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Abstract

Concentration of light energy in images causes strong highlights (specular re-

flection), and challenges the robustness of a large variety of vision algorithms,

such as feature extraction and object detection. Many algorithms indeed assume

perfect di↵use surfaces and ignore the specular reflections; specularity removal

may thus be a preprocessing step to improve the accuracy of such algorithms.

Regarding specularity removal, traditional color-based methods generate severe

color distortions and local patch-based algorithms do not integrate long range

information, which may result in artifacts. In this paper, we present a new im-

age specularity removal method which is based on polarization imaging through

global energy minimization. Polarization images provide complementary infor-

mation and reduce color distortions. By minimizing a global energy function,

our algorithm properly takes into account the long range cue and produces ac-

curate and stable results. Compared to other polarization-based methods of the

literature, our method obtains encouraging results, both in terms of accuracy

and robustness.
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1. Introduction

Based on the dichromatic reflection model [1], each brightness value in an

image is viewed as the sum of two components, the di↵use and the specular

parts. Most opaque surfaces have a combination of specular and di↵use elements

due to surface structure. The di↵use element is viewable from all directions5

while the specular part behaves based on Snells law [2], so is only visible when

viewed from the correct orientation. The specular reflection appears to be a

compact lobe on the object surface around the specular direction, even for rough

surfaces [3]. Whereas the di↵use component represents the actual appearance

of an object surface, specularity reflection is an unwanted artifact that can10

hamper high-level processing tasks such as visual recognition, tracking, stereo

reconstruction, objects re-illumination [4, 5]. Specularity removal, a challenging

topic in computer vision, is thus a decisive preprocessing for many applications

[6].

1.1. Related works15

The light reflection always carries important information of a scene, so that

the separation of the reflection gives a way to better analyze the scene. Nayar

et al. [7] separates the reflection using structured light, which conveys useful

properties of the object material as well as the media of the scene. O’Toole

et al. [8] also use structured light in reflection separation to recover the 3D20

shape of the object. While the above methods have shown good performance

in their applications, they analyze the scene through the direct and global re-

flection components, whereas we analyze it through the specular and di↵use

reflections. Direct components contain both specular and di↵use reflections,

while global components arise from interreflections as well as from volumetric25

and subsurface scattering. The direct/global separation handles complex re-

flections, which may result in useful material related information ; however it

requires strict controllable light source, which limits this usability of this sepa-

ration. On the other hand the specular/di↵use component analysis deals with
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natural light source, which makes it more valuable. The separation of specu-30

lar/di↵use components is thus regarded as pre-processing step, since specular

reflection might be problematic in several computer vision tasks, such as stereo

matching, image segmentation or object detection.

There are also works that aim at separating the di↵use and specular compo-

nents under polarized light source. For instance, in [9] a robust di↵use/specular35

reflection separation method is proposed, but is designed to only work for scene

under controllable light source. In this work, we take a di↵erent approach

leading to a generalization of the applicability: we deal with scenes under un-

controllable light source, in order to imitate outdoor illumination conditions.

Traditional methods separate the di↵use and specular components using40

color-only images, based on the idea to find a variable which is independent

from the specular component. By estimating this variable for each given pixel,

the di↵use component may be computed. As a seminal work in color-based

methods, Tan et al. [10] inspects the specular component via chromaticity,

which is proved to be independent from the specular component. An additional45

hue-based segmentation method is required for the multi-colored surfaces. Yang

et al. [11] extend this work by detecting di↵use pixels in the HSI space, which

also requires hue-based segmentation. The color covariance is defined as a con-

stant variable to recover the di↵use component. Kim et al. [12] use the dark

channel prior as a pseudo-solution and refine the result through the Maximum50

A Posteriori (MAP) estimation of the di↵use component. The dark channel

prior, however, only works for highly colored surfaces. To avoid extra segmen-

tation, Tan and Ikeuchi [13] propose another di↵use pixel pick-up method via

computing the logarithmic di↵erential between up to four neighboring pixels.

The common limitation of the above presented color-based methods is their high55

color distortion on the recovered di↵use component [13, 3, 11]. The main reason

is that these methods assume that the specular color is constant throughout the

image.

