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Abstract

In this paper different matching cost functions used for stereo matching are evaluated in the context of intelligent
vehicles applications. Classical costs are considered, like: sum of squared differences, normalized cross correlation or
census transform that were already evaluated in previous studies, together with some recent functions that try to enhance
the discriminative power of Census Transform (CT). These are evaluated with two different stereo matching algorithms:
a global method based on graph cuts and a fast local one based on cross aggregation regions. Furthermore we propose a
new cost function that combines the CT and alternatively a variant of CT called Cross-Comparison Census (CCC), with
the mean sum of relative pixel intensity differences (DIFFCensus). Among all the tested cost functions, under the same
constraints, the proposed DIFFCensus produces the lower error rate on the KITTI road scenes dataset1 with both global
and local stereo matching algorithms.
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1. Introduction

Stereo matching has been an intensely studied topic in
research due to its crucial applications that vary from 3D re-
construction to image-based rendering or object hypothesis
generation.

Our field of application is intelligent vehicles, in partic-
ular the detection of road obstacles like pedestrians. The
objective is to reduce the hypothesis space using the infor-
mation provided by the disparity map. Classic techniques
like sliding window produce an extensive search space while
ground subtraction based techniques can not be applied
to dynamic scenes. Robust disparity map is consequently
essential in order to have good hypothesis over the location
of pedestrians.

Most of the stereo matching algorithms rely on four
important steps: Cost computation; Cost aggregation; Dis-
parity computation/optimisation and Disparity refinement
[19]. Each step is important for the quality of the disparity
map, with the cost computation step being crucial as it
stands at the basis of the stereo matching algorithms. A
given cost function can be minimised using different meth-
ods within the step of disparity computation/optimisation.
There exists many techniques for energy minimisation that
vary from local methods that find the minimum of the cost
function using a winner takes it all strategy like in [24] and
[14], to global techniques like graph cuts [11], dynamic pro-
gramming [2], or belief propagation [3], [9]. Authors in [21]
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and [10] compared different optimisation algorithms based
on energy functions and showed that the lowest energy is
produced by the graph cuts.

Choosing a cost function has to take into account the
radiometric distortions, since in real traffic situations these
are very pronounced. Some of the causes are sun flares,
reflections or just camera sensor differences. In this context,
our contribution is twofold.

• First, we compare different cost functions in order
to be able to choose the most adapted one for our
field of application. For this, we combine different
cost functions with two stereo matching methods: a
global technique based on Graph Cuts [11] and a
local stereo matching algorithm based on cross zones
aggregation with local voting [24].

• Secondly, we propose a new cost function that is
robust to radiometric distortions.

2. Related works

Choosing the right cost function is paramount for hav-
ing a good disparity map. As presented in [8], the costs
can be divided into parametric functions, where the cost
incorporates the magnitude of pixel intensity, and non-
parametric ones. Common parametric costs include those
based on absolute differences and square differences, along
with the window-based approaches: sum of absolute dif-
ferences (SAD) and sum of squared differences (SSD) [1],

1http://www.cvlibs.net/datasets/kitti
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normalized cross-correlation (NCC), zero-mean based costs
(like ZSAD, ZSSD and ZNCC), or costs computed on the
first (gradient) or second (laplacian of gaussian) image
derivatives. Non-parametric costs include the popular Cen-
sus and Rank methods [23].

There exists several studies where comparison of cost
functions is performed, the most extended ones being made
in [7] and [8]. In comparison with [7], where six cost func-
tions where tested, in [8], authors compared fifteen different
stereo matching costs in relation with images affected by
radiometric differences. These costs are compared using
three different stereo matching algorithms: one based on
global energy optimisation (Graph Cuts), one using semi-
global matching [5] and a local window-based algorithm.
They conclude that the cost based on CT gives the best
overall performance. In comparison with [8] that use both
simulated and real radiometric changes in a laboratory
environment, in this paper the experiments are performed
on real road images from the KITTI dataset [4] which
presents significant radiometric differences. Besides the
cost functions that provided the best results in [8], we also
test some recent functions based on CT that gave good
results on the Middlebury dataset1. Moreover we propose
a new cost function CDiffCensus that remains robust to
radiometric changes. These costs will be presented in the
following two sections.

