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Introduction

Based on the dichromatic reflection model [START_REF] Shafer | Using color to separate reflection components[END_REF], each brightness value in an image is viewed as the sum of two components, the di↵use and the specular parts. Most opaque surfaces have a combination of specular and di↵use elements due to surface structure. The di↵use element is viewable from all directions while the specular part behaves based on Snells law [START_REF] Morel | Polarization imaging applied to 3d reconstruction of specular metallic surfaces[END_REF], so is only visible when viewed from the correct orientation. The specular reflection appears to be a compact lobe on the object surface around the specular direction, even for rough surfaces [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF]. Whereas the di↵use component represents the actual appearance of an object surface, specularity reflection is an unwanted artifact that can hamper high-level processing tasks such as visual recognition, tracking, stereo reconstruction, objects re-illumination [START_REF] Hosni | Secrets of adaptive support weight techniques for local stereo matching[END_REF][START_REF] Godec | Hough-based tracking of non-rigid objects[END_REF]. Specularity removal, a challenging topic in computer vision, is thus a decisive preprocessing for many applications [START_REF] Artusi | A survey of specularity removal methods[END_REF].

Related works

The light reflection always carries important information of a scene, so that the separation of the reflection gives a way to better analyze the scene. Nayar et al. [START_REF] Nayar | Fast separation of direct and global components of a scene using high frequency illumination[END_REF] separates the reflection using structured light, which conveys useful properties of the object material as well as the media of the scene. O'Toole et al. [START_REF] O'toole | 3d shape and indirect appearance by structured light transport[END_REF] also use structured light in reflection separation to recover the 3D shape of the object. While the above methods have shown good performance in their applications, they analyze the scene through the direct and global reflection components, whereas we analyze it through the specular and di↵use reflections. Direct components contain both specular and di↵use reflections, while global components arise from interreflections as well as from volumetric and subsurface scattering. The direct/global separation handles complex reflections, which may result in useful material related information ; however it requires strict controllable light source, which limits this usability of this separation. On the other hand the specular/di↵use component analysis deals with natural light source, which makes it more valuable. The separation of specular/di↵use components is thus regarded as pre-processing step, since specular reflection might be problematic in several computer vision tasks, such as stereo matching, image segmentation or object detection.

There are also works that aim at separating the di↵use and specular components under polarized light source. For instance, in [START_REF] Kim | Single-shot Layered Reflectance Separation Using a Polarized Light Field Camera[END_REF] a robust di↵use/specular reflection separation method is proposed, but is designed to only work for scene under controllable light source. In this work, we take a di↵erent approach leading to a generalization of the applicability: we deal with scenes under uncontrollable light source, in order to imitate outdoor illumination conditions.

Traditional methods separate the di↵use and specular components using color-only images, based on the idea to find a variable which is independent from the specular component. By estimating this variable for each given pixel, the di↵use component may be computed. As a seminal work in color-based methods, Tan et al. [START_REF] Tan | Separating reflection components based on chromaticity and noise analysis, Pattern Analysis and Machine Intelligence[END_REF] inspects the specular component via chromaticity, which is proved to be independent from the specular component. An additional hue-based segmentation method is required for the multi-colored surfaces. Yang et al. [START_REF] Yang | Separating specular and di↵use reflection components in the hsi color space[END_REF] extend this work by detecting di↵use pixels in the HSI space, which also requires hue-based segmentation. The color covariance is defined as a constant variable to recover the di↵use component. Kim et al. [START_REF] Kim | Specular reflection separation using dark channel prior[END_REF] use the dark channel prior as a pseudo-solution and refine the result through the Maximum A Posteriori (MAP) estimation of the di↵use component. The dark channel prior, however, only works for highly colored surfaces. To avoid extra segmentation, Tan and Ikeuchi [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF] propose another di↵use pixel pick-up method via computing the logarithmic di↵erential between up to four neighboring pixels.

The common limitation of the above presented color-based methods is their high color distortion on the recovered di↵use component [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF][START_REF] Nayar | Separation of reflection components using color and polarization[END_REF][START_REF] Yang | Separating specular and di↵use reflection components in the hsi color space[END_REF]. The main reason is that these methods assume that the specular color is constant throughout the image.

