisation of some
stochastic process representing measurement errors, quan-
tisation, etc.

Single depth image super-resolution requires solving
Equation (1) in terms of the high-resolution depth map z.
However, K in (1) maps from a high-dimensional space
ΩHR to a low-dimensional one ΩLR, hence it cannot be in-
verted. Single depth image (blind) super-resolution is thus
an ill-posed problem, as there exist infinitely many choices
for interpolating between observations, as sketched in Fig-
ure 2. Therefore, one must find a way to constrain the
problem, as well as to handle noise. This can be achieved
by adding observations obtained from different viewing an-
gles [20, 40, 53], but in this work we rather target single-
shot applications.

When the input consists in a solitary depth map, dis-
ambiguation can be carried out by introducing a smooth-
ness prior on the high-resolution depth map, a strategy
which has led to a number of variational approaches, see
for instance [55]. More recently, several machine learn-
ing approaches have been put forward, which essentially
rely on a dictionary of low- and high-resolution depth or
edge patches [38, 58]. To avoid resorting to a database,
such a dictionary can be constructed from a single depth
image by looking for self-similarities [27, 34]. Neverthe-
less, learning-based depth super-resolution methods remain
prone to over-fitting, an issue which has been specifically
tackled in [59]. Over-fitting can also be avoided by com-
bining the respective benefits of machine learning and vari-
ational approaches [17, 50].

Figure 2: There exist infinitely many ways (dashed lines) to
interpolate between low-resolution depth samples (rectan-
gles). Our disambiguation strategy builds upon shape-from-
shading applied to the companion high-resolution color im-
age (cf. Figure 3), in order to resurrect the fine-scale geo-
metric details of the genuine surface (solid line).

In the RGB-D framework, a high-resolution color im-
age is also available. It can be used as a “guide” to inter-
polate missing depth values. Several methods were thus
proposed to coalign the depth edges in the super-resolved
map with edges of the given high-resolution color im-
age [11, 16, 44, 60]. Yet, such approaches only consider
sparse features in the high-resolution data, although the
whole color image actually conveys shape clues. Indeed,
brightness is directly related to the local orientation, hence
a photometric approach to depth super-resolution for RGB-
D sensors should be feasible and permit to recover fine-
scale geometric details. There is, however, surprisingly few
works in that direction: to the best of our knowledge, this
has been achieved only in [37, 45], but these methods rely
on a sequence of images acquired under varying lighting,
hence they do not tackle the single-shot problem.

2.2. Ill-posedness in shape-from-shading

Shape-from-shading [25] is another classical inverse
problem which aims at inferring shape from a single
graylevel or color image of a scene. It consists in invert-
ing an image formation model relating the image irradiance
I to the scene radiance R, which depends on the surface
shape (represented here by the depth map z), the incident
lighting l and the surface reflectance ρ:

I = R(z|l, ρ) + ηI , (2)

with ηI the realisation of a stochastic process standing for
noise, quantisation and outliers.

Assuming frontal lighting, uniform Lambertian re-
flectance, Lipschitz-continuous depth and orthographic pro-
jection, solving (2) in terms of the depth map z comes down
to solving the eikonal equation [7]

|∇z| =
√

1

I2
− 1. (3)



Figure 3: Shape-from-shading suffers from the concave /
convex ambiguity: the genuine surface (solid line) and both
the surfaces depicted by dashed lines produce the same im-
age, if lit and viewed from above. We put forward low-
resolution depth clues (cf. Figure 2) for disambiguation.

It is noteworthy that (3) only provides the magnitude of
the depth gradient, and not its direction. The local shape
is thus unambiguous in singular points (the tangent vectors
in Figure 3), but two singular points may either be con-
nected by “going up” or by “going down”. This is the well-
celebrated concave / convex ambiguity. One out of the in-
finitely many solutions of (3) can be numerically computed
by variational methods [26, 29] or by resorting to the vis-
cosity solution theory [10, 15, 35, 51]. See [6, 12, 62] for
further details about numerical shape-from-shading.