3. State of the art matching costs

In this section we define each matching cost function
used in the experiments. Along with our new proposed
function, eight different cost functions will be compared:
squared intensity differences (CSD), zero-mean normalized
cross-correlation (CZNCC) [6], [8], census tranform CCT

[23], cross comparison census CCCC [16], a function combin-
ing the sum of absolute differences with gradient (Cklaus)
[9], a function combining absolute differences with census
transform (CADCensus)[14] and one that combines abso-
lute differences computed both on visible and gradient with
census tranform computed on gradient (Ccstent) [20].

The functions CSD, CZNCC and CCT were already
compared in [8] on the Middlebury dataset composed of
images with simulated or real radiometric distortions. We
have chosen these functions as reference.

In the following, the functions presented are grouped
into costs based on differences of intensities and costs based
on CT.

3.1. Intensity differences based costs

CAD, CSD & CSAD. One of the most popular cost
matching function is the squared intensity differences (SD)
(see equation 2) like used in [11] or absolute intensity dif-
ferences (AD) (see equation 1) like used in [14],[9].

1http://vision.middlebury.edu/stereo/

Let p be a pixel in the left image with coordinates
(x, y) and d the disparity value for which the cost of p is
computed. Let Il(x, y)i be the intensity value of pixel p in
the left image on color channel i, while Ir(x, y − d)i is the
intensity value of the pixel given by coordinates (x, y − d)
in the right image. We consider n the number of color
channels ( n = 1 for gray scale images and n = 3 for color
images).

CAD(x, y, d) =
1

n

∑
i=1,n

|Il(x, y)i − Ir(x, y − d)i| (1)

CSD(x, y, d) =
1

n

∑
i=1,n

(Il(x, y)i − Ir(x, y − d)i)
2; (2)

If we consider N(x, y) to be the neighbourhood of the
pixel with coordinates (x, y), then the cost AD on this
neighbourhood is defined like in equation 3.

CSAD(x, y, d) =
∑

(a,b)∈N(x,y)

CAD(a, b, d) (3)

CZNCC . Zero-mean normalized cross correlation ( eq.
4 is a parametric window based matching function that
provided one of the best results in the study [21] in presence
of radiometric distortions.

CZNCC(x, y, d) = 1− ZNCC(x, y, d) (4)

where

ZNCC(x, y, d) =∑
(a,b)∈N(x,y)

ZV (Il, a, b)ZV (Ir, a, b− d)√ ∑
(a,b)∈N(x,y)

(ZV (Il, a, b))2
∑

(a,b)∈N(x,y)

(ZV (Ir, a, b− d))2

(5)

and

ZV (I, x, y) = I(x, y)− IN(x,y)(x, y), (6)

where IN(x,y) is the mean value computed in the neigh-
bourhood N(x, y).

Cklaus. There exists several variations based on the
costs previously described2. One of the top three algorithms
on the Middlebury dataset [9] proposes the combination of
CSAD with a gradient based measure CGRAD (see equation
7). Both costs are computed in a neighbourhood N(x, y)
of 3× 3 pixels and are weighted by w, which is computed
by a grid search.

2If the authors did not name the proposed cost functions we are
going to use the first name on the article to name the cost
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Cklaus(x, y, d) = (1−w)∗CSAD(x, y, d)+w∗CGRAD(x, y, d)
(7)

where

CGRAD(x, y, d) =
∑

(a,b)∈N(x,y)

|∆xIl(a, b)−∆xIr(i, j − d)|+

∑
(a,b)∈N(x,y)

|∆yIl(a, b)−∆yIr(i, j − d)|,

(8)

where ∆x and ∆y are the horizontal and vertical gradients
of the image.

3.2. CT based cost functions

CCT . As demonstrated in [8], the Census Transform
(CT) [23] is one of the most robust cost function to radio-
metric changes. CT will basically replace all the intensity
of pixels with a bitstring obtained by comparing the in-
tensity of each pixel with the intensities of pixels in its
vicinity. The CT cost is given by the Hamming distance
(DH) between two bit strings (equation9).

CCT (x, y, d) = DH(CT (x, y), CT (x, y − d)), (9)

where CT is the bit string build like in eq. 10.