To better recover the di↵use component, other methods proposed to accom-

plish the separation using polarization images [14], since specular and di↵use60
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components hold di↵erent degrees of polarization (DOP). The DOP represents

the ratio of the light being polarized. When a beam of unpolarized light is re-

flected, the DOP of specular reflection is larger than that of the di↵use reflection

for most angles of incidence, meaning that the specular reflection is generally

much more polarized than the di↵use reflection [15]. When rotating the polar-65

izer, the change of the intensity is only related to the specular part, so that the

intensity change refers directly to the specular color.

With these constraints, polarization based methods produce more accurate

results with less color distortions. The pioneering work of Nayar et al. [3]

constrains the di↵use color on a line in RGB space. The neighboring di↵use-70

only pixels are used to estimate the di↵use component, providing state-of-the-

art polarization-based specularity removal results. However, specular pixels are

detected by simple tresholding of the DOP. The DOP changes not only with

di↵erent specular portions, but also with di↵erent incident angles and di↵erent

indices of refraction. The computation of the DOP involves more than three75

images, making it largely contaminated by camera noise. This makes Nayar’s

method prone to error since its computation highly relies on the DOP.

The methods presented above are local and based on the dichromatic re-

flection model [1]. These methods assume that the intensity of a pixel is a

linear combination of its di↵use and specular components. On the other hand,80

a global-based method presented in [16] simplifies this model into the image

level, under the conditions that the light source is far away from the object and

that the incident angle does not change. In other words, the acquired image

is linearly combined by a specular image and a di↵use image with respect to a

constant parameter. This parameter is reversed using the Independent Com-85

ponent Analysis (ICA) [17]. However, these ideal conditions discussed in [16]

rarely conform to reality, thus only a part of the specular reflection component

is removed.

With respect to the literature, we make the following observations: (i) color-

based methods produce heavy color distortions; (ii) local patch-based methods90

can only use the information o↵ered by neighboring pixels without any consid-
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eration of long range cues. Based on these observations, we proposed in this

article a global method using the polarization setup and a local approximate

solution as detailed in the next subsection.

1.2. Contribution95

Our approach builds upon Umeyama’s method [16] and share conceptual

similarities. However, we propose a threefold contribution : (i) As in [16] we as-

sume that the acquired image is the linear combination of a di↵use and specular

reflection images. However, we depart from the use of a fixed weighting coe�-

cient and instead investigate the benefit of using a spatially varying coe�cient,100

which generalizes the model proposed in [16] to better conform to the reality.

The use of the spatially varying parameter additionally enables the algorithm

to work with scenes under (non-overlapping) multi-sources of illumination. (ii)

Based on these assumptions, a global energy function is constructed to leverage

long range information, that patch based method cannot handle, by construc-105

tion. In patch based methods, the solution for one pixel is influenced only

by the local neighborhood. In a graph based approach, pixels are connected

through the graph construction, and their interdependency is accounted thanks

to the smoothness term; additionally, the graph energy is minimized globally.

The expectation is that by optimizing the problem globally, results will be more110

accurate and robust than with local patch-based methods. The optimum solu-

tion is found by applying the graph cuts algorithm [18]. (iii) Apart from the

independence assumption, a first approximate solution is computed as a sup-

plementary constraint. We propose to compute a more reliable approximate

solution by combining the specular detection method in [13] and the specularity115

reduction in [3]. Lastly, in the experimental part, a histogram-based criterion

is proposed to quantitatively evaluate the results. The proposed method is

compared with two well-known separation algorithms : Nayar’s polarization

setup [3] and Umeyama’s method [16]. This paper extends upon our previous

preliminary work [19] in the following aspects. In the current paper, we fully120

elaborate on the idea and the steps of the computation of the first approximate
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solution. The computation of the data term is accurately described, as well as

the smoothness term, and the justification as to why the solution is ensured

to be stable. This paper contains some additional illustration to demonstrate

more clearly the improvement of the proposed global method. Supplementary125

experiments are also reported, including the study of the algorithm robustness

in the presence of noise.

1.3. Overview

In the remainder of the paper, we first present our polarization system in

Section 2. The problem formulation is defined in Section 3. In section 4, we130

describe the proposed global energy function, and explain each term in detail.

In Section 5, we describe the implementation of the method with a discussion

about the results. Finally, we o↵er some perspectives to this work in Section 6.