Even under the unrealistic assumptions yielding the
eikonal shape-from-shading model (3), shape inference is
ill-posed. Hence, one may expect that more realistic light-
ing and reflectance assumptions will add more ambiguities.
Several steps in the direction of handling natural lighting
have been achieved [28, 31, 49], but they still require the re-
flectance to be uniform. However, in general both the light-
ing and the reflectance may be arbitrarily complex. This
is nicely visualized in the “workshop metaphor” of Adelson
and Pentland [1]: any image can be explained by a flat shape
illuminated uniformly but painted in a complex manner, by
a white and frontally-lit surface with a complex geome-
try, or by a white planar surface illuminated in a complex
manner. To solve this series of ambiguities, additional con-
straints must be introduced. Barron et al. proposed for this
purpose appropriate priors for reflectance (sparsity of the
gradients), lighting (spherical harmonics model [4, 48]) and
shape (smoothness), and combined them in order to achieve
shape, reflectance and illumination from shading [3].

Recently, the shape-from-shading problem has gained
new life with the emergence of RGB-D sensors. Indeed,
the rough depth map can be used as prior to “guide” shape-
from-shading and thus circumvent its ambiguities. This has
been achieved in the multi-view setup [39, 63], but also in
the single-shot case [9, 22, 42, 43, 57, 61] we tackle in this
paper. Still, these methods require the resolutions of the
input image and of the depth map to be the same.

2.3. Intuitive justification of our proposal

In view of this brief discussion on single depth image
super-resolution and shape-from-shading, we conclude that,
in the context of RGB-D sensing, the high-frequency infor-
mation necessary to achieve detail-preserving depth super-
resolution could be provided by the photometric data. Sim-
ilarly, the low-frequency information necessary to disam-
biguate shape-from-shading could be conveyed by the geo-
metric data. Compare Figures 2 and 3, and see Figure 4. It
should thus be possible to achieve joint depth map refine-
ment and super-resolution in a single shot, without resort-
ing to additional data (new viewing angles or illumination
conditions, learnt dictionary, etc.). In the next section, we
formulate this task as a principled variational problem, by
resorting to Bayesian inference.

(a) (b)

(c) (d) (e)

Figure 4: (a-b) Input low-resolution depth and high-
resolution color images. (c) Blind super-resolution
(achieved by disabling the shape-from-shading term in (18))
cannot hallucinate high-frequency geometric details from
(a). (d) Shape-from-shading (achieved by setting µ = 0
in (18)) applied to (b) appropriately recover such thin struc-
tures, but it is prone to low-frequency errors. (e) The com-
bination of both techniques yields appropriate restoration of
both high- and low-frequency components.

3. A variational approach to joint depth super-
resolution and shape-from-shading

We formulate shading-based depth super-resolution as
the joint solving of (1) (super-resolution) and (2) (shape-
from-shading) in terms of the high-resolution depth map z :
ΩHR → R, given a low-resolution depth map z0 : ΩLR → R
and a high-resolution RGB image I : ΩHR → R3.



We aim at recovering not only a high-resolution depth
map which is consistent both with the low-resolution depth
measurements and with the high-resolution color data,
but also the hidden parameters of the image formation
model (2) i.e., the reflectance ρ and the lighting l. This can
be achieved by maximizing the posterior distribution of the
input data which, according to Bayes rule, is given by

P(z, ρ, l|z0, I) =
P(z0, I|z, ρ, l)P(z, ρ, l)

P(z0, I)
, (4)

where the numerator is the product of the likelihood with
the prior, and the denominator is the evidence, which can
be discarded since it plays no role in maximum a posteri-
ori (MAP) estimation. In order to make the independency
assumptions as transparent as possible and to motivate the
final energy we aim at minimizing (see (18)), we follow in
the next subsections David Mumford’s approach [41] to de-
rive a variational model from the posterior distribution (4).

3.1. Likelihood

Let us start with the first term in the numerator of (4)
i.e., the likelihood. By construction of RGB-D sen-
sors, depth and color observations are independent, hence
P(z0, I|z, ρ, l) = P(z0|z, ρ, l)P(I|z, ρ, l). We fur-
ther assume that the depth observations are independent
from the surface reflectance and from the lighting, hence
P(z0|z, ρ, l) = P(z0|z) and thus:

P(z0, I|z, ρ, l) = P(z0|z)P(I|z, ρ, l). (5)

Assuming homoskedastic, zero-mean Gaussian noise ηz
with variance σ2

z in (1), the first factor in (5) writes

P(z0|z) ∝ exp

{
−
‖Kz − z0‖2`2(ΩLR)

2σ2
z

}
. (6)