CT (u, v) = ⊗ i=1,n
j=1,m

(ξ(I(u, v), I(u+ i, v + j))), (10)

where n ×m is the census support window, ⊗ denotes a
bitwise concatenation, and ξ function is defined in equation
11.

ξ(p1, p2) =

{
1 p1 ≤ p2

0 p1 > p2
(11)

CCCC . Cross Comparison Census (CCC)[16] (eq. 13)
is a variant of CT. While standard CT (eq. 10) explores
only the comparisons of the central pixel with its vicinity,
the bit string for CCC is obtained by comparing each
pixel in the considered window with those in its immediate
vicinity in a clockwise direction. The cost of CCC is also
given by the Hamming distance between two bit strings
(equation 12).

CCCC(x, y, d) = DH(CCC(x, y), CCC(x, y − d)) (12)

where

CCC(u, v) = ⊗ i=0:step:n
j=0:step:m

(ξ(I(i, j), NCCC(i, j, step))

(13)
where the neighbourhood NCCC is given by eq. 14.

NCCC(i, j, step) = {(i, j + step); (i+ step, j + step);

(i+ step, j); (i+ step, j − step)}
(14)

step is an empirically chosen value in order to skip some
pixels in the support window, (j + step) < m and (i +
step) < n and (j − step) >= 0

As shown in [16], CCC can be computed in a very fast
way. In the first step we compute for each pixel in the image
a four-bit string value obtained by comparison with the four
pixels in its immediate vicinity. The final CCC for a pixel
is obtained by the concatenation of these bit substrings of
the relevant pixels in the window of the considered pixel. If
CT with a window of 7× 9 pixels takes around 3 seconds3

to be computed on a image of 1241× 376 pixels, CCC with
the same window size needs only 0.6 seconds.

CADCensus & Ccstent.
CT based functions became popular due to the good

results obtained on the Middlebury dataset.
In [14] a combination between the CT and AD is used

(eq. 15 ), that on Middlebury dataset reduces the error in
non-occluded areas in average with 1.3%.

CADcensus(x, y, d) = ρ(CCT (x, y, d), λcensus)+

ρ(CAD(x, y, d), λAD)
(15)

where λcensus and λAD control the influence of each
cost.

Another combination of a CT and AD (eq. 16) where
both are computed on the gradient images is proposed
in [20]. It was shown that this function can reduce the
erroneous pixels on Middlebury dataset with up to 2.5%.

Ccstent(x, y, d) = ρ(C∆census(x, y, d), λcensus)+

ρ(CAD(x, y, d), λAD)+

ρ(C∆AD(x, y, d), λ∆AD),

(16)

where ∆census and ∆AD are the CT cost, respectively
the AD cost, computed on gradient images; λcensus, λAD

and λ∆AD are parameters controlling the influence of each
cost.

4. The proposed matching cost: CDIFFCensus

We propose a new function that combines the CT [23],
or its variant CCC[16], with the mean sum of relative differ-
ences of intensities inside a window (eq. 17). We consider
CCC separately from CT due to its fast computation time.
In comparison with functions like CADCensus or Ccstent that
use the pixel intensities values, the CDIFFCensus does not
rely on the value of the pixel intensity but on the difference

3Single threaded a machine with 2.4 GHz Intel Core 2 Duo
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of intensity between a considered pixel and its neighbour-
hood. This keeps the function as a non-parametric one
while incorporating extra information.

CDIFFCensus(x, y, d) = ρ(Ccensus(x, y, d), λcensus)+

ρ(CDIFF (x, y, d), λDIFF )

(17)

where Ccensus can be either CCT , which will give CDIFFCT ,
or CCCC , which will give CDIFFCCC ; CDIFF defined in
eq. 18.

CDIFF (x, y, d) = |DIFF (x, y)−DIFF (x, y − d)| (18)

where n×m is the same support window that is used to
compute the CT.

DIFF (u, v) =
DIFF (u, v)

CensusSize
(19)

where CensusSize is the size of the bit string given by the
support window n×m and step which is chosen like in eq.
14.