2. Polarization system

The light reflection from an object is a combination of di↵use and specular135

components, in which the specular component is generally partially linearly po-

larized. It is fully described by three parameters [20]: light magnitude I, degree

of polarization ⇢, angle of polarization '. In order to measure the polarization

parameters, a polarizer rotated by an angle ↵ is installed in front of the camera

as shown in Fig. 1 (a). Several images I
p

(↵
i

) are acquired by rotating the polar-140

izer to di↵erent positions ↵
i

. The intensity I
p

(↵
i

) of each pixel is linked to the

polarizer angle ↵
i

and the polarization parameters by the following equation:

I
p

(↵
i

) =
I

2
[⇢cos(2↵

i

� 2') + 1] (1)

Since there are three unknown parameters (I, ⇢ and ') to be determined in

Equation (1), at least three images need to be acquired with di↵erent ↵
i

. Fig.

1 (b) shows the variation curve of I(↵
i

), where for each pixel, I
max

and I
min

145

refer to the maximum and minimum intensity, respectively.

Regarding the number of images to be acquired, di↵erent configurations

are possible, such as 36 images in [21]. The more images are acquired, the
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Figure 1: (a) Polarization imaging system; (b) Variation of intensity by rotating the polarizer

angle ↵.

more stable the results will be. However, in this paper, we chose to use three

images since current hardware capture no more than three polarization images150

simultaneously [22], and since we aim at solving this problem for potentially

real-time applications.

Once all three parameters have been estimated, I
max

and I
min

can be com-

puted thanks to:

I = I
max

+ I
min

, ⇢ =
I
max

� I
min

I
max

+ I
min

(2)

3. Problem formulation155

From the dichromatic reflectance model [23], a beam of light is a linear

combination of the di↵use and specular components. Umeyama et al. [16] have

simplified this model to the image level by assuming that the acquired image I

is the sum of a di↵use image I
d

and a specular image I
s

, where the I
s

is a raw

specular image I̊
s

combined with a fixed weighting coe�cient p as shown in Fig.160

2 (a). The image I is thus related to its components according to:

8
><

>:

I(x) = I
d

(x) + I
s

(x)

I
s

(x) = pI̊
s

(x)
(3)
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Figure 2: Modeling an image I as a linear combination of a di↵use component Id and a raw

specular component Is, with (a) a fixed coe�cient as in Umeyama et al. [16], it can be seen

that the specular component is not fully removed from Id; (b) a spatially varying coe�cient

as assumed in our approach, which more e↵ectively removes the specular reflection.

The raw specular image I̊
s

is defined as:

I̊
s

= I
max

� I
min

(4)

where I
max

and I
min

are the maximum and minimum intensity described in

Equation (2). The goal is to estimate p, as then the corresponding di↵use I
d

(x)

and specular components I
s

(x) can be computed using Equation (5). The di↵use165

and specular reflection images being assumed probabilistically independent, the

optimum p can be found by minimizing the Mutual Information (MI) [24, 16]

between I
d

and I
s

to ensure their maximum independence.

This method globally models the di↵use and specular separation problem,

however it su↵ers from some limitations. First, in real applications, the assump-170

tion that the incident angle on each pixel remains constant is not always valid.

Hence, setting a single value for the weighting coe�cient over the whole image

is inconsistent. As a consequence, the computation of MI, which is computa-
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tionally costly, becomes unfeasible or at least unrealistic1, since the sum of MI

needs to be minimized at each local patch.175

We propose to tackle these limitations through the following improvements:

(i) The mixing coe�cient is assumed to be spatially varying as shown in Fig.

2(b). As one can see, the specular reflection is more e↵ectively removed from

the computed di↵use component in Fig. 2(b) than in Fig. 2(a); (ii) As in

[16] We assume that I
d

and I
s

are probabilistically independent. The goal is180

to minimize their similarity. Since only maximizing the independence is not

enough to produce the best solution, we introduce a first approximate solution

as a constraint to ensure the reliability of the final solution; (iii) Instead of MI,

we propose to compute another more e�cient similarity measurement which

produces competitive results.185

4. Global energy function

As global methods can better integrate the long range cue via the global

smoothness assumption, they can produce more accurate and robust result than

local patch-based methods. For this purpose, we propose a global energy func-

tion, which is composed of a data term and a smoothness term.190

As mentioned above, in this paper we assume that the mixing coe�cient is

spatially varying. Equation (3) is transformed into:
8
><

>:

I(x) = I
d

(x) + I
s

(x)

I
s

(x) = p(x)I̊
s

(x)
(5)

where the p(x) is the local weighting coe�cient.

