N
N

N

HAL

open science

Network characteristics emerging from agent
interactions in balanced distributed system
Mahdi Abed Salman, Cyrille Bertelle, Eric Sanlaville

» To cite this version:

Mahdi Abed Salman, Cyrille Bertelle, Eric Sanlaville.
agent interactions in balanced distributed system. Computational Social Networks, 2015, 2 (1),

10.1186/s40649-015-0019-2 . hal-02112624

HAL Id: hal-02112624
https://normandie-univ.hal.science/hal-02112624
Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Network characteristics emerging from

https://normandie-univ.hal.science/hal-02112624
https://hal.archives-ouvertes.fr

Salman et al. Computational Social Networks (2015) 2: 10 H H
oo 186 st 15 0010 Computational Social Networks

RESEARCH Open Access

Network characteristics emerging from @
agent interactions in balanced distributed system

Mahdi Abed Salman”, Cyrille Bertelle and Eric Sanlaville

*Correspondence:
mahdi4it@gmail.com Abstract

b‘?vsr'eNé’ggigdy University, Le A distributed computing system behaves like a complex network, the interactions

' between nodes being essential information exchanges and migrations of jobs or
services to execute. These actions are performed by software agents, which behave like
the members of social networks, cooperating and competing to obtain knowledge and
services. The load balancing consists in distributing the load evenly between system
nodes. It aims at enhancing the resource usage. A load balancing strategy specifies
scenarios for the cooperation. Its efficiency depends on quantity, accuracy, and
distribution of available information. Nevertheless, the distribution of information on
the nodes, together with the initial network structure, may create different logical
network structures. In this paper, different load balancing strategies are tested on
different network structures using a simulation. The four tested strategies are able to
distribute evenly the load so that the system reaches a steady state (the mean response
time of the jobs is constant), but it is shown that a given strategy indeed behaves
differently according to structural parameters and information spreading. Such a study,
devoted to distributed computing systems (DCSs), can be useful to understand and
drive the behavior of other complex systems.

Keywords: Complex networks; Network structure; Distributed computing systems:
Information spreading; Load balancing; Multi-agent simulation

Introduction

In a complex system, individual nodes (or agents, or actors) take individual decisions
depending on the information they can retrieve from other nodes. The global behavior
of the system cannot be predicted by these individual decisions alone, as they produce
complex interactions. For a better understanding, simulation is often the best way.

A distributed computing system (DCS) is a complex system because it is composed of a
set of computing nodes connected by a communication network, and each node (in fact,
the software agent(s) that is (are) hosted in the node) takes its own decisions. The global
“purpose” of the DCS is to perform a high number of jobs or services, but there is no
central authority to distribute these tasks to the nodes. Each task (hereafter called a job
for simplicity) is initially proposed to one given node. That is why in DCSs, the interac-
tions between components take two forms: communication between nodes to know each
other’s load (the resource discovery phase) and migration of jobs between nodes (the load
balancing phase). In a DCS, load balancing aims at enhancing the resource usage. It tries

© 2015 Salman et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

L]
@ SP rlnger (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40649-015-0019-2&domain=pdf
mailto: mahdi4it@gmail.com
http://creativecommons.org/licenses/by/4.0

Salman et al. Computational Social Networks (2015) 2: 10 Page 2 of 17

to distribute the load (that is, jobs to process) evenly between system nodes and to min-
imize the mean job response time. The global behavior of the system is monitored by
computing the mean response time of the jobs, the distribution of the load (usually the
size of the job queue for each node), and the amount of migrations. The aim is to maintain
the system in an equilibrium state (a steady state), with low operating costs.

Note that in most applications of complex systems, especially on networks involving
people, one may identify this first communication phase, followed by a second phase
where services, or resources, are shared (not always respecting fairness) between the
members of the network. Newman [1] gave a survey on many types of real-world net-
works, including social network modeling for instance business relationships. See also
[2] about job information networks and [3] for a more economic point of view on social
networks.

Most works in the DCS literature investigate the two phases separately. Some works
related to these two research fields are given below. However, we study in this paper the
impact of the structure of the network resulting from resource discovery methods on the
performance of a load balancing strategy.

