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TLITIS Laboratory, Normandy University , INSA de Rouen, France
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ABSTRACT

Road scene understanding is a vital task for driving assis-
tance systems. Robust vehicle detection is a precondition
for diverse applications particularly for obstacle avoidance
and secure navigation. Color images provide limited infor-
mation about the physical properties of the object. This re-
sults in unstable vehicle detection caused mainly from road
scene complexity (strong reflexions, noises and radiometric
distortions). Instead, polarimetric images, characteristic of
the light wave, can robustly describe important physical prop-
erties of the object (e.g., the surface geometric structure, ma-
terial and roughness etc). This modality gives rich physi-
cal informations which could be complementary to classical
color images features. In order to improve the robustness of
the vehicle detection purpose, we propose in this paper a fu-
sion model using polarization information and color image
attributes. Our method is based on a feature selection pro-
cedure to get the most informative polarization feature and
color-based ones. The proposed method, based on the De-
formable Part based Models (DPM), has been evaluated on
our self-collected database, showing good performances and
encouraging results about the use of the polarimetric modality
for road scenes analysis.

Index Terms— Car detection, polarization, feature selec-
tion, DPM, road scenes

1. INTRODUCTION

For an intelligent device in road scenes, cars appear to be one
of the most frequently observed yet dangerous objects. Car
detection has broad range of applications such as autonomous
driving or obstacle detection and avoidance. It is a challeng-
ing problem due to its large structural and appearance varia-
tions.

Dalal et al. [1] proposed a single filter based on Histogram
of Oriented Gradients (HOG) features to represent an object.
The model is a single filter that slides throughout the image.
A score is computed with each position and scale. Based on
this effective feature, Felzenswalb et al. [2] proposed De-
formable Part Models (DPM). The object is modeled by sev-
eral deformable parts to better handle the object appearance
points of view (frontal, rear, left side or right side) and to inte-

grate the intra-class variations. Specifically for car detection,
Wu [3] proposed a reconfigurable hierarchical and/or model
to integrate the context and the occlusion patterns, in which
the DPM is utilized as the deformable feature.

Classical color-based detection methods [4],[5],[6] in-
cluding those mentioned above, depend extremely on outdoor
illumination conditions. These conditions, in the road scene
context, are most of the time hard and complex (strong reflex-
ions, presence of transparent objects, occlusions, bad weather
conditions) making RGB images poor and limited [7].

The polarization of the reflected light is strongly linked to
the physical properties of the surface [8]. Compared to other
sensors, polarimetric imaging systems have the advantage to
characterize the geometric aspect of the surface (orientation,
reflexion angle, degree of polarization), to identify the mate-
rial nature of each object (refraction index, material type) and
to offer physical and optical information (reflexion, transmit-
tance, depolarisance). Polarization is able to bring additional
information of an object other than its intensity [9].

In this paper, we propose to use polarization features as
a complementary information to color-based ones in order to
improve car detection results. To our knowledge, this is the
first work in the literature that attempts to use polarization-
based features for outdoor object detection. A feature se-
lection process is performed to select the most informative
polarization feature. The detection scheme is carried out us-
ing DPM detector. Polarization-based DPM detector and a
color-based DPM detector are trained independently and dif-
ferent score maps are produced by the two models. A fusion
rule that takes the polar-based model as a confirmation to the
color-based one is proposed to achieve the final detection. Ex-
periments performed on our self collected dataset, show that
fusing polarization and color features reduces strongly false
alarm rate (false bounding boxes), and improve effectively the
car detection accuracy.

2. POLARIZATION FORMALISM

The main applications of polarization imaging are related
to distinguish metallic object from dielectric surface [10],
[11]. Polarization imaging permits likewise to give three-
dimensional information of specular [12], [13] and transpar-
ent objects [14]. The physical principle of the polarization



Fig. 1. The polarization device principle.

of the light is that after being reflected, an unpolarized light
wave become partially linearly polarized depending on the
surface normal and on the refractive index of the material it
impinges on [8], [9], [15] . The reflected partially linearly
polarized light is described by a measurable vector, named
the Stokes vector S = [Sp, S1,S2]. The first component S
relates to the object intensity, the two others describe the
physical properties of the object. From these three compo-
nents, other physical properties are derived such as the light
magnitude I , the degree of polarization (DOP) p and the
angle of polarization (AOP) ¢ [16]. In order to measure the
polarization parameters, at least three images are required.
For this purpose, a rotating linear polarizer around three an-
gles (a;);=1.3 is placed in front of the camera. Figure.1 gives
an example of a polarization device. For each angle («;), an
intensity I(c;) is measured by the camera. The relationship
between the acquired images and the Stokes vectors is given
by :

Iay;) = %[1, cos(2a;), sin(2«;)].[So, S1, Sg]t (1)

The DOP is calculated as p = 7VS§0+S§ and the AOP as

¢ =3 tan™? g—f

3. FEATURE EXTRACTION

3.1. Polarization feature selection

Because of the noisy nature of the polarization parameters,
a feature selection is required to find the most informative
polar-based feature for the detection model training. In our
case, the feature selection procedure is trained by the Dalal-
Trigg detector [1] by replacing the HOG feature by the polar-
ization features.