From Umeyama et al. [16], the specular component p(x)I̊
s

(x) is decided by

the surface geometry and the angle of incidence of the light which is generally195

locally smooth. As I̊
s

(x) represents the unit color vector of pixel x, we make

a smooth assumption on the term p(x), which enforces the continuity of the

1on a laptop running with a 2.6 GHz processor and 8GB RAM.for about 25 minutes for a

240⇥ 320 image.
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specular component. To consider the sharp change that might originate from

the di↵erent structures of the scene, we have included a color discontinuity

detection method in Section 4.2. Our objective is to find an optimum p(x) for200

each pixel x.

Let �(p(x)) denote the data term and  (p(x), p(y)) the smoothness term

of the global energy function. The optimum p(x) can be found by solving the

following constraint optimization problem:

argmin
p(x)

X

x

�(p(x)) + �1

X

x

X

y2N (x)

 (p(x), p(y))]

�

s.t. 0  p  p̃

(6)

where y 2 N (x), N (x) refers to the 4-connected neighborhood of x, �1 is a205

hyper-parameter which balances the data and the smoothness terms. While

solving the minimization problem, a large p value may result in a negative

intensity of I
d

(from Equation (5)). For this reason, pixel-wise dependent scalar

p̃ is applied on p as an upper bound, so that I
d

is always kept positive.

4.1. Minimization algorithm: graph cuts210

This energy function in Equation (6) is solved by using the graph-cut algo-

rithm. The image is considered as a graph: each pixel is represented by a node,

and the edge weights between nodes are related to the similarity between the

nodes (smoothness term in Eq (6)). Each node is also linked so special nodes

which express the constraint given by the problem knowledge, i.e. the data term215

in Eq (6). A graph cut is a partition of the graph (i.e. the image). Each pos-

sible partition has a cost, which can be expressed as the sum of the weights of

the edges cut when partitioning. The optimum segmentation is the lowest-cost

cut in the graph, and it can be e�ciently solved using the ↵-expansion [18], an

algorithm well-known for its e↵ectiveness in solving large global optimization220

problems [25].
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4.2. Data term

The data term �(p(x)) contains two parts: a patch-based dissimilarity (in-

dependence) measurement C
DC

(p(x)), and a pixel-wise constraint D(p(x)):

�(p(x)) = ��2CDC

(p(x)) +D(p(x)) (7)

where �2 is a weighting hyper-parameter. The term C
DC

(p(x)) is used to max-225

imize the independence between the di↵use and the specular images. However,

using this term only tends to over-smooth the solution, leading us to introduce

an additional constraint in this data term, denoted D(p(x)). This constraint

is based on an initial approximate solution and enforces the similarity between

the final solution and this initial result. Using an initial solution has several230

advantages: first, it ensures the reliability of the result. In addition, the first

solution used as the initialization to the optimization process also improves the

time e�ciency. By minimizing �(p(x)), the optimum p(x) is found through the

trade-o↵ between maximizing C
DC

(p(x)) and minimizing D(p(x)).

4.2.1. Dissimilarity measurement235

Dissimilarity between di↵use and specular images is usually measured through

mutual information [16]. Since using mutual information for a patch centered

at each pixel is highly time consuming, we take advantage of another criterion,

which from our experiments, yields similar results as compared to mutual in-

formation and is less time consuming. This criterion, called DIFFcensus [26]240

has been shown to be an e�cient criterion to optimize the disparity map. It is

known to be resistant to noises and color distortions.

Let us now define the DIFFcensus cost function. Given a pixel location x

and an arbitrary p(x) (0  p(x)  p̃(x)), the independence between the di↵use

component I
d

(x) and its corresponding specular component I
s

(x) is measured245

with:

C
DC

(p(x)) = DIFFcensus(I
d

(x), I
s

(x))

= g(C
census

(Ī
d

(x), Ī
s

(x)),�
census

)

+ g(C
DIFF

(Ī
d

(x), Ī
s

(x)),�
DIFF

)

(8)
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where g(C,�) = 1� exp(�C

�
), and Ī

d

(x) and Ī
s

(x) are n⇥m patches centered

at x with arbitrary size (n = m = 5 in our experiments). �
DIFF

and �
census

are hyperparameters balancing the two parts, set to default values �
DIFF

= 55

and �
census

= 95 as suggested in [26]. More specifically, in Equation (8), we250

have:
8
><

>:

C
census

(Ī
d

(x), Ī
s

(x)) = H(CT (Ī
d

(x)), CT (Ī
s

(x)))

C
DIFF

(Ī
d

(x), Ī
s

(x)) =
|DIFF (Ī

d

(x))�DIFF (Ī
s

(x))|
n⇥m

(9)

where CT (·) refers to the Census Transform, and H(·) is the Hamming distance.