Resource discovery

For each node, the knowledge of other node states is essential for cooperation purpose. In
particular, the efficiency of load balancing depends on quantity, accuracy, and distribution
of available information [4]. Information is either obtained directly by querying neighbor
nodes or provided by a more sophisticated resource discovery method [5].

The usual objective is to minimize the quantity of collected information while retaining
an optimal performance for load balancing. Indeed, decreasing the quantity of required
information at nodes will decrease the search space and communication complexity.
However, different distributions of information between nodes will produce different
structures for the resulting network (called overlay network in the paper): this non-
physical network keeps track of the knowledge at each node, at each time. Its structure
depends both on the initial, physical network and on the resource discovery method. It
has an impact on the load balancing strategies’ efficiency, hence on the global system
performance.

Volgaris et al. [6] presented the Newscast model, which is “an epidemic protocol for
disseminating information in large, dynamically changing sets of autonomous agents.
Authors showed that the snapshots of an overlay network (they called it series of the com-
munication graphs) of this model exhibit stable small-world properties. These properties
are not intended or expressed explicitly by agent design, but they are emergent from the
underlying simple epidemic-style information exchange protocol.

Load balancing
Load balancing strategies specify scenarios of cooperation between nodes. In most DCSs,
load balancing takes place exclusively among a few neighbor nodes (that is, directly con-
nected nodes) and, hopefully, a global equilibrium is achieved. In this paper, mechanisms
that are more sophisticated are considered.

Willebeek-LeMair and Reeves [4] proposed five load balancing schemes. However, only
receiver-initiated diffusion (RID) and sender-initiated diffusion (SID) schemes are using
local knowledge. Nodes frequently broadcast their current load status to all of their direct

Salman et al. Computational Social Networks (2015) 2: 10 Page 3 of 17

neighbors. In SID, a heavily loaded node initiates a migration towards nodes whose load
is below a threshold. In RID, a node whose load drops below a threshold requests a migra-
tion from all its direct neighbors, which are overloaded. Cao et al. [7] presented a load
balancing framework called mobile agent-based load balancing (MALD) that uses sta-
tionary agents that monitor the workload on local servers and mobile agent to carry loads
to underloaded server. Hence, this is an SID scheme but controlled by agents.

Fukuda et al. [8] analyzed the effectiveness of using statistical properties of the network
structure in multi-agent systems. They dealt with the problem of server agent deployment
and server selection by client agents in the internet. Authors showed that the scale-free
characteristics and degree distribution of the network play an essential role in the per-
formance of the studied algorithm. Although their problem is different from ours, the
underlying ideas are similar.

Laredo et al. [9] presented an online and decentralized scheduler (in fact, a load balanc-
ing scheme) based on a self-organized criticality model classically called sandpile. Authors
show that a sandpile model [10] yields a better performance if the nodes are arranged as a
small-world network rather than a lattice 2D grid. The sandpile model is further analyzed
in this paper.

In [11], a new load balancing strategy for distributed computing system has been
adapted from the RID scheme (but it selects the migration source node). It is called HLM
for help local maximum. A comparison of performances has been made between HLM,
the SID model proposed in [4], and the sandpile scheduler proposed in [9]. The former
outperforms the two other strategies when the network exhibits a small-world structure.
In [12], the impact of network structure on the behavior of load balancing strategies is
investigated. Authors showed that this structure often has the same (to some extent)
effect on the job mean response time whatever the load balancing strategy is used. In
this paper, we extend the work in [12] through adding new mechanism of interaction and
cooperation between system agents.

The remaining of the paper is organized as follows: the “Network structures” section
briefly reviews network models used by information exchange. The “Resource discov-
ery and the overlay network” section sketches the three resource discovery methods that
are tested here. The main strategies of load balancing are explained in the “Load balanc-
ing strategies” section. A new mechanism of interaction and cooperation between system
agents is presented in the “Improving information management” section. The “Agent-
based simulation” section presents the simulation, parameters, and obtained results. The
“Conclusion” section discuses these results.

Network structures
A network is a set of entities that are linked by a given relation [1]. For purposes of analysis
and development, a network is modeled mathematically using graphs. Graph theory is the
most important mathematical technique used to model the geomorphological relations
among the entities in a system. Nodes represent entities. Links (edges or arcs) connect
nodes to show an existing relation between them.