To train the Dalal-Trigg detector, similar to the original
HOG features, the polarization features are extracted based
on blocks and cells. A 8 x 8 block was divided into four 4 x 4
cells. For each pixel in the cell, a feature vector is extracted,
which contains the 3-dimensional Stokes vector, the DOP (p)
and the AOP (). The feature vector [Sy, S1, S2, p, ] of a
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Fig. 2. The original image and its corresponding AOP.

cell is represented by the mean feature vector of all the pix-
els inside the cell. Each cell holds a 5-dimensional feature
vector. The feature vector of the block is the concatenation
of the feature vectors from the four cells. The derived 20—
dimensional features ¢99_4 of all the examples are used to
train the Dalal-trigg detector in order to get the filter f that
indicates the weight of each feature. Larger weight is, better
the relevancy of the corresponding feature. The advantage of
the feature selection is twofold : first, it allows to leverage
from the most relevant polarimetric information and second,
it reduces the dimension of the feature vector, making the de-
tection faster.

By applying the feature selection process presented
above, the AOP was selected as the most informative fea-
ture with regards to the car detection purpose.

3.2. The Angle of polarization

The AOP refers to the direction of the polarization of the re-
flected light. It is determined by the angle of the incident
light (generally for outdoor applications, the incident light is
assumed to be unpolarized), the surface orientation of the ob-
ject and the material of the object. For rough surface, as sur-
face orientations of neighboring pixels change a lot, the AOP
changes in an irregularly way. For smooth surfaces, however,
the AOP changes smoothly and continuously. Up to the road
scenes analysis, especially for car detection tasks, the AOP on
the car surfaces changes gradually according to the surface
geometry structure, while it is noisy for other objects. This
phenomena is illustrated in Figure. 2 where the AOP image
on the tree area is highly noisy, on the road it is better but still
much noisy than on the car. It can be observed that the AOP
image describes the geometry structure of the car, which is
even more clear than that from the color image.

We can conclude that, the AOP describes the geometry
structure that cannot be captured from the color image. In
addition, it highlights the area of the car among the noise.

4. DETECTION MODEL

The DPM model proposed by Felzenswalb [2] is known to be
an efficient method that handles the intraclass variations of an
object. The DPM is a filter-based detector applied throughout
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Fig. 3. The score map given by color-based and AOP-based
methods.

a feature map to get a detection score. A feature map is an
array that each entry is a d—dimensional feature vector com-
puted from the corresponding image location. Let ® be the
feature map, with ¢(x,y) corresponds to the entry at the lo-
cation (x,y). The filter f shares the same dimension as the
feature map, and the detection score is computed as the dot
product f - ¢(x,y). The detection score for a given location is
proportional to the possibility of the existence of an object on
that location (refer to Felzenswalb [2] for more details about
the initialization and optimization process).

5. FUSION RULE

As polarization provides complementary information that is
not accessible from color images, the fusion of polarization
and color improves the result provided by color-only methods
[17] [18]. In order to improve the detection results, we have
proposed a fusion rule by taking the polarization result as a
confirmation to the color one.

Following the training process, we obtained a polar-
deformable part model M, using the AOP image and a color-
deformable part model M. using the color image. Since each
location is scored by the model, a score map is formulated
for each domain (polarimetric and color). The higher score a
location gets, the strong the possibility that a car appears at
this location. The result is given by simply thresholding the
score map by a trained threshold. The idea is that the score
location on which M, produces high scores are confirmed by
the score of M,,. If both M, and M,, produces high score,
this location is then considered as an object, and vice versa.

The score map given respectively by M. and M, are
shown with the original image in Figure. 3. It can be seen
that on the color-based score map, both the car area and the
road area get high scores, which consequently generates false
positive.

The score M, is used as a confirmation to M, in order
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Fig. 4. Precision recall curve on the test set

to exclude the false detection provided by the color-only
method, thus improving the detection accuracy.