Next, we discuss the second factor in (5), by making
Equation (2) explicit. In general, the irradiance in channel
? ∈ {R,G,B} writes

I? =

∫
λ

∫
ω

c?(λ)ρ(λ)φ(λ, ω) max{0, s(ω)·nz} dω dλ+ηI ,

(7)
where integration is carried out over all wavelengths λ (ρ is
the spectral reflectance of the surface and c? is the transmis-
sion spectrum of the camera in channel ?) and all incident
lighting directions ω (s(ω) is the unit-length vector pointing
towards the light source located in direction ω, and φ(·, ω) is
the spectrum of this source), and nz is the unit-length sur-
face normal (which depends on the underlying depth map
z). Assuming achromatic lighting i.e., φ(·, ω) := φ(ω), and
using a first-order1 spherical harmonics approximation of

1The whole proposed method is straightforward to extend to second-
order spherical harmonics. However we did not observe substantial im-
provement with this extension, hence we discuss only the first-order case,
which can capture more than 85% of natural illumination [18].

the inner integral, we obtain

I =

∫λ cR(λ)ρ(λ)dλ∫
λ
cG(λ)ρ(λ)dλ∫

λ
cB(λ)ρ(λ)dλ


︸ ︷︷ ︸

:=ρ

l ·
[
nz
1

]
+ ηI , (8)

with l ∈ R4 the achromatic “light vector”, ρ : ΩHR →
R3 the albedo (Lambertian reflectance) map, relatively to
the camera transmission spectra {c?}?∈{R,G,B}, and nz :
ΩHR → S2 ⊂ R3 the field of unit-length surface normals.
Assuming perspective projection with focal length f > 0
and p : ΩHR → R2 the field of pixel coordinates with re-
spect to the principal point, the normal field is given by

nz =
1√

|f ∇z|2 + (−z − p · ∇z)2

[
f ∇z

−z − p · ∇z

]
(9)

(see, for instance, [46]).
Assuming that the image noise is homoskedastically

Gaussian-distributed with zero-mean and covariance matrix
Diag(σ2

I , σ
2
I , σ

2
I ), we obtain

P(I|z, ρ, l) ∝ exp

{
−
‖(l ·mz,∇z) ρ− I‖2`2(ΩHR)

2σ2
I

}
,

(10)
where, according to (8) and (9), mz,∇z is a ΩHR → R4

vector field defined as

mz,∇z =



f ∇z√
|f ∇z|2 + (−z − p · ∇z)2

−z − p · ∇z√
|f ∇z|2 + (−z − p · ∇z)2

1

 . (11)

3.2. Priors

We now consider the second factor in the numerator
of (4) i.e., the prior distribution. We assume that depth, re-
flectance and lighting are independent (independence of re-
flectance from depth and lighting follows from the Lamber-
tian assumption, and independence of lighting from depth
follows from the distant-light assumption required to derive
the spherical harmonics model (8), see [4, 48]). This im-
plies

P(z, ρ, l) = P(z)P(ρ)P(l). (12)

Since lighting has already been modeled as a low-
frequency phenomenon for the sake of expliciting the image
formation model (8), we do not need to introduce any other
prior P(l) and thus we use an improper prior

P(l) = constant. (13)



Regarding the depth map z, we follow the recent
work [21] and opt for a minimal surface prior. Remark that

dAz,∇z =
z

f2

√
|f ∇z|2 + (−z − p · ∇z)2 (14)

is a ΩHR → R scalar field which maps each pixel to
the area of the corresponding surface element. Thus
‖dAz,∇z‖`1(ΩHR) is the total surface area and the minimal
surface prior writes

P(z) ∝ exp

{
−
‖dAz,∇z‖`1(ΩHR)

α

}
, (15)

with α > 0 a free parameter controlling smoothness.
According to the Retinex theory [33], the reflectance ρ

can be assumed piecewise constant. This yields a Potts prior

P(ρ) ∝ exp

{
−
‖∇ρ‖`0(ΩHR)

β

}
, (16)

with β > 0 a scale parameter, and ‖·‖`0 an abusive notation
for the length of the discontinuity set:

‖∇ρ‖`0(ΩHR) =
∑
p∈ΩHR

{
0, if |∇ρ(p)|2 = 0,

1, otherwise,
(17)

where |·|2 is the Euclidean norm in R6.