To better recover the di↵use component, other methods proposed to accomplish the separation using polarization images [START_REF] Wol↵ | Constraining object features using a polarization reflectance model[END_REF], since specular and di↵use components hold di↵erent degrees of polarization (DOP). The DOP represents the ratio of the light being polarized. When a beam of unpolarized light is reflected, the DOP of specular reflection is larger than that of the di↵use reflection for most angles of incidence, meaning that the specular reflection is generally much more polarized than the di↵use reflection [START_REF] Born | Principles of optics: electromagnetic theory of propagation, interference and di↵raction of light[END_REF]. When rotating the polarizer, the change of the intensity is only related to the specular part, so that the intensity change refers directly to the specular color.

With these constraints, polarization based methods produce more accurate results with less color distortions. The pioneering work of Nayar et al. [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF] constrains the di↵use color on a line in RGB space. The neighboring di↵useonly pixels are used to estimate the di↵use component, providing state-of-theart polarization-based specularity removal results. However, specular pixels are detected by simple tresholding of the DOP. The DOP changes not only with di↵erent specular portions, but also with di↵erent incident angles and di↵erent indices of refraction. The computation of the DOP involves more than three images, making it largely contaminated by camera noise. This makes Nayar's method prone to error since its computation highly relies on the DOP. The methods presented above are local and based on the dichromatic reflection model [START_REF] Shafer | Using color to separate reflection components[END_REF]. These methods assume that the intensity of a pixel is a linear combination of its di↵use and specular components. On the other hand, a global-based method presented in [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] simplifies this model into the image level, under the conditions that the light source is far away from the object and that the incident angle does not change. In other words, the acquired image is linearly combined by a specular image and a di↵use image with respect to a constant parameter. This parameter is reversed using the Independent Component Analysis (ICA) [START_REF] Hyvärinen | Independent component analysis[END_REF]. However, these ideal conditions discussed in [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] rarely conform to reality, thus only a part of the specular reflection component is removed.

With respect to the literature, we make the following observations: (i) colorbased methods produce heavy color distortions; (ii) local patch-based methods can only use the information o↵ered by neighboring pixels without any consid-eration of long range cues. Based on these observations, we proposed in this article a global method using the polarization setup and a local approximate solution as detailed in the next subsection.

Contribution

Our approach builds upon Umeyama's method [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] and share conceptual similarities. However, we propose a threefold contribution : (i) As in [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] we assume that the acquired image is the linear combination of a di↵use and specular reflection images. However, we depart from the use of a fixed weighting coecient and instead investigate the benefit of using a spatially varying coe cient, which generalizes the model proposed in [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] to better conform to the reality.

The use of the spatially varying parameter additionally enables the algorithm to work with scenes under (non-overlapping) multi-sources of illumination. (ii)

Based on these assumptions, a global energy function is constructed to leverage long range information, that patch based method cannot handle, by construction. In patch based methods, the solution for one pixel is influenced only by the local neighborhood. In a graph based approach, pixels are connected through the graph construction, and their interdependency is accounted thanks to the smoothness term; additionally, the graph energy is minimized globally.

The expectation is that by optimizing the problem globally, results will be more accurate and robust than with local patch-based methods. The optimum solution is found by applying the graph cuts algorithm [START_REF] Boykov | Fast approximate energy minimization via graph cuts, Pattern Analysis and Machine Intelligence[END_REF]. (iii) Apart from the independence assumption, a first approximate solution is computed as a supplementary constraint. We propose to compute a more reliable approximate solution by combining the specular detection method in [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF] and the specularity reduction in [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF]. Lastly, in the experimental part, a histogram-based criterion is proposed to quantitatively evaluate the results. The proposed method is compared with two well-known separation algorithms : Nayar's polarization setup [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF] and Umeyama's method [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF]. This paper extends upon our previous preliminary work [START_REF] Wang | Polarization-based specularity removal method with global energy mnimization[END_REF] in the following aspects. In the current paper, we fully elaborate on the idea and the steps of the computation of the first approximate solution. The computation of the data term is accurately described, as well as the smoothness term, and the justification as to why the solution is ensured to be stable. This paper contains some additional illustration to demonstrate more clearly the improvement of the proposed global method. Supplementary experiments are also reported, including the study of the algorithm robustness in the presence of noise.