A graph is denoted by G = (V, E) where V is the set of vertices and E is the set of edges
(undirected links). Two vertices u, v € V are neighbors if and only if (&, v) € E.

A directed graph (called digraph) is denoted by G = (V, A), where A is the set of arcs
(directed links). For any arc (i,), i and j are its source and target, respectively. i is called

Salman et al. Computational Social Networks (2015) 2: 10 Page 4 of 17

the ancestor (predecessor) of j, and j is the successor of i. However, in each domain, the
conceptual pair (vertex, link) is redefined. For example, in the web, vertices are web pages
and links are hyperlinks; in the Internet, vertices are autonomous systems and links are
Internet connectivity relationships; and in the social networks, vertices are the population
members (individuals or organizations) and links represent acquaintance (conceptually
called a friendship). DCSs like most complex networks are modeled by graphs, directed
or not, whose vertices are the components or nodes, and edges or arcs capture the inter-
actions between components. A network can be physical or logical (depending on how an
edge is defined) and static or dynamic (depending on edge stability with respect to time).
When a DCS system is started, either each node discovers its environment using some
search mechanisms or the system administrator initially provides each one with a small
set of links. Thus, each node has from the start a set of neighbors. Such network is called
the initial or underlay network. A node only knows its neighbors and their characteristics
(like computing resources, load, etc.).

The network is static when each node keeps the same set of neighbors during the system
life and dynamic when sophisticated resource discovery methods are used: each cycle, a
node exchanges information with its direct neighbors about the status of other nodes.
A system may use both network types, especially when authentication is necessary for
communication. In such cases, information broadcasting creates what is called an over-
lay network from the initial network. In peer-to-peer networks for instance, an overlay
network is a logical network that is built from the information exchanged between peers
using some diffusion method. It is modeled by a directed graph, where an arc (i, /) means
that node i has some knowledge about node j. In this paper, the same model is used, the
exchanged information being the load of some nodes.

The impact of both types of network structure on the performance of several load
balancing strategies is studied here using a simulation. The structure of networks that
emerges from interaction between nodes is described. Initial networks are generated
using theoretical models. Five models have been chosen for this study. Below, we give a
brief description of their characteristics and the way they are generated.

Graph models

Barabasi-Albert

The model of Barabasi and Albert [13] creates random scale-free networks using a pref-
erential attachment mechanism. Such networks admit a power law (or scale-free) degree
distribution for their nodes. They are created using two important general concepts:
growth and preferential attachment. Growth means the nodes are added one after the
other. Preferential attachment means that new nodes prefer to attach themselves to highly

connected older nodes in the network.

Random graph

Different models were introduced according to the definition of randomness. The most
common Edgar Gilbert model [14] imposes that a graph G of # nodes is generated by
adding each edge with independent probability 0 < p < 1. In Erdds and Rényi model
[15], a graph with N nodes and M edges is chosen uniformly at random from all possible
graphs of same N and M. The latter is a general model for any graph. The former is used
in this paper to generate random graph.

Salman et al. Computational Social Networks (2015) 2: 10 Page 5 of 17

Random Euclidean

In this model, Cartesian coordinates are assigned randomly on a plane to each node. An
edge is created between any two nodes if the Euclidean distance between them is less
than a given threshold. The same structure is produced but results in a smaller diameter
when nodes are distributed on a sphere. It is called Euclidean sphere in this paper. A small
threshold will often result in disconnected graphs.

Watts-Strogatz

The Watts—Strogatz model generates a random graph with small-world properties, i.e.,
short average path lengths and high clustering index. The mean degree of the nodes is
rather small but the distance between any two randomly chosen nodes is proportional
to the logarithm of graph order. This model is very popular in complex network studies
since Duncan J. Watts and Steven Strogatz proposed it in 1998 in Nature [16].

The different uses of the graph models
Each of the chosen models shows a specific combination of characteristics. These
characteristics are present in different types of realistic complex networks.