For more information about CT and Hamming distance, please refer to [27].

DIFF (·) is computed as:

8
><

>:

DIFF (Ī
d

(x)) =
P

y2Īd(x)
|I

d

(x)� I
d

(y)|

DIFF (Ī
s

(x)) =
P

y2Īs(x)
|I

s

(x)� I
s

(y)|
(10)

The DIFFcensus function represents a trade-o↵ between the classical CT and255

the Sum of Absolute Di↵erence which are balanced via hyperparameters �
DIFF

and �
census

. Results are improved compared to using these criteria alone [26].

4.2.2. Constraint term

The independence assumption alone does not provide a good separation

result. In order to guide the separation process, we introduce a constraint on260

the final solution p(x) to enforce its similarity to a first approximate solution

p
init

(x). The constraint term is given by measuring:

D(p(x)) = |p(x)� p
init

(x)| (11)

The first approximate solution p
init

(x) is found by combining the logarithm

di↵erential specular detection method proposed by [13] and the specular-to-

di↵use mechanism in [3]. The computation of p
init

(x) is detailed in Section265

4.4.
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4.2.3. Stability of the solution

The aim of the data term is to find p(x) that numerically minimizes �(p(x)).

The problem is to find a trade-o↵ between maximizing C
DC

and minimizing

D(p(x)) so that the final solution does not go randomly far from an approximate270

solution p
init

. The minimum of this functional cannot degenerate to infinity

because our space is of finite dimension (pixels) and the functional �(p(x)) is

continuous and bounded from below. Let us demonstrate these points. By

construction, the research space of the solution p(x) is in the domain [0, p̃(x)]

(0  p(x)  p̃(x)) where p̃(x) 2 [0, 255] is an upper bound so that the di↵use275

image I
d

is always positive. The minimum of the functional �(p(x)) is searched

within this domain.

Regarding the C
DC

term, from the Equation (8), it is a combination of two

functions g, where g(x) = 1� exp(�x) and is bounded by 1. Thus

C
DC

(p(x)) = g(C
census

,�
census

) + g(C
Diff

,�
Diff

) < 2 (12)

Regarding theD(p(x)) term, it is the absolute value of the di↵erence between280

p(x) and the first approximate solution p
init

. D(p(x)) is thus positive and finite

also because 0  p(x)  p̃(x).

Consequently, �(p(x)) has a lower bound, ensuring the stability of the solu-

tion:

�(p(x)) = ��2CDC

(p(x)) +D(p(x)) > �2�2 (13)

4.3. Smoothness term285

The smoothness term is classically computed among the 4-connected neigh-

borhood N (x) of the pixel x. To better take into account the original texture of

the image, we implement a color discontinuity detection based on thresholding

RGB values, as suggested in [13]. Let ThR and ThG be small threshold values

(one should adjust this value according to the input images, here default values290

ThR = ThG = 0.005 as in [13] are used in this paper), and indices r and g be

the red and green channels in the RGB space. A color discontinuity on the pixel

13



x is defined as follows:

(�
r

(x) > ThR and �
g

(x) > ThG)

8
><

>:

true: color discontinuity

false: no color discontinuity
(14)

where

8
><

>:

�
r

(x) = �
r

(x)� �
r

(x� 1)

�
g

(x) = �
g

(x)� �
g

(x� 1)
(15)

and295 8
>><

>>:

�
r

=
I
r

I
r

+ I
g

+ I
b

�
g

=
I
g

I
r

+ I
g

+ I
b

(16)

Chromaticity changes are computed between neighboring pixels on both red and

green channels (the blue channel is not included since �
r

+ �
g

+ �
b

= 1). This

method detects the color discontinuity, which helps to maintain the original

texture of the object, as well as to prevent the smoothness term from running

over the object boundary (where the sharp change of the object shape appears).300

The smoothness term is defined as:

 (p(x), p(y)) =

8
<

:
0, if x is located on a color discontinuity
p
p(x)2 � p(y)2 otherwise

(17)

4.4. First approximate solution

The first approximate solution p
init

(x) provides an additional constraint to

the data term to improve the accuracy of the model, as well as a sub-optimal

initial solution to improve the e�ciency of the subsequent optimal process.305

To locally obtain an approximate solution, we propose two steps: spec-

ular region detection and specularity reduction. For specularity detection,

polarization-based methods usually apply a simple thresholding on the DOP

as in [3], which is unreliable because of noise. Also the threshold largely varies

from scene to scene. Thus we will rely upon Tan’s approach [13]. For specu-310

larity removal, however, we did not follow Tan for specular reduction, since for
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RGB, there is no color constraint whereas there is one for polarization images.