3.3. Variational formulation

Replacing the maximisation of the posterior distribu-
tion (4) by the minimisation of its negative logarithm, com-
bining Equations (4)–(6), (10), (12)–(16), and neglecting
the additive constants, we end up with the variational model

min
ρ: ΩHR→R3

l∈R4

z: ΩHR→R

‖(l ·mz,∇z) ρ− I‖2`2(ΩHR)+µ ‖Kz − z0‖2`2(ΩLR)

+ ν ‖dAz,∇z‖`1(ΩHR) + λ ‖∇ρ‖`0(ΩHR) , (18)

with the following definitions of the weights:

µ =
σ2
I

σ2
z

, ν =
2σ2

I

α
and λ =

2σ2
I

β
. (19)

3.4. Numerical solution

We now describe an algorithm for effectively solving the
variational problem (18), which is both nonsmooth and non-
convex. In order to tackle the nonlinear dependency upon
the depth and its gradient arising from shape-from-shading
and minimal surface regularisation, we follow [47] and in-
troduce an auxiliary variable θ := (z,∇z), then rewrite (18)
as a constrained optimisation problem:

min
ρ: ΩHR→R3

l∈R4

z: ΩHR→R
θ: ΩHR→R3

‖(l ·mθ) ρ− I‖2`2(ΩHR) + µ ‖Kz − z0‖2`2(ΩLR)

+ ν ‖dAθ‖`1(ΩHR) + λ ‖∇ρ‖`0(ΩHR)

s.t. θ = (z,∇z). (20)

We then use a multi-block variant of ADMM [5,
13, 19] to solve (20)2. Given the current estimates
(ρ(k), l(k), θ(k), z(k)) at iteration (k), the variables are up-
dated according to the following sweep:

ρ(k+1) = argmin
ρ

∥∥∥(l(k) ·mθ(k)

)
ρ− I

∥∥∥2

`2(ΩHR)

+ λ ‖∇ρ‖`0(ΩHR) , (21)

l(k+1) = argmin
l

∥∥∥(l ·mθ(k)) ρ(k+1)−I
∥∥∥2

`2(ΩHR)
, (22)

θ(k+1) = argmin
θ

∥∥∥(l(k+1) ·mθ

)
ρ(k+1) − I

∥∥∥2

`2(ΩHR)

+ν‖dAθ‖`1(ΩHR)+
κ

2

∥∥∥θ−(z,∇z)(k)+u(k)
∥∥∥2

`2(ΩHR)
,

(23)

z(k+1) = argmin
z

µ ‖Kz − z0‖2`2(ΩLR)

+
κ

2

∥∥∥θ(k+1) − (z,∇z) + u(k)
∥∥∥2

`2(ΩHR)
, (24)

u(k+1) = u(k) + θ(k+1) − (z(k+1),∇z(k+1)), (25)

where u and κ are a Lagrange multiplier and a step size,
respectively. In our implementation κ is determined auto-
matically using the varying penalty procedure [23].

To solve the albedo sub-problem (21) we resort to
primal-dual iterations [54]. The lighting update (22) is
solved using pseudo-inverse. The θ-update (23) comes
down to a series of independent (there is no coupling be-
tween neighboring pixels, thanks to the ADMM strategy)
nonlinear optimisation problems, which we solve using the
implementation [52] of the L-BFGS method [36], using the
Moreau envelope of the `1 norm to ensure differentiability.
The depth update (24) requires solving a large sparse lin-
ear least-squares problem, which we tackle using conjugate
gradient on the normal equations.

Although the overall optimisation problem (18) is non-
convex, recent works [24, 30, 56] have demonstrated that
under mild assumptions on the cost function and small
enough step size κ, nonconvex ADMM converges to a crit-
ical point. In practice, we found the proposed ADMM
scheme to be stable and always observed convergence. In
our experiments we use as initial guess: ρ(0) = I , l(0) =

[0, 0,−1, 0]
>, z(0) a smoothed (using bilinear filtering) ver-

sion of a linear interpolation of the low-resolution input z0,
θ(0) = (z0,∇z(0)), u(0) ≡ 0 and κ(0) = 10−4. In all our
experiments, 10 to 20 global iterations (k) were sufficient to
reach convergence, which is evaluated through the relative
residual between two successive depth estimates z(k+1) and
z(k). On a recent laptop computer with i7 processor, such
a process requires around one minute (code is implemented
in Matlab except the albedo update, which is implemented
in CUDA).