DIFF (u, v) =
∑

i=1:step:n
j=1:step:m

(|I(u, v)− I(u+ i, v + j)|), (20)

Choosing the appropriate cost function depends on the
stereo matching algorithm. In order to test the proposed
function we are going to compare it with the other eight
matching costs functions with two different stereo matching
algorithms: a global one based on graph cuts and a local
one based on cross zone aggregation, that will be presented
in the next section.

5. Stereo matching algorithms

5.1. Graph cuts

As described in [11], a graph cut is a partition of a graph
with two distinguished terminals called source (s) and sink
(t) into two sets V s and V t, such that s ∈ V s and t ∈ V t.
The cost of the cut is represented by the sum of the edges’
weights between the two partitions. Finding the minimum
cut, and implicitly the minimum cost, can be resolved by
computing a maximum flow between terminals. In practice
the global energy minimisation technique using graph cuts
has been shown to be effective with the condition of having
an appropriate cost function.

For the cost comparison, the energy function is used
as described in [11]. The purpose is to find a disparity
function f that minimizes a global energy E(f) as seen in
equation 21. The occlusion term Eocc imposes a penalty
for occluded pixels, while Esmooth is the smoothness term
which forces neighbouring pixels in the same image to have

similar disparities. The data term Edata(f) measures the
cost of matching the function f .

E(f) = Edata(f) + Eocc(f) + Esmooth(f) (21)

The data term used in [11] is defined as the cost of
squared intensity differences (CSD). For the following
experiments we will only alter the data term, while keeping
Esmooth and Eocc as defined in [11].

5.2. Cross-Zones Aggregation & Histogram Voting

For the local technique of energy minimisation we chose
to test a cross-based aggregation as described in [24]. The
algorithm consists in finding for each pixel a cross support
zone. In the first step, a cross is constructed for each pixel.
Given a pixel p, its directional arms (left, right, up or down)
are found by applying the following rules:

• Dc(p, pa) < τ . The color difference ( Dc ) between
the pixel p and an arm pixel pa should be less than
a given threshold τ . The color difference is defined
as Dc(p, pa) = maxi=1,nc|Ii(p)− Ii(pa)|, where Ii(p)
is the color intensity of the pixel p at channel i, and
nc are the number of color channels considered.

• Ds(p, pa) < L, where Ds represents the euclidean
distance between the pixels p and pa and L is the
maximum length threshold.

Each pixel in the image has a cost given by the consid-
ered cost functions. The cost values in the support region
are summed up efficiently using integral images. To select
the disparity, the minimum cost value is selected using a
Winner-Take-All strategy. Then a local high-confidence
voting scheme for each pixel is used as described in [13].

6. Experiments

6.1. Datasets

There exist several challenging databases for testing the
stereo matching algorithms, as presented in table 1. The
HCI/Bosch Challenge [15] contains some difficult situations
for all the stereo matching algorithms like: reflections, fly-
ing snow, rain blur, rain flares or sun flares, thus giving an
insight of where the algorithms might fail. Unfortunately
it does not come with a ground truth thus making difficult
the evaluation of the different cost functions. Datasets like
Van Syntetic stereo[22] and EISATS[17] have the advan-
tage of having ground truth for all the pixels, but they
are composed of synthetic images. One of the best known
datasets for algorithm comparison is Middlebury[19], but
the images are taken inside in controlled light conditions.
Other datasets containing real road images are Make3D
Stereo [18] and Ladicky[12] but provide ground truth for a
limited number of pixels. KITTI [4] dataset provides real
road images with ground truth for around 50% of the pixels,
thus making a good dataset for cost functions comparison.
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Dataset Number of Images Ground Truth Scene Image Type

KITTI [4] 389 YES (for 50% of px) Road Real

Middlebury[19] 38 YES (for 100% of px) Laboratory Real

EISATS[17] 498 YES (for 100% of px) Road Synthetic

Make3D Stereo [18] 257 YES (for 0.5% of px) Road Real

Ladicky[12] 70 YES - manual labels Road Real

HCI/Bosch Challenge[15] 451 NO Road Real

Van Syntetic stereo[22] 325 YES (for 100% of px) Road Synthetic

Table 1: Datasets comparison for stereo matching evaluation

In what follows all the numerical experiments are per-
formed using KITTI stereo images. KITTI dataset is di-
vided into 194 images in the training set for which the
ground truth images is provided, and 195 images in the
testing set for which an evaluation server should be used
in order to have the results. Since only one submission
in 72 hours is allowed on the evaluation server, and hav-
ing an important number of situations to be tested, we
have used only the 194 images from training set for all
the experiments. All the cost functions in this paper are
evaluated by the average percentage of erroneous pixels in
all zones, occlusions included, and computed at 3 pixels
error threshold.