Tan’s method does not fully make use of the richness of polarization images.

For this reason, we propose Nayar’s approach [3]. In the following, we describe

each step of specularity detection and reduction and how we propose to combine315

them sequentially.

4.4.1. Specularity detection

For RGB images, Tan notices in [13] that making the pixel saturation con-

stant with regard to the maximum chromaticity while retaining their hue, allows

to successfully remove highlights. The chromaticity is defined as the normalized320

RGB:

⇤(x) =
I(x)

I
r

(x) + I
g

(x) + I
b

(x)
(18)

where ⇤ = {⇤
r

,⇤
g

,⇤
b

}. The maximum chromaticity is defined as :

⇤̃(x) =
max(I

r

(x), I
g

(x), I
b

(x))

I
r

(x) + I
g

(x) + I
b

(x)
(19)

For the whole image, the I(x) is shifted so that the maximum chromaticity

⇤̃(x) is turned to an arbitrary constant value (we set ⇤̃(x) = 0.5 as suggested

by [13]), yielding a new image I 0, where highlights are removed. However this325

method yields color distortions in I 0 and is limited to weak specular highlights.

Thus, a logarithm di↵erential step is added. Let y be a neighboring pixel of x,

the logarithm di↵erential �(x, y) is computed as:

�(x, y) = log
I(x)

I(y)
� log

I 0(x)

I 0(y)
(20)

Tan shows indeed that if two neighboring pixels are both di↵use pixels, their

intensity logarithm di↵erential is zero, meaning that their log ratio still keeps330

the same between I and I 0. Otherwise, if they are not on the color discontinuity,

they should be both specular pixels. The ambiguity between specular and color

discontinuity is suppressed via the color discontinuity detection described in

Equation (14).
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Figure 3: Di↵use Id and specular Is components in RGB space

4.4.2. Specularity reduction335

The aim of this step is to find the specular part and the di↵use part of

the so-called specular pixels, obtained from the preceding step. The main idea,

based on Nayar et al. [3], is to assume that neighboring pixels have the same

di↵use part. Thus the (known) di↵use part of the di↵use-only pixels (computed

in Section 4.3.1) will be used to assess the di↵usion part of the specular pixels.340

Let us recall that a specular pixel intensity is the sum of a di↵use component

(I
d

) and a specular component (I
s

), and that it lies on a line defined by I
min

and I
max

. This line is the color constrain that can be obtained only through

polarization. The line L is determined using the I
max

and I
min

found through

Equation (1). Since only the specular component I
s

is polarized [14], by rotating345

the polarizer, I(x) varies along the line L.

The process starts with specular pixels which are located at the edges of the

specular region; for all of these pixels x
i

belonging to the borders, its di↵use

parts is computed as the mean of the di↵use part of their di↵use-only neighbors

y
j

.350

Note that not all neighboring pixels are used, only those which are close

enough to the plane defined by the origin of the RGB space and L in Fig. 3, by

checking if the angle between I(y
j

) and this gray plane is inferior to a threshold.

The process is repeated iteratively. During the process, the components of

di↵use only pixels are used, or the di↵use component of pixels for which has355

just been computed, until all specular pixels have been processed. The end of
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(a)

(b)

(c)

Figure 4: (a) Original image; (b) First approximate solution Pinit; (c) Final solution P by

the proposed method

the process yields the p
init

(x) map, the first approximate solution, equal to 0

for di↵use-only pixels and to a non zero value for specular pixels.

5. Experimentation

5.1. Implementation and data360

In the experiments, we compare the proposed approach to two well-known

methods in the literature: Nayar’s method [3] which provides the state-of-the-

art local specular and di↵use separation using polarization; Umeyama’s method

which is a global polarization-based algorithm. The algorithm is implemented

on Matlab 2012a and a C++ platform, and the energy function is solved through365

graph cuts with 4-connected neighbors using the gco v3.0 library [18, 28, 29].