2Code and dataset is available at https://github.com/
BjoernHaefner/DepthSRfromShading.

https://github.com/BjoernHaefner/DepthSRfromShading
https://github.com/BjoernHaefner/DepthSRfromShading


4. Experimental validation

In this section we evaluate our variational approach
to joint depth super-resolution and shape-from-shading
against challenging synthetic and real-world datasets.

4.1. Synthetic data

We first discuss the choice of the parameters involved in
the variational problem (18). Although their optimal values
can be deduced from the data statistics (see (19)), it can
be difficult to estimate such statistics in practice and thus
we rather consider µ, ν and λ as tunable hyper-parameters.
The formulae in (19) remain however insightful regarding
the way these parameters should be tuned.

To select an appropriate set of parameters, we con-
sider a synthetic dataset (the publicly available “Joyful
Yell” 3D-shape) which we render under first-order spher-
ical harmonics lighting (l = [0, 0,−1, 0.2]

>) with three
different reflectance maps as depicted in Figure 5. Addi-
tive zero-mean Gaussian noise with standard deviation 1%
that of the original images is added to the high resolution
(640 × 480 px2) images. Ground-truth high resolution and
input low-resolution (320 × 240 px2) depth maps are ren-
dered from the 3D-model. Non-uniform zero-mean Gaus-
sian noise with standard deviation 10−3 times the squared
original depth value (consistently with the real-world mea-
surements from [32]) is then added to the low-resolution
depth map. Quantitative evaluation is carried out by evalu-
ating the root mean squared error (RMSE) between the es-
timated depth and albedo maps and the ground-truth ones.

Initially, we chose µ = 1
12 , ν = 2 and λ = 1. Then, we

evaluated the impact of varying each parameter, keeping the
others fixed to these values found empirically. Results are
shown in Figure 6. Quite logically, µ should not be set too
high otherwise the resulting depth map is as noisy as the
input. Low values always allow a good albedo estimation,
but the range µ ∈ [10−2, 1] seems to provide the most ac-
curate depth maps. Regarding λ, larger values should be
chosen if the reflectance is uniform, but they induce high
errors whenever it is not. On the other hand, low values sys-
tematically yield high errors since the reflectance estimate
absorbs all the shading information (this is the “painter’s
explanation” in the “workshop metaphor” [1]). In between,
the range λ ∈ [10−1, 10] seems to always give reasonable
results. Eventually, high values of ν should be avoided in
order to prevent over-smoothing.

Since we chose to disambiguate shape-from-shading by
assuming piecewise-constant reflectance, the minimal sur-
face prior plays no role in disambiguation. This explains
why low values of ν should be preferred. Depth regulari-
sation matters only when color cannot be exploited, for in-
stance due to shadows, black reflectance or saturation. This
will be better visualised in the real-world experiments.

voronoi constant rectcircle

Figure 5: Synthetic dataset used for quantitative evaluation.
Left: low-resolution depth map. Right: high-resolution
RGB images, rendered using three different albedo maps.
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Figure 6: Impact of the parameters µ, ν and λ on the ac-
curacy of the albedo and depth estimates. Based on those
experiments, we select the set of parameters (µ, ν, λ) =
(10−1, 10−1, 2) for our experiments.

In Figure 7, we compare our method with two other
single-shot ones: a learning-based approach [58] and an
image-based one [60]. To emphasise the interest of joint
shape-from-shading and super-resolution over shading-
based depth refinement using the downsampled image, we
also show the results of [43]. For fair comparison with [58],
this time we use a scaling factor of 4 for all methods i.e., the
depth maps are rendered at 120× 160 px2. To evaluate the
recovery of thin structures, we provide the mean angular
error with respect to surface normals. The learning-based
method can obviously not hallucinate surface details since it
does not use the color image. The image-based method does
a much better job, but it is largely overcome by shading-
based super-resolution.
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Figure 7: Comparison between learning-based [58], image-
based [60] and shading-based (ours) depth super-resolution,
as well as shading-based refinement using low-resolution
images [43]. Our method systematically outperforms the
others (numbers are the mean angular errors on normals).

4.2. Real-world data

For real-world experiments, we use the Asus Xtion Pro
Live sensor, which delivers 1280 × 1024 px2 RGB and
640 × 480 px2 depth images at 30 fps. Data are acquired
in an indoor office with ambient lighting, and objects are
manually segmented from background before processing.