The Barabasi—Albert model is characterized by the features of scale-free and preferen-
tial attachment. Many real networks like the web [13], the Internet [17], and some social
networks [18] exhibit these features. Random graphs are a general model that can be used
as a reference for most real network types. Furthermore, a range of complex networks
share features of random graphs [19]. Random Euclidean graphs have a relatively long
diameter but high clustering coefficient. Random Euclidean graphs are used to model
type networks when node attributes include spatial information, as in the modeling of ad
hoc wireless networks [20].

Finally, the Watts—Strogatz model is characterized by the small-world phenomena. Any
node is reachable from anywhere in the graph with a few number of traversed edges. It
also shows a large clustering coefficient. The information network web and other real
networks have that small-world feature [1, 16, 21]. The Watts—Strogatz, random, and
scale-free models are used in [22] to evaluate knowledge sharing in social commerce using
an agent-based computational approach.

Resource discovery and the overlay network

Three schemes are tested for information collecting during each cycle: local, rumor
spreading, and mobile agents. In local scheme, a node asks all its direct neighbors about
their load status. The initial and the overlay networks are the same throughout the life of
the system. The two other methods build dynamic overlay network and are called global
schemes throughout the paper. In rumor spreading (see [23-25]), a node chooses one of
its direct neighbors at random and exchanges available information from recent cycles. If
anode just sends information, it is called a PUSH protocol, a PULL protocol is considered
when a node just receives information, and a mixed scheme (considered in this study)
does both actions (PUSH-PULL) each cycle. In mobile agent-based broadcasting method
(for more details, see for example [26]), roaming objects (called mobile agents) visit nodes
and exchange valid information with them. A mobile agent chooses the next destination
from one of the current node’s direct neighbors at random or using a specific transfer
mechanism. In both latter cases, a node may get information from nodes located in a

Salman et al. Computational Social Networks (2015) 2: 10 Page 6 of 17

distance equal to the specified TTL (time-to-live) limit. Collected information is stored
locally in a table with limited capacity (and the information is kept at most until its TTL is
reached). Another important feature is that in rumor spreading as in mobile agent-based
method, information travels through the underlay network.

While the information on node j is kept in the table of node i, the arc (i,) exists in the
directed graph which represents the overlay network. Hence, the overlay network is highly
dynamic since arcs are frequently replaced. Indeed, many parameters affect the structure
of the resulting network. The first parameter is the underlay network structure, because,
as already stated, information uses this network to spread. The second parameter is the
TTL. The greater the value of the TTL, the smaller the diameter of the overlay network,
but gathered information becomes less accurate. Another parameter is the capacity of
local caches (or equivalently, the size of the table). Its limit restricts the maximum out-
degree of the resulting network. When TTL is high and cache capacity is small, only the
most recent k bits of information are kept (k is the capacity of local cache) and extra
information is dropped.

Nodes can use this information on the load distribution to decide of job migrations.
The different load balancing strategies are presented in the next section. Many tests are
done to show the impact of the underlay network, TTL, cache capacity, and broadcasting
method parameters on the final structure of the overlay network; the ‘Results’ section

displays some of their results.

Load balancing strategies
Load balancing in DCSs depends on many parameters, which make it a complex problem.
Hence, load metrics should express the authentic state of a node. In this paper, the load is
measured by the remaining time of jobs being executed, plus the execution times of waiting
jobs.

A strategy should specify four policies [4]:

1. Information: when and how to collect information (see the “Resource discovery
and the overlay network” section).

2. Initiation: who triggers the load migration process?

3. Source and destination: when the decision is taken to move some load,
characteristics of source (among overloaded nodes) and of destination (among
underloaded ones) should be specified.

4. Load selection: determines the properties of the load that is more suitable to be
migrated to the destination node.

Four strategies are tested in this paper. They differ either in policy 2, 3, or both. The
other policies are the same for all tested strategies. A node migrates at most one job
each cycle. Hence, strategies are adapted to this constraint. The names and the policies of
tested strategies are given below.

Note that in these descriptions, the neighborhood of a node i is the set of nodes whose
load is known by i (that is, the neighbors of i in the overlay network at this cycle).

SID
Any overloaded node initiates the migration process. It chooses randomly one under-
loaded node as destination from its neighborhood [4]. Hence, in each cycle, an overloaded

Salman et al. Computational Social Networks (2015) 2: 10 Page 7 of 17

node can send only one job but an underloaded one may receive several jobs from

different nodes.