6.2. Insight into stereo matching cost function and radio-
metric distortions

Radiometrical similar pixels refers to those pixels that
correspond to the same scene point and have similar or
in an ideal case the same values in different images [7].
Radiometrical differences or distortions are therefore the
situations where corresponding pixels have different val-
ues. This is caused by differences of camera parameters
(aperture, sensor) which can cause different image noises or
vignetting, by the surface properties like non-Lambertian
surfaces or by the fact that the images are acquired at
different times (like is the case of some satellite imaging).

In this subsection we intend to compare the cost func-
tions without any kind of aggregation in order to measure
how discriminative the considered functions are. In [7] a
comparison of cost functions in the context of radiometric
distortions is also made, using six different cost functions
in combination with three stereo methods. In [8] the exper-
iments are extended to include more functions. Like in [8]
we are interested to measure the discriminative power of
different functions by analysing strictly per-pixel cost. For
this a comparison between the magnitude of radiometric
distortions found in the datasets Middlebury and KITTI
is performed. Moreover the discriminative power of several
functions is studied on the KITTI dataset.

Figure 1: Percentage of radiometric distortions over the absolute
color differences between corresponding pixels.

6.2.1. Radiometric distortions statistics.

In figure 1 is presented the mean percentage of radio-
metric distortions for the datasets Middlebury and KITTI,
over the absolute difference between corresponding pixels.
As the authors of [7] stated, the Middlebury dataset is
taken inside a laboratory in controlled light conditions.
Even so, for example at a color absolute difference of five,
on the Middlebury dataset the average percentage of radio-
metric distortions is around 28%. On the other hand on
KITTI dataset, where the images were collected outside,
the average percentage of radiometric distortions at the
same difference of color is larger than 45%.

6.2.2. Discriminative power of cost functions

For a second test we wanted to quantify how pertinent
the information given by each cost function is in relation
to all the possible disparities. This is the equivalent of
computing the error rate of stereo matching using only these
functions without any cost aggregation technique. Because
some of the cost functions are defined in a neighbourhood,
thus having an advantage in report with the others, we also
compute the error given by each function when using a fixed
aggregation window. The results for an error threshold of
three pixels are presented in table 2.

For the cost functions we compare CAD, CSD, CCT with
a support window of 7×9 pixels (bit string of 63 elements),
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Function CAD CSD CCT CADCT CCCC CADCCC Ccstent Cklaus CZNCC CDIFFCCC CDIFFCT

Error
NoAggr

85.8% 86.22% 71.9% 74.5% 62.3% 71.6% 68.05% 57.52% 39.97% 58.96% 66.51%

Error
Window
Aggr

42.20% 43.56% 26.92% 23.49% 26.51% 23.49% 27.29% 31.28% 28.68 22.36% 21.60%

Table 2: Error percentage of stereo matching no aggregation.

CCCC with a support window of 7×9 pixels and a step of 2
(bit string of 55 elements), CADCT and CADCCC , Ccstent,
Cklaus, CZNCC , CDIFFCCC and CDIFFCT . For the results
obtained with an aggregation window we have used one of
9× 7 pixels. With no aggregation and winner takes it all
strategy, the most discriminative function is the cost given
by the ZNCC with an error of 39.97%, followed by Cklaus

with 57.52%. From the census based functions, CDIFFCCC

provides the best results with an error of 58.96% followed by
CCCC with 62.3%. The combination of AD with either CT
or CCC, overall increases the error rate at 71.9% and 71.6%
respectively. Therefore from a discriminative point of view,
CZNCC , Cklaus and CCCC are the most competitive.