The problem of optimizing p(x) is formulated as a global labeling problem, with

labels ranging from 0 to 255. Regarding hyperparameters, it is worth to note

that the specularity removal results are stable for �1 in the range [3.5, 7] and

for �2 in the range [1.3, 1.7], regardless of the processed image. In the following370

experiments, hyperparameters are �1 = 5 (in Equation (6)) and �2 = 1.5 (in

Equation (7)).

As far as we know, there is no public polarization-based benchmark. The

proposed approach is evaluated on six images acquired with a polarization de-
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vice composed by a polarizer2 and a CCD camera3. In order to foster fair375

bench-marking of specular removal methods on common data, we have made

our images available4.

5.2. Visual evaluation

In order to visually assess the specular part, we show four groups of images

(Fig. 4 (a)) with their first approximate solution P
init

(Fig. 4 (b)) and their380

final solution P (Fig. 4 (c)) given by our global method.

Let us now visually assess the specularity removal on the di↵use component.

We show the results of six groups of images (Fig. 5 (a)) with four methods,

Umeyama’s method [16] (Fig. 5 (b)), Nayar’s method [3] (Fig. 5 (c)), our first

approximate solution (Fig. 5 (d)) and the proposed final solution (Fig. 5 (e)).385

Umeyama’s method removes only a small part of the specular component, with a

reduction on the contrast. The reason is that the assumption of uniform incident

angle made by Umeyama does not hold on real images. It also proves that the

independency assumption alone is not able to yield a good result. The first ap-

proximate solution that we computed shows obvious improvement. Results are390

similar but slightly better than Nayar’s, where we can see that the specularity is

only partially removed. Interesting to note is that the significant gain originates

from the first approximation. Since it is easy to compute, this approximation

may show promise for real-time operation. In order to further increase accuracy,

the global method leverages the independency assumption and the constraint395

given by the first approximate solution, so as to handle the remaining noise,

and detect and remove more completely the specular component.
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(b) (c) (d) (e)(a)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

0.0397 0.0370 0.0339 0.0330

0.0184 0.0261 0.0251 0.018

0.0114 0.0122 0.0113 0.0078

0.0274 0.0193 0.0189 0.0173

0.0100 0.0065 0.0053 0.0049

0.0419 0.0322 0.0268 0.0281

Figure 5: (a) Original image; (b) Results of Umeyama’s method; (c) Results of Nayar’s

method; (d) First approximate solutions; (e) Results of the proposed method. The SD is

given for each result image. Figure best viewed in color.

19



I0 I90

(a) (b)

Figure 6: Histogram of hue values with (a) I0, weak specular reflection; (b) I90, strong specular

reflection

5.3. Quantitative evaluation

In the literature, only visual comparison of results from di↵erent methods

is usually given, without any quantitative evaluation [13, 3, 30]. The reason is400

that, first, a ground truth is not always accessible; Second, the ground truth

is usually acquired under an extreme dark illumination and thus not usable for

error computation.

However we propose to evaluate the specularity removal results using the

Standard Deviation (SD) of the histogram distribution. Let us illustrate this405

criterion on an object with uniform color (hue) in Fig. 6. I0 is acquired with a

polarizer positioned at 0o and I90 at 90o. These images are analyzed in the HSV

space, since the chromaticity is straightforwardly presented as hue in this color

space. The histogram of hue values with weak specular reflections (Fig. 6 (a))

2
http://www.edmundoptics.fr/optomechanics/optical-mounts/

polarizer-prism-mounts/rotary-optic-mount/1978/

3
http://www.theimagingsource.com/en_US/products/cameras/gige-cmos-ccd-color/

dfk33gv024/

4
http://pagesperso.litislab.fr/fwang/fichiers/
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is more concentrated than the one with strong specular reflections (Fig. 6 (b)).410

Standard deviation of hue values can thus be used to quantize the quality of

specularity removal: the smaller the SD is, the better the specular component

is removed. Note that this criterion is applicable only for images where the

specular reflection does not cover the majority of the image, and where the

texture of the original image is relatively simple.415

The SD is computed for each resulting image in Fig. 5. It can be noted

that our proposed method also produce the best results as already observed

qualitatively, followed by the first approximate solution and Nayar’s method

[3]. Umeyama’s method [16] always produces the largest SD, except on group

5, which is hampered by a large whitening e↵ect leading to a relatively small420

SD value. However, when taking into account both the visual and quantitative

evaluations, we can conclude that our method still produces the best specularity

removal results on this set of images.