RID

An underloaded node looks in its neighborhood for overloaded nodes to migrate loads
from. A possible source node is chosen at random. Hence, in each cycle, the initiator can
receive only one job while the sender may send several jobs to different nodes.

Sandpile

The load of a given node is avalanched (dropped) down to some neighbor nodes, if some
criteria are met. For example, in [9], a node chooses two neighbor nodes at random. The
load is distributed evenly among the three nodes when the load of the current node is
greater than the summation of the two. Hence, an overloaded node may send several
jobs to its two neighbors. One migration in sandpile may trigger other migrations in a
cascading way until no migration is possible any more. Hence, the network should reach
an equilibrium state each cycle (in this study, a node is inspected only once at each cycle).

HLM

This strategy is RID, except that an underloaded node demands a migration from the
maximum loaded node in its neighborhood. Hence, a heavily loaded node may respond
to many requests of migrations during one cycle.

A node is considered overloaded or underloaded according to the average load of its
neighborhood. Nodes in a neighborhood are classified into three categories: overloaded,
intermediate, and underloaded. Intermediate nodes do not take part in the load balancing
process (except possibly as receiver in sandpile strategy).

Once the source and destination are specified by process trigger, the latest arrived
job for source node is prepared for migration. Note that other job selection policies are
applicable, like earliest arrived, shortest execution, etc.

The performance of each load balancing strategy is evaluated using the mean response
time (MRT) criterion. The response time of a job is the duration from its time of submis-
sion to its completion time. MRT is computed on all jobs processed in a given interval,
here, the total simulation time.

Improving information management

Load balancing depends on information provided by resource discovery. Load balancing
may also participate in spreading information by means of migration dialog. Hence, some
mechanism of local interaction between information management and the migration
process is added. This interaction changes the overlay structure and enhances obtained
results.

Reinforcement

A node initiates load balancing with another node that is chosen from local cache accord-
ing to selection policy. Actually, the node uses uncertain information, since the cache may
have items that have age greater than one, i.e., up-to-date. The initiator starts communi-
cation with selected partner by asking for its current state. It adds received information
to the cache with age = 0. This “fresh” information is spread through the network. As

Salman et al. Computational Social Networks (2015) 2: 10 Page 8 of 17

a result, candidate partners become known in area out of TTL distance with up-to-date
information and may be selected by more nodes.

Information preference

When the number of collected items is larger than cache size, extra entries need to drop.
Dropping is made after sorting entries by some preferred order. By default, cache items
are ordered by their recentness, i.e., their age.

Load balancing prefers nodes that succeeded in most previous migration processes.
Hence, load balancing sets a variable called activeness that is associated with node’s
descriptor fields. Activeness value equals the difference between the number of sent jobs
and number of received jobs.

After dropping outdated items from the cache, a node sorts the remaining items by
activeness in ascending or descending order according to whether a sender- or receiver-
initiated diffusion load balancing is used. SID uses ascending order, and RID uses
descending order. Then, it drops any extra entries according to that sorting.

Agent-based simulation

A simulation program has been designed using Java language based on the Graph-
Stream package [27]. The developed package provides an easy-to-use library of generators
and methods for dynamic graphs. A node class has been extended to facilitate agent’s
management. Agents are autonomous objects that take decisions according to their
internal state and/or environment state. An agent interacts with other agents to accom-
plish specific tasks. Agents have been frequently used to simulate various complex
systems [28, 29]. In social networks, agent-based models can be used to simulate real
actors [22].

Agent modeling

In our model, a node v hosts three types of stationary agents. One of them optionally
receives and hosts mobile agents. Below, definitions and assigned tasks for each agent
type are presented:

The scheduler, S, is responsible for receiving arrived jobs and schedule them for execu-
tion or migration. An arrived job has to wait in a queue when some resource currently is
not available. S uses FCEFS (first come first serve) policy to execute arrived jobs.

The information manager, /, is responsible for communicating and exchanging infor-
mation with neighbor nodes in the underlay network. I applies information collection
policy and runs selected resource discovery method, see the “Load balancing strategies”
and “Resource discovery and the overlay network” sections. Load information is cached
in alist D. An entry d € D is dropped when its age exceeds predefined time-to-live limit
denoted by TTL.