For the results obtained using a window aggregation
and winner takes it all strategy, the proposed function
based on mean sum of relative differences provides the best
results: CDIFFCT with 21.60%, followed by CDIFFCCC

with 22.36%. These are followed by the functions based on
ADCensus: CADCT and CADCCC both with 23.49%.

6.3. Matching cost comparison

We have optimised each cost function by performing a
grid search for the parameters using the first three images
from the KITTI training dataset. The optimised parame-
ters were use throughout the experiments (see table 3).

Function Parameters

Cklaus w = 0.2

CADcensus λcensus = 90; λAD = 90

CDiffCT λcensus = 55; λDiff = 95

CDiffCCC λcensus = 55; λDiff = 95

Ccstent λcensus = 80; λAD = 35; λ∆AD = 80

Table 3: Optimised parameters obtained with grid search.

6.3.1. Results Graph cuts stereo matching

The graph cuts minimisation algorithm was used as de-
scribed in [11] and section 5.1. Graph cuts minimisation is
an iterative process, with the error decreasing when increas-
ing the number of iterations. One iteration takes around six
minutes4 to complete for an image of size 1241× 376 pixels.

4on a computer with Dual Core 2.4 GHz single threaded

Figure 2: Mean error for each cost function using graph cuts stereo
matching.

We have started the experiments using six iterations but
we did not observed any significant improvement over using
just one iteration, while the running time was considerably
increased. Therefore all the experiments presented in this
section were carried out with one iteration.

In order to show the importance of the data term for
the energy function, we have tested the nine cost functions
presented in section 3: CAD, CCensus, CCCCensus, Cklaus,
CADcensus, Ccstent, CZNCC , CDIFFCCC and CDIFFCT .
This functions were used without an aggregation window
with the except of Cklaus where a neighbourhood of 3× 3
pixels is required by the algorithm and CZNCC where, for
the same reasons, a neighbourhood of 9×7 pixels was used.

In figure 2 there are presented the mean error rate
on all the 194 images from the training KITTI dataset.
The error with CSD is quite large, while with the other
cost functions the error decreases significantly. The best
overall performance is given by the proposed CDIFFCCC

function with an error of 12.26%, followed by CDIFFCT

with 12.97% and very closely by CZNCC with 12.98%. In
terms of computing time the CZNCC is the slowest function
taking in average ten times longer to compute in comparison
with the other functions.

6.3.2. Local energy optimisation based on cross zone ag-
gregation

Without a real time constraint, the global energy opti-
misation technique can give very accurate disparity maps.
In comparison, local techniques could achieve real time
running with some trade-off concerning the quality of the
disparity map. We have chosen to compare with the global
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Figure 3: Mean error for each cost function using local cross ag-
gregation stereo matching.

energy optimisation based on graph cuts a local optimisa-
tion based on cross zone aggregation and local high confi-
dence voting [24] due to the promising results obtained on
the Middlebury[19] dataset.

The same cost functions tested with the graph cuts were
evaluated with the local energy optimisation. The color
threshold for cross zone construction used is τ = 20, as
chosen in [24]. For the maximum arm length two different
thresholds were used due to a predilection in the considered
dataset of objects to have the same disparity in horizontal:
vertical arm Lvertical = 10 ; horizontal arm Lhoriz = 17.
The results obtained on the KITTI dataset are presented
in figure 3.

The overall results are better than those obtained with
the graph cuts method (tested in a reasonable running time
situation). When comparing the functions, the best results
are obtained by our proposed functions based on sum of
differences: CDIFFCCC and CDIFFCT . CDIFFCT , with a
13% error rate, gives better results than the CDIFFCCC ,
with a 14.07% error rate, but the latter has a smaller
running time of around 40%. The DIFF based functions
are followed as results by the CADCensus and standard
CCT based cost functions.

6.4. Discussion

Even though the tested cost functions show different
discriminative power, as seen in subsection 6.2 where CCCC

has proven to be the most discriminative, a cost aggregation
or cost minimisation algorithm can change the ranking. For
each minimisation method must be chosen a specific cost
function. In figure 4 a visualisation of the output disparity
map for each function in combination with the two stereo
algorithms is shown. Columns one and three show the
results obtained using the local stereo matching based on
cross zone aggregation, while columns two and four the
results obtained with graph cuts. The output results for
two images is presented. While for the first image, results
in columns one and two, a satisfactory disparity map is
obtained with both of the stereo matching algorithm, the
second image presented is more difficult due to large regions
without texture.