Overview

In the remainder of the paper, we first present our polarization system in Section 2. The problem formulation is defined in Section 3. In section 4, we describe the proposed global energy function, and explain each term in detail.

In Section 5, we describe the implementation of the method with a discussion about the results. Finally, we o↵er some perspectives to this work in Section 6.

Polarization system

The light reflection from an object is a combination of di↵use and specular components, in which the specular component is generally partially linearly polarized. It is fully described by three parameters [START_REF] Ainouz | Adaptive processing of catadioptric images using polarization imaging: towards a polacatadioptric model[END_REF]: light magnitude I, degree of polarization ⇢, angle of polarization '. In order to measure the polarization parameters, a polarizer rotated by an angle ↵ is installed in front of the camera as shown in Fig. 1 (a). Several images I p (↵ i ) are acquired by rotating the polarizer to di↵erent positions ↵ i . The intensity I p (↵ i ) of each pixel is linked to the polarizer angle ↵ i and the polarization parameters by the following equation:

I p (↵ i ) = I 2 [⇢cos(2↵ i 2') + 1] (1) 
Since there are three unknown parameters (I, ⇢ and ') to be determined in Equation ( 1), at least three images need to be acquired with di↵erent ↵ i . Fig. 1 (b) shows the variation curve of I(↵ i ), where for each pixel, I max and I min refer to the maximum and minimum intensity, respectively.

Regarding the number of images to be acquired, di↵erent configurations are possible, such as 36 images in [START_REF] Saito | Measurement of surface orientations of transparent objects using polarization in highlight[END_REF]. The more images are acquired, the more stable the results will be. However, in this paper, we chose to use three images since current hardware capture no more than three polarization images simultaneously [START_REF] Fluxdata | Imaging polarimeters[END_REF], and since we aim at solving this problem for potentially real-time applications.

Once all three parameters have been estimated, I max and I min can be computed thanks to:

I = I max + I min , ⇢ = I max I min I max + I min (2) 

Problem formulation

From the dichromatic reflectance model [START_REF] Klinker | The measurement of highlights in color images[END_REF], a beam of light is a linear combination of the di↵use and specular components. Umeyama et al. [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] have simplified this model to the image level by assuming that the acquired image I is the sum of a di↵use image I d and a specular image I s , where the I s is a raw specular image Is combined with a fixed weighting coe cient p as shown in Fig.

(a)

. The image I is thus related to its components according to: 8 > < > : The raw specular image Is is defined as:

I(x) = I d (x) + I s (x) I s (x) = p Is (x) (3) 
Is = I max I min (4)
where I max and I min are the maximum and minimum intensity described in Equation ( 2). The goal is to estimate p, as then the corresponding di↵use I d (x) and specular components I s (x) can be computed using Equation [START_REF] Godec | Hough-based tracking of non-rigid objects[END_REF]. The di↵use 165 and specular reflection images being assumed probabilistically independent, the optimum p can be found by minimizing the Mutual Information (MI) [START_REF] Peebles | Probability, random variables, and random signal principles[END_REF][START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] between I d and I s to ensure their maximum independence. This method globally models the di↵use and specular separation problem, however it su↵ers from some limitations. First, in real applications, the assump-170 tion that the incident angle on each pixel remains constant is not always valid.

Hence, setting a single value for the weighting coe cient over the whole image is inconsistent. As a consequence, the computation of MI, which is computa-tionally costly, becomes unfeasible or at least unrealistic 1 , since the sum of MI needs to be minimized at each local patch.

We propose to tackle these limitations through the following improvements:

(i) The mixing coe cient is assumed to be spatially varying as shown in Fig.

2(b).

As one can see, the specular reflection is more e↵ectively removed from the computed di↵use component in Fig. 2(b) than in Fig. 2(a); (ii) As in [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] We assume that I d and I s are probabilistically independent. The goal is to minimize their similarity. Since only maximizing the independence is not enough to produce the best solution, we introduce a first approximate solution as a constraint to ensure the reliability of the final solution; (iii) Instead of MI, we propose to compute another more e cient similarity measurement which produces competitive results.

Global energy function

As global methods can better integrate the long range cue via the global smoothness assumption, they can produce more accurate and robust result than local patch-based methods. For this purpose, we propose a global energy function, which is composed of a data term and a smoothness term.