Figures 1, 4, 8, 9, 10 and 13 present real-world re-
sults. Combining depth super-resolution and shape-from-
shading apparently resolves the low-frequency and high-
frequency ambiguities arising in either of the inverse prob-
lems. Over-segmentation of reflectance may happen, but
this does not seem to impact depth recovery. Whenever
color gets saturated or too low, then minimal surface drives
super-resolution, which adds robustness. Additional results
using depth maps with lower resolution (320 × 240 px2)
are presented in Figure 11. Our method only fails when
reflectance does not fit the Potts prior, as shown in Fig-
ure 12 for an object with smoothly-varying reflectance. It
induces bias in the estimated depth such that reflectance
based artifacts appear. Handling such cases would require
using another prior for the reflectance, or actively control-
ling lighting. This has already been achieved in RGB-D
sensing [2, 8, 45], but it is not compatible with single-shot
applications.

Figure 8: Super-resolution of a “dress”. The estimated re-
flectance map is uniform, hence it is not displayed here.

Figure 9: Super-resolution of a “monkey doll”. Fine-scale
shape and reflectance structures are nicely recovered.

Figure 10: Super-resolution of “wool balls”. Minimal sur-
face drives super-resolution when color gets saturated.

5. Conclusion

A variational approach to single-shot depth super-
resolution for RGB-D sensors is proposed. It fully exploits
the color information in order to guide super-resolution,
by resorting to the shape-from-shading technique. Low-
resolution depth cues resolve the ambiguities arising in
shape-from-shading and, symmetrically, high-resolution
photometric clues resolve those of depth super-resolution.
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Figure 11: Comparison between our super-resolution method, two others [58, 60] and shading-based depth refinement on the
low-resolution images [43]. Our shading-based super-resolution restores the complex geometry the best. Numbers represent
runtime in seconds.

Figure 12: If the pictured object does not match our Potts
prior for the reflectance, artifacts appear.

Figure 13: Super-resolution of a “blanket”. Despite over-
segmentation of the reflectance, thin structures are recov-
ered. Even in black areas without shading information, re-
sults remain satisfactory thanks to the minimal surface prior.
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H. Bischof. Image guided depth upsampling using

anisotropic total generalized variation. In Proceedings of the
IEEE International Conference on Computer Vision, pages
993–1000, 2013. 2

[17] D. Ferstl, M. Ruther, and H. Bischof. Variational depth su-
perresolution using example-based edge representations. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 513–521, 2015. 2

[18] D. Frolova, D. Simakov, and R. Basri. Accuracy of spherical
harmonic approximations for images of Lambertian objects
under far and near lighting. In Proceedings of the European
Conference on Computer Vision, pages 574–587, 2004. 4

[19] R. Glowinski and A. Marroco. Sur l’approximation, par
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Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, 9(R2):41–76, 1975. 5

[20] B. Goldlücke, M. Aubry, K. Kolev, and D. Cremers. A
super-resolution framework for high-accuracy multiview re-
construction. International Journal of Computer Vision,
106(2):172–191, 2014. 2

[21] G. Graber, J. Balzer, S. Soatto, and T. Pock. Efficient
minimal-surface regularization of perspective depth maps in
variational stereo. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 511–520,
2015. 5

[22] Y. Han, J.-Y. Lee, and I. S. Kweon. High Quality Shape from
a Single RGB-D Image under Uncalibrated Natural Illumina-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1617–1624, 2013. 3

[23] B. S. He, H. Yang, and S. L. Wang. Alternating direction
method with self-adaptive penalty parameters for monotone
variational inequalities. Journal of Optimization Theory and
Applications, 106(2):337–356, 2000. 5

[24] M. Hong, Z.-Q. Luo, and M. Razaviyayn. Convergence anal-
ysis of alternating direction method of multipliers for a fam-
ily of nonconvex problems. SIAM Journal on Optimization,
26(1):337–364, 2016. 5

[25] B. K. P. Horn. Shape From Shading: A Method for Obtaining
the Shape of a Smooth Opaque Object From One View. PhD
thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1970. 2

[26] B. K. P. Horn and M. J. Brooks. The variational approach to
shape from shading. Computer Vision, Graphics, and Image
Processing, 33(2):174–208, 1986. 3
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