For the graph cuts algorithm the proposed CDIFFCCC

function provided the best results with very smooth dispar-
ity results in the road region but still erroneousness pixels
could be found in textureless areas.

The local stereo matching algorithm gives comparable
results with those of graph cuts at a much lower time
cost. In this situation the best results are given by our
proposed function CDIFFCT . The disparity map is not as
smooth as in the case of the graph cuts algorithm because
we did not used any method of post-filtering. The main
problems of the local minimisation technique based on
cross-aggregation lies in big regions of similar color. The
assumption when using an aggregation area is that in the
considered region all the pixels have the same disparity. In
practice large areas of same or similar color will not have
the same disparity (for example road region and slanted
walls).

7. Conclusion & Future Work

In this paper we have compared nine cost functions
using two different stereo matching algorithms: a global
method based on graph cuts and a local method based on
cross zone aggregation with high confidence voting. Also
we have proposed a new cost function based on mean sum
of relative differences of pixel intensities. The functions are
chosen to be robust to radiometric distortions since in real
traffic situations these are very pronounced.

Experiments show that the results of local methods are
comparable with those of global methods. In addition local
methods have a high computing speed. Consequently, in
the context of real time constraint of the intelligent vehicle
application, our choice as a stereo matching algorithm is
for the local method in combination with a cost function
based on DIFF , (CDIFFCCC).

As future work it would be ideal to test the functions
on color road stereo images, since color is known to be
more discriminative and therefore some of the functions
could improve by the usage of it.
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(a1) Visible left image nr. 0 (b1) Ground truth for image a1) (c1) Visible left image nr. 2 (d1) Groud truth for image c1)

(a2) CZA : CSD: 19.36% (b2) GC : CSD: 24.501% (c2) CZA : CSD: 51.22% (d2) GC : CSD: 55.25%

(a3) CZA : CCCC : 11.55% (b3) GC : CCCC : 5.27% (c3) CZA : CCCC : 14.24% (d3) GC : CCCC : 17.78%

(a4) CZA : CCT : 12.50% (b4) GC : CCT : 5.83% (c4) CZA : CCT : 12.82% (d4) GC : CCT : 15.31%

(a5) CZA : CADCensus: 8.81% (b5) GC : CADCensus: 9.20% (c5) CZA : CADCensus: 11.27% (d5) GC : CADCensus: 16.20%

(a6) CZA : Cklaus: 11.99% (b6) GC : Cklaus: 22.09% (c6) CZA : Cklaus: 14.96% (d6) GC : Cklaus: 34.82%

(a7) CZA : CDiffCCC : 8.65% (b7) GC : CDiffCCC : 7.22% (c7) CZA : CDiffCCC : 13.08% (d7) GC : CDiffCCC : 15.04%

(a8) CZA : CDiffCT : 7.89% (b8) GC : CDiffCT : 8.05% (c8) CZA : CDiffCT : 11.56% (d8) GC : CDiffCT : 14.22%

(a9) CZA : Ccstent: 9.08% (b9) GC : Ccstent: 14.92% (c9) CZA : Ccstent: 15.27% (d9) GC : Ccstent: 15.53%

(a10) CZA : CZNCC : 9.45% (b10) GC : CZNCC : 5.88% (c10) CZA : CZNCC : 20.21% (d10) GC : CZNCC : 13.18%

Figure 4: Comparison between cost functions. On first row there are presented two left visible images ( a1 and c1) from the KITTI dataset
with the corresponding ground truth disparity images ( b1 and d1 ) . On the following lines are the output disparity maps corresponding to
different functions: on the first ( a2-a10) and third column ( b2-b10) the output obtained with the cross zone aggregation (CZA) algorithm,
while on columns two (b2-b10) and fourth (d2-d10) the output of the graph cuts algorithm. Images a2-a10 and b2-b10 correspond to the
disparity map computed for image a1 while the images c2-c10 and d2-d10 correspond to the disparity map computed for image c1.
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