The balancing agent, B, applies a selected load balancing strategy. B uses local informa-
tion that is maintained by I to trigger load balancing process. It determines the source
and destination nodes for the migration from content of D. An initiator B contacts the
corresponding B at another node to move one job between them.

A mobile agent (when used) M is a roaming object. M moves from node to node like a
bee. I usually welcomes M and exchanges information with it. M transfers itself to one of
the current I's neighbors that is chosen at random.

Salman et al. Computational Social Networks (2015) 2: 10 Page9of 17

Parameter settings
Instances of the initial network are obtained using GraphStream generators. All networks
have 1024 nodes. Table 1 shows the features of the network instances that have been
tested on a laptop.

Five networks of different densities are generated for each model. The average degrees
are 8, 16, 24, 32, and 48. d(G) is the network diameter, A(G) is the maximum node degree,
8(G) is the minimum node degree, and C is the average clustering coefficient of a graph.
The clustering coefficient of the node v is the density of a sub-graph that is composed only
of v neighbors. Density is the ratio of the number of edges over the maximum number of
edges in a graph of the same order, i.e., % (E is the edge set and N is the number of
nodes).

Jobs arrive to nodes directly according to a Poisson process. Analyses of traces of pro-
duction systems are carried in [30-32]. Authors showed that the most important cycle
noticed in job arrival distribution is the daily cycle. Basically, our simulation spans a dura-
tion of 1 day. In simulation, a time unit is called cycle or round (we use the former). To
reduce computation, a cycle is considered equal to 1 min, i.e., at minimum, our simulation
spans 1440 cycles.

Jobs arrive to nodes directly according to the local arrival rates (that is, rates differ from
one node to another) that are generated uniformly with mean and standard deviation

equal to 1. A workload instance is generated using the models proposed in [30]. According

Table 1 Network instances

Model d(G) A(G) 5(G) C
Barabasi-Albert 5 95 4 0.030
4 149 8 0.059
4 175 12 0.070
3 210 16 0.088
3 258 24 0.188
Random graph 6 19 1 0.008
4 30 5 0.015
4 38 9 0.023
3 55 18 0.031
3 66 29 0.047
Random Euclidean 36 19 1 0.595
23 30 1 0611
18 41 6 0.621
15 53 12 0.620
12 76 12 0.630
Euclidean sphere 31 18 1 0.590
16 30 5 0.590
12 39 10 0.592
Il 47 12 0.595
8 66 30 0.591
Watts—Strogatz 9 12 5 0484
6 20 12 0.525
5 29 19 0.521
4 38 25 0.538
4 57 42 0.535

Salman et al. Computational Social Networks (2015) 2: 10 Page 10 of 17

to arrival rate distribution, nodes vary in number of jobs that they receive per cycle. The
node with maximum arrival rate receives ~2 jobs per cycle. Without migration, that node
would complete the execution of the last received job at time approximately equal to the
doubled submission time.

The workload instance contains 1,474,560 jobs. Trace analyses of DCSs show that many
jobs have small duration (except for a few very large ones). Following [9], we considered
only jobs of duration equal to one cycle. Note that additional experiments showed that
different durations do not significantly change our results.

Laredo et al. [9], Cao et al. [7], and others migrate jobs between nodes instantly. We
considered that migration of a job from one node to another takes one cycle.

A node classifies entries of local cache into 40 % underloaded, 20 % intermediate, and
40 % overloaded. It compares its own load and takes decision of participating in load
balancing according to the selected strategy.

First, all strategies are applied on static networks, i.e., local scheme of information col-
lection is used. We compute the performance (measured by the MRT on all jobs) of each
strategy for different parameter settings. The number of tests is 100 = (4 strategies x 25
network instances).

Then, the characteristics are computed for the overlay networks resulting from the two
global discovery methods, 25 network instances, and TTL with values 1, 2, 3,4, and 5. No
limit is specified for local cache in these tests.

For each run, the diameter, average clustering coefficient, and average out-degree of
resulting overlay networks are computed (using a snapshot of the overlay network taken
when the structure becomes stable. The number of tests is 250 = (2 methods x 25
networks x 5 TTL).