As mentioned above, in this paper we assume that the mixing coe cient is spatially varying. Equation ( 3) is transformed into: 8 > < > :

I(x) = I d (x) + I s (x) I s (x) = p(x) Is (x) (5) 
where the p(x) is the local weighting coe cient.

From Umeyama et al. [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF], the specular component p(x) Is (x) is decided by the surface geometry and the angle of incidence of the light which is generally locally smooth. As Is (x) represents the unit color vector of pixel x, we make a smooth assumption on the term p(x), which enforces the continuity of the 

argmin p(x)  X x (p(x)) + 1 X x X y2N (x) (p(x), p(y))] s.t. 0  p  p ( 6 
)
where y 2 N (x), N (x) refers to the 4-connected neighborhood of x, 1 is a hyper-parameter which balances the data and the smoothness terms. While solving the minimization problem, a large p value may result in a negative intensity of I d (from Equation ( 5)). For this reason, pixel-wise dependent scalar p is applied on p as an upper bound, so that I d is always kept positive.

Minimization algorithm: graph cuts

This energy function in Equation ( 6) is solved by using the graph-cut algorithm. The image is considered as a graph: each pixel is represented by a node, and the edge weights between nodes are related to the similarity between the nodes (smoothness term in Eq (6)). Each node is also linked so special nodes which express the constraint given by the problem knowledge, i.e. the data term in Eq [START_REF] Artusi | A survey of specularity removal methods[END_REF]. A graph cut is a partition of the graph (i.e. the image). Each possible partition has a cost, which can be expressed as the sum of the weights of the edges cut when partitioning. The optimum segmentation is the lowest-cost cut in the graph, and it can be e ciently solved using the ↵-expansion [START_REF] Boykov | Fast approximate energy minimization via graph cuts, Pattern Analysis and Machine Intelligence[END_REF], an algorithm well-known for its e↵ectiveness in solving large global optimization problems [START_REF] Kolmogorov | Computing Visual Correspondence with Occlusions using Graph Cuts[END_REF].

Data term

The data term (p(x)) contains two parts: a patch-based dissimilarity (independence) measurement C DC (p(x)), and a pixel-wise constraint D(p(x)):

(p(x)) = 2 C DC (p(x)) + D(p(x)) (7) 
where 

Dissimilarity measurement

Dissimilarity between di↵use and specular images is usually measured through mutual information [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF]. Since using mutual information for a patch centered at each pixel is highly time consuming, we take advantage of another criterion, which from our experiments, yields similar results as compared to mutual information and is less time consuming. This criterion, called DIF F census [START_REF] Miron | A robust cost function for stereo matching of road scenes[END_REF] has been shown to be an e cient criterion to optimize the disparity map. It is known to be resistant to noises and color distortions. 

C census ( Īd (x), Īs (x)) = H(CT ( Īd (x)), CT ( Īs (x))) C DIF F ( Īd (x), Īs (x)) = |DIF F ( Īd (x)) DIF F ( Īs (x))| n ⇥ m (9) 
where CT (•) refers to the Census Transform, and H(•) is the Hamming distance.

For more information about CT and Hamming distance, please refer to [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF].

DIF F (•) is computed as: 8 > < > : DIF F ( Īd (x)) = P y2 Īd (x) |I d (x) I d (y)| DIF F ( Īs (x)) = P y2 Īs(x) |I s (x) I s (y)| (10) 
The DIF F census function represents a trade-o↵ between the classical CT and the Sum of Absolute Di↵erence which are balanced via hyperparameters DIF F and census . Results are improved compared to using these criteria alone [START_REF] Miron | A robust cost function for stereo matching of road scenes[END_REF].

Constraint term

The independence assumption alone does not provide a good separation result. In order to guide the separation process, we introduce a constraint on the final solution p(x) to enforce its similarity to a first approximate solution p init (x). The constraint term is given by measuring:

D(p(x)) = |p(x) p init (x)| (11) 
The first approximate solution p init (x) is found by combining the logarithm di↵erential specular detection method proposed by [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF] and the specular-to-di↵use mechanism in [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF]. The computation of p init (x) is detailed in Section 4.4.

Stability of the solution

The aim of the data term is to find p(x) that numerically minimizes (p(x)).