However room for improvement is left regarding the computation time. In-

deed, for a 240⇥ 320 pixel image, the execution time of the specularity removal425

takes approximately 1.5 second for Umeyama’s method, 7 seconds for Nayar’s

method, and 10 seconds for the proposed method, including computing the first

approximate solution, data term and the optimization process, all measured on

a laptop running with a 2.6 GHz processor and 8GB RAM.

5.4. Robustness analysis430

Local-based methods are usually based on the DOP. Since the DOP is com-

puted from at least three images, it is largely contaminated by noise. Local-

based methods are hence prone to su↵er from noise. This motivates us to analyze

the performance of our method with respect to di↵erent noise levels.

White Gaussian noise with zero mean and varying values of � is added to I0,435

I45 and I90. The SD of each group of images are computed correspondingly. Let

SD0 be the SD of the result without noise, SD is normalized as SD = SD/SD0.

It is straightforward that when SD is near to 1, it means that SD is nearly equal

to SD0, and the result is not largely influenced by noise. The mean (red point)
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Figure 7: Quality of image with removed specularity w.r.t. added Gaussian noise: Mean SD

over the 6 images vs noise level �2. The error bar refers to the variance of SD over the 6

images.

and the variance (error bar) of SD over the groups of Fig. 5 are computed and440

shown in Fig. 7.

For �2 < 20, little variation on SD can be noticed. It can be seen that even

by adding noise with �2 = 25, which is considerable, SD still remains close to

1, and the change of SD is small, inferior to 5%. That is to say, our method

remains stable against noise with �2  25. Note that noise with �2 > 25 rarely445

appears in real application thanks to improved camera quality. This experiment

gives us some insight about the encouraging behavior of our method regarding

robustness.

6. Discussion and future work

In this paper, we proposed a polarization-based global energy minimization450

approach to remove the specular component from images. This method is based

on an independence assumption, with constraints given by a first approximate

solution. Polarization information is used as a color constraint which largely

reduces the color distortion produced by traditional color-based methods. The
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robustness analysis also shows that the proposed method is stable for camera455

noise, which is quite problematic for classical local methods.

Regarding the data term of the global energy function, as a tradeo↵ between

maximizing �(p(x)) while minimizing D(p(s)) is to be found, it has been simply

and intuitively defined as the sum of a positive term and a negative term.

Alternatives include maximizing �(p(x))/D(p(s)) or the log di↵erence. Future460

study may focus on a way to improve the design of the data term. To further

improve the e↵ectiveness of the smoothness term, we may want to consider

to combine the  (·) (Equation (6)) with the local intensity or the gradient of

the intensity, as future work. In this way, the object boundary may be better

preserved.465

The chromaticity information is essential in finding the first approximate

solution, since the latter one is largely dependent on the variation of the chro-

maticity in terms of the specular component. If the specular component and the

object shares the same chromaticity, we face the so-called blank wall problem,

as in stereo imaging, and the first approximate solution may be imprecise, since470

no optimum D can be found (as in Figure (3)).

As all specularity removal methods, this method is designed to handle spec-

ular component which varies inside the camera sensor range [0 – 255]. If one of

the color channels falls outside this range, the chromaticity information is per-

manently lost. In this case, the di↵use component of pixels which have lost their475

chromaticity information is hardly recovered by specularity removal method. In

this case, inpainting methods, which are based on the smoothness assumption

of texture, color, or other features [31], could for example be used.

The proposed method also extends the condition of single light source from

Umeyama et al. [16] to non-overlapping multi-sources. However, once the dif-480

ferent light sources produce overlapping specular regions, the specular reflection

on these pixels will be the mixed polarization pattern of two di↵erent sources,

which can not be described using three parameters anymore. Possible solu-

tion for this problem might be to increase the numbers of captured polarization

images to infer the mixed polarization pattern. Regarding the handling of over-485
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lapping sources, one could be investigate the related field of time of flight cam-

eras, where solutions for removing multipath interferences have been proposed

[32, 33, 34].

Simulation of polarization images holds a lot of potential, especially regard-

ing the reflection with di↵erent material and complex surface structure, in order490

to give a better way to evaluate the specularity removal results or even more

polarization-related algorithms. At last, we are currently engaged in adapt-

ing the separation scheme for outdoor images, especially road scene where the

specular highlight can be problematic. In this regard, we aim at improving

the execution time of our method, in order to reach real-time computation, an495

important issue in road scene image processing.
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