6. EXPERIMENTS

6.1. Data-set and configuration

Since there does not yet exist a public polarization-based data
set, our experiment was implemented on a self-collected data
set . It contains 153 scenes, with three images Iy, 15 and Iy
for each scene taken manually by the corresponding polarizer
angles. All the cars in the image were labeled by bounding
boxes. We divided the data set so that 115 scenes were used
for the training and 38 scenes for the model evaluation. The
parameters of the DPM model are set as proposed by Felzen-
szwalb et al [2].

6.2. Results

As a standard evaluation, the detected bounding boxes on the
test set was assessed by the evaluation scheme provided by
the PASCAL VOC data set [19].

The Precision-Recall Curve (PRC) is firstly computed
and shown in Figure. 4. The PRC of respectively the AOP-
based model, the color-based model and the fusion of AOP
with color are shown in the same figure. We trained a model
with the 20-dimensional polarization features (the features
described in section 3), fused with the color based model.
The results are noted in Figure. 4 by 20 — d (polar-based
model) and 20 — d + color (fusion). The corresponding
Average Precision (AP) of each curve is shown in Table 1.

It can be observed from both Figure. 4 and Table 1 that the
fusion of AOP with color produces the best result, followed
by the fusion of 20 — d + color which performs only slightly
better than the color only one. The 20 — d or the AOP alone

Ihttp://pagesperso.litislab.fr/fwang/fichiers/



Fig. 5. Detection results. The first and third rows refer to the
polar-based model whereas the second and fourth rows are the
corresponding color-only based model.

Source | AOP | 20—d | 20 —d | color | AOP
+ color +color
AP (%) | 31.8 53.8 62.8 62.7 66.1

Table 1. The Average Precision (AP) rate

does not provide comparable results, this is because the noise
still strongly present in polarization acquisitions.

This result confirms that once the AOP is properly fused
with the color model, it provides complementary information
that improves the AP by 3.4%. The 20 — d is more stable
than the AOP, however, with all the redundant features and the
more complex model, it almost does not improve the color-
based result (0.1% can be even neglected). Moreover, the
AOQOP alone achieves 31.8% of AP, which is important com-
paring to the 53.8% performed by the whole polarization fea-
ture 20 — d. This result shows that the AOP has an impor-
tant impact on the detection process. According to the above
analysis, it can be concluded that our proposed pre-selection
method is valid. By using the selected feature (AOP) and the
proposed fusion rule, the polarization features provided useful
information which improved and reinforced the color-based
method.

To evaluate the improvement provided by the fusion of
AOP + color, we compare the detected bounding box by
AOP + color method with the color-only one. This compar-
ison is shown in Figure. 5, The first and third rows show the
results of the detection with the AO P + color fusion and the
second and fourth rows show the corresponding color-only
detection method. It is worth to note that, after fusing the
two different sources of information via the proposed fusion
scheme, while keeping the true positive bounding boxes, the
false detection are effectively removed.

Fig. 6. Main limitations. False alarms are reduced however
not new true positive detection boxes are generated.

7. DISCUSSION

The detection results have shown that the proposed method-
ology largely reduced the false detection rate and enhance
the robustness of the model. Our approach confirmed that
polarization-based features can provide useful information for
car detection. False alarms were reduced by a simple but ef-
fective fusion rule. However, as it can be seen in Figure. 6,
the polarization-based feature model does not generate new
true positive detection boxes. This limitation is caused by the
And-fusion used scheme, which is too much selective.

Our first objective by this work is to prove that polariza-
tion is the suitable alternative to color-based models for im-
proving the detection result. This first observation is encour-
aging to continue our investigation in this direction. As a fu-
ture work, the polarization feature should be properly fused
with the color one inside a training loop. A stable model
which integrates the color-based feature and the polar-based
feature by an early-based fusion scheme might be able to
both reduce the false detection and produce new true posi-
tive bounding boxes as well. Other more recent methods like
the transfer learning based on the Deep learning networks,
that shown interesting performances in several computer vi-
sion applications even for vehicle detection [20], should be
tested in the polarization domain.

The enhancing of the polarization images quality is not to
be missed. Because of the noise reaching polarization aquisi-
tions, it was difficult to leverage from the whole polarimetric
information. For example, the DOP coupled with the AOP
could give better results in the detection process provided that
the DOP is properly calculated. An adapted (physical) filter-
ing process is thus necessary to get better results.

The last point that deserves a discussion in this work is
the real time constraint. The proposed algorithm takes around
5 seconds for the detection task on an image of 320 x 240,
without tacking into account the learning step time. It is far
away to be a real time achievement. The use of speed up tools
like Open CV implementation and GPU configuration should
make faster the detection task .
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