The problem is to find a trade-o↵ between maximizing C DC and minimizing D(p(x)) so that the final solution does not go randomly far from an approximate solution p

init . The minimum of this functional cannot degenerate to infinity because our space is of finite dimension (pixels) and the functional (p(x)) is continuous and bounded from below. Let us demonstrate these points. By construction, the research space of the solution p(x) is in the domain [0, p(x)] (0  p(x)  p(x)) where p(x) 2 [0, 255] is an upper bound so that the di↵use image I d is always positive. The minimum of the functional (p(x)) is searched within this domain.

Regarding the C

DC term, from the Equation ( 8), it is a combination of two functions g, where g(x) = 1 exp( x) and is bounded by 1. Thus

C DC (p(x)) = g(C census , census ) + g(C Dif f , Dif f ) < 2 (12) 
Regarding the D(p(x)) term, it is the absolute value of the di↵erence between p(x) and the first approximate solution p init . D(p(x)) is thus positive and finite also because 0  p(x)  p(x).

Consequently, (p(x)) has a lower bound, ensuring the stability of the solution:

(p(x)) = 2 C DC (p(x)) + D(p(x)) > 2 2 (13) 

Smoothness term

The smoothness term is classically computed among the 4-connected neighborhood N (x) of the pixel x. To better take into account the original texture of the image, we implement a color discontinuity detection based on thresholding RGB values, as suggested in [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF]. Let T hR and T hG be small threshold values (one should adjust this value according to the input images, here default values T hR = T hG = 0.005 as in [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF] are used in this paper), and indices r and g be the red and green channels in the RGB space. A color discontinuity on the pixel

x is defined as follows:

( r (x) > T hR and g (x) > T hG)

> < > :

true: color discontinuity false: no color discontinuity [START_REF] Wol↵ | Constraining object features using a polarization reflectance model[END_REF] where

8 > < > : r (x) = r (x) r (x 1) g (x) = g (x) g (x 1) (15) 
and

8 > > < > > : r = I r I r + I g + I b g = I g I r + I g + I b ( 16 
)
Chromaticity changes are computed between neighboring pixels on both red and green channels (the blue channel is not included since r + g + b = 1). This method detects the color discontinuity, which helps to maintain the original texture of the object, as well as to prevent the smoothness term from running over the object boundary (where the sharp change of the object shape appears).

The smoothness term is defined as:

(p(x), p(y)) = 8 < : 0, if x is located on a color discontinuity p p(x) 2 p(y) 2 otherwise (17)

First approximate solution

The first approximate solution p init (x) provides an additional constraint to the data term to improve the accuracy of the model, as well as a sub-optimal initial solution to improve the e ciency of the subsequent optimal process.

To locally obtain an approximate solution, we propose two steps: specular region detection and specularity reduction. For specularity detection, polarization-based methods usually apply a simple thresholding on the DOP as in [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF], which is unreliable because of noise. Also the threshold largely varies from scene to scene. Thus we will rely upon Tan's approach [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF]. For specularity removal, however, we did not follow Tan for specular reduction, since for RGB, there is no color constraint whereas there is one for polarization images.

Tan's method does not fully make use of the richness of polarization images.

For this reason, we propose Nayar's approach [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF]. In the following, we describe each step of specularity detection and reduction and how we propose to combine them sequentially.

Specularity detection

For RGB images, Tan notices in [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF] that making the pixel saturation constant with regard to the maximum chromaticity while retaining their hue, allows to successfully remove highlights. The chromaticity is defined as the normalized RGB:

⇤(x) = I(x) I r (x) + I g (x) + I b (x) (18) 
where

⇤ = {⇤ r , ⇤ g , ⇤ b }.
The maximum chromaticity is defined as :

⇤(x) = max(I r (x), I g (x), I b (x)) I r (x) + I g (x) + I b (x) (19) 
For the whole image, the I(x) is shifted so that the maximum chromaticity ⇤(x) is turned to an arbitrary constant value (we set ⇤(x) = 0.5 as suggested by [START_REF] Tan | Separating reflection components of textured surfaces using a single image, Pattern Analysis and Machine Intelligence[END_REF]), yielding a new image I 0 , where highlights are removed. However this method yields color distortions in I 0 and is limited to weak specular highlights.