Finally, the performance of each load balancing strategy is computed using over-
lay networks. The two discovery methods are used on all initial networks. The other
parameters are as follows: TTL is 5 and cache size is chosen to be 8, 16, 24, 32,
and 48.

The number of tests is 1000 = (2 methods x 4 strategies x 25 network instances x 5

sizes of cache).

Results

When no migration is enabled, no equilibrium state is reached and the MRT keeps
increasing. With load balancing, in all tests but a very few (see below), convergence
towards a steady state is achieved in less than 200 cycles. Due to the large number of
results, only few figures are presented.

Local scheme

Figure 1 shows the mean response time (MRT) computed during the simulation time of
1440 cycles. The figure includes results of four strategies. The tests use local scheme of
resource discovery. Each curve represents a model of the initial network. The X-axis gives
the average degree of the initial network.

The figures show that the impact of network structure differs from one strategy to
another in values only. The network density plays a noticeable role in enhancing the per-
formance of all strategies. In particular, for random Euclidean graphs, no steady state is
reached when the average degree is 8.

Salman et al. Computational Social Networks (2015) 2: 10 Page 11 of 17

32 32
\ Initial networks:
24 . 24
——R - Barabasi-Albert
16 Random 16
A~ Euclidean plane
8 ~®- Euclidean Sphere 8
o -l Watts-Strogatz o
0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56
Average Degree Average Degree
(a) SID (b) RID

32 32
24 24
16 16

8 8

[} 0

0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56
Average Degree Average Degree
(c) SandPile (d) HLM

Fig. 1 Mean response time for different network models: local scheme of resource discovery. a SID. b RID.

¢ Sandpile. d HLM

The same pattern of MRT for each network model has been shown for all strategies.
The performance of SID, RID, and Sandpile is enhanced whenever the average degree is
increased. This is due to random selection of source or destination node.

HLM has another behavior, its performance enhances until average degree reaches 24
(the load of heavily loaded nodes decreases rapidly), then it is degraded, since the num-
ber of possible sources (maximum nodes in each neighborhood) decreases when the
neighborhood size increases (as many overloaded nodes are not selected as sources).

For all strategies, the preference of network models is ordered as random,
Barabasi—Albert, Watts—Strogatz, random Euclidean sphere, and random Euclidean
plane, which is the same order as the order of their diameters.

The results of the applied strategy on networks of the same average degree vary accord-
ing to the network diameter. The smaller the diameter, the better the MRT. This is clear
in the difference of performance using random Euclidean on plane and random Euclidean
on sphere since they differ only in their diameter.

Global scheme

The average degree of an overlay network resulting from rumor spreading or mobile
agent resource discovery methods depends on the TTL value. Figure 2 shows the
number of components, average clustering coefficient C, and average degree of
obtained overlay networks from both methods. Low TTL values give non-connected
graphs.

Mobile agent-based discovery method differs from rumor spreading: sometimes,
nodes may not be visited by mobile agent, while in rumor spreading-based method, a
node is always concerned with one exchange at least. Hence, the overly network may
remain disconnected for values of TTL <5 or if the initial network is Barabasi—Albert
(see Fig. 2a).

Tables 2 and 3 show the MRT of four load balancing strategies using mobile agent and
rumor spreading discovery methods, respectively. The result is obtained using same cache
size (16 entries) but different average degrees of initial networks. TTL = 5 is used.

Salman et al. Computational Social Networks (2015) 2: 10

Initial networks 150

= Barabasi-Albert 100
Random

- Euclidean plane

~®- Euciidean Sphere

- Watts-Strogatz

(a) Components

(b) Components

1 2 3 4 5 6 1 2
TTL

(c) Average clustering coefficient

TTL

(d) Average clustering coefficient

(e) Average outdegree

¢, d Average clustering coefficient. e, f Average out-degree

200 200
150 150
100 100
50 50 /*
0 0
1 2 3 a4 5 6 1 3 4 5

TTL

(f) Average outdegree

Fig. 2 Overlay network features: left from mobile agent and right from rumor spreading. a, b Components.

It is obvious from the tables that changing the average degree of the initial network has
no much effect when the cache size is fixed. This is normal since load balancing depends

on the structure of the overlay network in global scheme.