Thus, a logarithm di↵erential step is added. Let y be a neighboring pixel of x, the logarithm di↵erential (x, y) is computed as:

(x, y) = log I(x) I(y) log I 0 (x) I 0 (y) (20) 
Tan shows indeed that if two neighboring pixels are both di↵use pixels, their intensity logarithm di↵erential is zero, meaning that their log ratio still keeps the same between I and I 0 . Otherwise, if they are not on the color discontinuity, they should be both specular pixels. The ambiguity between specular and color discontinuity is suppressed via the color discontinuity detection described in Equation ( 14). 

Id

Specularity reduction

The aim of this step is to find the specular part and the di↵use part of the so-called specular pixels, obtained from the preceding step. The main idea, based on Nayar et al. [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF], is to assume that neighboring pixels have the same di↵use part. Thus the (known) di↵use part of the di↵use-only pixels (computed in Section 4.3.1) will be used to assess the di↵usion part of the specular pixels.

Let us recall that a specular pixel intensity is the sum of a di↵use component (I d ) and a specular component (I s ), and that it lies on a line defined by I min and I max . This line is the color constrain that can be obtained only through polarization. The line L is determined using the I max and I min found through Equation [START_REF] Shafer | Using color to separate reflection components[END_REF]. Since only the specular component I s is polarized [START_REF] Wol↵ | Constraining object features using a polarization reflectance model[END_REF], by rotating the polarizer, I(x) varies along the line L.

The process starts with specular pixels which are located at the edges of the specular region; for all of these pixels x i belonging to the borders, its di↵use parts is computed as the mean of the di↵use part of their di↵use-only neighbors

y j .
Note that not all neighboring pixels are used, only those which are close enough to the plane defined by the origin of the RGB space and L in Fig. 3, by checking if the angle between I(y j ) and this gray plane is inferior to a threshold. The process is repeated iteratively. During the process, the components of di↵use only pixels are used, or the di↵use component of pixels for which has just been computed, until all specular pixels have been processed. The end of the process yields the p init (x) map, the first approximate solution, equal to 0 for di↵use-only pixels and to a non zero value for specular pixels.

Experimentation

Implementation and data

In the experiments, we compare the proposed approach to two well-known methods in the literature: Nayar's method [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF] which provides the state-of-theart local specular and di↵use separation using polarization; Umeyama's method which is a global polarization-based algorithm. The algorithm is implemented on Matlab 2012a and a C++ platform, and the energy function is solved through graph cuts with 4-connected neighbors using the gco v3.0 library [START_REF] Boykov | Fast approximate energy minimization via graph cuts, Pattern Analysis and Machine Intelligence[END_REF][START_REF] Kolmogorov | What energy functions can be minimized via graph cuts?[END_REF][START_REF] Boykov | An experimental comparison of min-cut/maxflow algorithms for energy minimization in vision, Pattern Analysis and Machine Intelligence[END_REF].

The problem of optimizing p(x) is formulated as a global labeling problem, with labels ranging from 0 to 255. Regarding hyperparameters, it is worth to note that the specularity removal results are stable for 1 in the range [3.5, 7] and for 2 in the range [1.3, 1.7], regardless of the processed image. In the following experiments, hyperparameters are 1 = 5 (in Equation ( 6)) and 2 = 1.5 (in Equation ( 7)).

As far as we know, there is no public polarization-based benchmark. The proposed approach is evaluated on six images acquired with a polarization de-vice composed by a polarizer 2 and a CCD camera 3 . In order to foster fair bench-marking of specular removal methods on common data, we have made our images available 4 .

Visual evaluation

In order to visually assess the specular part, we show four groups of images (Fig. 4 (a)) with their first approximate solution P init (Fig. 4 (b)) and their final solution P (Fig. 4 (c)) given by our global method.

Let us now visually assess the specularity removal on the di↵use component.

We show the results of six groups of images (Fig. 5 (a)) with four methods, Umeyama's method [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] (Fig. 5 (b)), Nayar's method [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF] (Fig. 5 (c)), our first approximate solution (Fig. 5 (d)) and the proposed final solution (Fig. 5 (e)).

Umeyama's method removes only a small part of the specular component, with a reduction on the contrast. The reason is that the assumption of uniform incident angle made by Umeyama does not hold on real images. It also proves that the independency assumption alone is not able to yield a good result. The first approximate solution that we computed shows obvious improvement. Results are similar but slightly better than Nayar's, where we can see that the specularity is only partially removed. Interesting to note is that the significant gain originates from the first approximation. Since it is easy to compute, this approximation may show promise for real-time operation. In order to further increase accuracy, the global method leverages the independency assumption and the constraint given by the first approximate solution, so as to handle the remaining noise, and detect and remove more completely the specular component. Standard deviation of hue values can thus be used to quantize the quality of specularity removal: the smaller the SD is, the better the specular component is removed. Note that this criterion is applicable only for images where the specular reflection does not cover the majority of the image, and where the texture of the original image is relatively simple.

(b) (c) (d) (e) (a)
The SD is computed for each resulting image in Fig. 5. It can be noted that our proposed method also produce the best results as already observed qualitatively, followed by the first approximate solution and Nayar's method [START_REF] Nayar | Separation of reflection components using color and polarization[END_REF]. Umeyama's method [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] always produces the largest SD, except on group 5, which is hampered by a large whitening e↵ect leading to a relatively small SD value. However, when taking into account both the visual and quantitative evaluations, we can conclude that our method still produces the best specularity removal results on this set of images.

However room for improvement is left regarding the computation time. Indeed, for a 240 ⇥ 320 pixel image, the execution time of the specularity removal takes approximately 1.5 second for Umeyama's method, 7 seconds for Nayar's method, and 10 seconds for the proposed method, including computing the first approximate solution, data term and the optimization process, all measured on a laptop running with a 2.6 GHz processor and 8GB RAM.

Robustness analysis

Local-based methods are usually based on the DOP. Since the DOP is computed from at least three images, it is largely contaminated by noise. Localbased methods are hence prone to su↵er from noise. This motivates us to analyze the performance of our method with respect to di↵erent noise levels.

White Gaussian noise with zero mean and varying values of is added to I 0 , I 45 and I 90 . The SD of each group of images are computed correspondingly. Let SD 0 be the SD of the result without noise, SD is normalized as SD = SD/SD 0 .

It is straightforward that when SD is near to 1, it means that SD is nearly equal to SD 0 , and the result is not largely influenced by noise. The mean (red point) and the variance (error bar) of SD over the groups of Fig. 5 are computed and shown in Fig. 7.

For 2 < 20, little variation on SD can be noticed. It can be seen that even by adding noise with 2 = 25, which is considerable, SD still remains close to 1, and the change of SD is small, inferior to 5%. That is to say, our method remains stable against noise with 2  25. Note that noise with 2 > 25 rarely appears in real application thanks to improved camera quality. This experiment gives us some insight about the encouraging behavior of our method regarding robustness.

Discussion and future work

In this paper, we proposed a polarization-based global energy minimization approach to remove the specular component from images. This method is based on an independence assumption, with constraints given by a first approximate solution. Polarization information is used as a color constraint which largely reduces the color distortion produced by traditional color-based methods. The robustness analysis also shows that the proposed method is stable for camera noise, which is quite problematic for classical local methods.

Regarding the data term of the global energy function, as a tradeo↵ between maximizing (p(x)) while minimizing D(p(s)) is to be found, it has been simply and intuitively defined as the sum of a positive term and a negative term.

Alternatives include maximizing (p(x))/D(p(s)) or the log di↵erence. Future study may focus on a way to improve the design of the data term. To further improve the e↵ectiveness of the smoothness term, we may want to consider to combine the (•) (Equation ( 6)) with the local intensity or the gradient of the intensity, as future work. In this way, the object boundary may be better preserved.

The chromaticity information is essential in finding the first approximate solution, since the latter one is largely dependent on the variation of the chro- As all specularity removal methods, this method is designed to handle specular component which varies inside the camera sensor range [0 -255]. If one of the color channels falls outside this range, the chromaticity information is permanently lost. In this case, the di↵use component of pixels which have lost their chromaticity information is hardly recovered by specularity removal method. In this case, inpainting methods, which are based on the smoothness assumption of texture, color, or other features [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF], could for example be used.

The proposed method also extends the condition of single light source from Umeyama et al. [START_REF] Umeyama | Separation of di↵use and specular components of surface reflection by use of polarization and statistical analysis of images, Pattern Analysis and Machine Intelligence[END_REF] to non-overlapping multi-sources. However, once the different light sources produce overlapping specular regions, the specular reflection on these pixels will be the mixed polarization pattern of two di↵erent sources, which can not be described using three parameters anymore. Possible solution for this problem might be to increase the numbers of captured polarization images to infer the mixed polarization pattern. Regarding the handling of over-lapping sources, one could be investigate the related field of time of flight cameras, where solutions for removing multipath interferences have been proposed [START_REF] Godbaz | Understanding and ameliorating non-linear phase and amplitude responses in amcw lidar[END_REF][START_REF] Bhandari | Resolving multipath in-595 terference in kinect: An inverse problem approach[END_REF][START_REF] Freedman | SRA: Fast Removal of General Multipath for ToF Sensors[END_REF].

Simulation of polarization images holds a lot of potential, especially regarding the reflection with di↵erent material and complex surface structure, in order to give a better way to evaluate the specularity removal results or even more polarization-related algorithms. At last, we are currently engaged in adapting the separation scheme for outdoor images, especially road scene where the specular highlight can be problematic. In this regard, we aim at improving the execution time of our method, in order to reach real-time computation, an important issue in road scene image processing.
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 1 Figure 1: (a) Polarization imaging system; (b) Variation of intensity by rotating the polarizer angle ↵.

Figure 2 :

 2 Figure 2: Modeling an image I as a linear combination of a di↵use component I d and a raw specular component Is, with (a) a fixed coe cient as in Umeyama et al. [16], it can be seen that the specular component is not fully removed from I d ; (b) a spatially varying coe cient as assumed in our approach, which more e↵ectively removes the specular reflection.

2

 2 is a weighting hyper-parameter. The term C DC (p(x)) is used to maximize the independence between the di↵use and the specular images. However, using this term only tends to over-smooth the solution, leading us to introduce an additional constraint in this data term, denoted D(p(x)). This constraint is based on an initial approximate solution and enforces the similarity between the final solution and this initial result. Using an initial solution has several advantages: first, it ensures the reliability of the result. In addition, the first solution used as the initialization to the optimization process also improves the time e ciency. By minimizing (p(x)), the optimum p(x) is found through the trade-o↵ between maximizing C DC (p(x)) and minimizing D(p(x)).

  Let us now define the DIF F census cost function. Given a pixel location x and an arbitrary p(x) (0  p(x)  p(x)), the independence between the di↵use component I d (x) and its corresponding specular componentI s (x) is measured with: C DC (p(x)) = DIF F census(I d (x), I s (x)) = g(C census ( Īd (x), Īs (x)), census ) + g(C DIF F ( Īd (x), Īs (x)), DIF F )(8)where g(C, ) = 1 exp( C ), and Īd (x) and Īs (x) are n ⇥ m patches centered at x with arbitrary size (n = m = 5 in our experiments). DIF F and census are hyperparameters balancing the two parts, set to default values DIF F = 55 and census = 95 as suggested in[START_REF] Miron | A robust cost function for stereo matching of road scenes[END_REF]. More specifically, in Equation (8

Figure 3 :

 3 Figure 3: Di↵use I d and specular Is components in RGB space

Figure 4 :

 4 Figure 4: (a) Original image; (b) First approximate solution P init ; (c) Final solution P by the proposed method

Figure 5 :

 5 Figure 5: (a) Original image; (b) Results of Umeyama's method; (c) Results of Nayar's method; (d) First approximate solutions; (e) Results of the proposed method. The SD is given for each result image. Figure best viewed in color.

Figure 6 :

 6 Figure 6: Histogram of hue values with (a) I 0 , weak specular reflection; (b) I 90 , strong specular reflection

2 SDFigure 7 :

 27 Figure 7: Quality of image with removed specularity w.r.t. added Gaussian noise: Mean SD over the 6 images vs noise level 2 . The error bar refers to the variance of SD over the 6 images.

  maticity in terms of the specular component. If the specular component and the object shares the same chromaticity, we face the so-called blank wall problem, as in stereo imaging, and the first approximate solution may be imprecise, since no optimum D can be found (as in Figure (3)).

http://pagesperso.litislab.fr/fwang/fichiers/
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