This result is confirmed when using different cache sizes with same average degree of
the initial network. The patterns are very similar to the ones observed for the local scheme
(when considering the cache size instead of the average degree). Figure 3 shows the results
obtained from using rumor spreading discovery method, different cache sizes, and same

average degree of the initial network.

If we compare with the local scheme by considering cache size as the average degree of

overlay network, the results of global scheme are much better.

Global scheme with improvement

The performance of load balancing is computed using three ways of information manage-
ments: the default one that is created by caching recent information, the second version
where load balancing agent alters local cache by updating it with accurate information
(reinforcement), and the last version where resource discovery agent filters cached entries
according to their activeness values (information preference).

Figure 4 shows in-degree distributions of three snapshots of overlay network of three
different experiments. Curves are smoothed by using moving average instead of real
values. Black curve is obtained for an experiment in which cache items are ordered
by recentness (the default method). It shows a small-world graph-like distribution. Red
curve shows the use of reinforcement mechanism. That decreases the mean degree
but stretches the tail of the curve. Reinforcement and activeness preference make the

in-degree distribution be like one of a scale free (blue curve).

Page 12 0of 17

Salman et al. Computational Social Networks (2015) 2: 10 Page 13 of 17

Table 2 MRT on each underlay network using mobile agent

Barabasi-Albert Random Euclidean plane Euclidean sphere Watts-Strogatz
SID
8 15.533 15362 15.635 15482 15.15
16 15.366 15.098 15.157 15.137 15.095
24 15.426 15.051 15.576 14.905 15.025
32 15.549 15.003 14.983 15.096 15.008
48 15.489 14913 15.122 14.992 15.095
RID
8 8459 8402 8.778 8.581 8.466
16 8523 843 8.498 8.508 8438
24 8.594 8419 8.701 8.508 8452
32 8.607 8421 8.243 8518 8.466
48 8612 8.498 8.589 8.536 8.501
Sandpile
8 14517 14.095 14.939 14.352 13.915
16 14.781 14.025 14.239 14.256 13.962
24 14.848 13.973 14.826 14.151 13.966
32 15.129 14.106 14.039 14378 13.982
48 15.215 14.075 14.425 14.296 14.098
HLM
8 10.153 10.109 10.252 10.136 10.081
16 10.058 10.028 10.058 10.044 10.031
24 10 10.004 10.039 9.976 10.036
32 10.006 9.995 9.667 9.959 9.929
48 9.991 10.054 9.943 9.935 10.029

Experiments are made using the proposed mechanism of cooperation between infor-
mation manager / and load balancing responsible B. Figure 5 shows that the performance
of load balancing is enhanced when applying the two techniques’ reinforcement and
activeness. Using activeness indicator gives best result.

Discussion

From the simulation, we may distinguish five main features:

e A steady state is always reachable (except for random Euclidean graphs with very
small average degree and local scheme).

e With the global scheme, MRT is much better than with the local scheme because the
overlay network is dynamic which let far nodes become neighbors at some moment
or another.

e The best performance is made by the HLM load balancing strategy (RID is the closest
one to HLM). However, MRT increases if the average degree or the cache size is large.
That is because the same overloaded node is chosen by many nodes for migration.

e Rumor spreading-based resource discovery has better performance than mobile
agent, but it demands more communications.

e The effect of the underlay network structure on the obtained MRT is more visible
with the local scheme, especially for small average degree networks. Load balancing

Salman et al. Computational Social Networks

Table 3 MRT on each underlay network using rumor spreading

(2015) 2:10

Barabasi-Albert Random Euclidean plane Euclidean sphere Watts-Strogatz
SID
8 14.354 14432 14.686 14361 14315
16 14.339 14.305 14.288 14.38 14.324
24 14.361 14.269 14.673 14.369 14.493
32 14411 14.257 14.264 14.369 14372
48 14.44 14.296 14.493 14.246 14.42
RID
8 8.105 8.098 851 8.197 8.087
16 8.106 8.088 8.156 8.15 8.105
24 8.12 8.08 8467 8.186 8.127
32 8.109 8.077 7.903 8.191 8.141
48 8.106 8.105 8.202 8.195 8.161
Sandpile
8 12.985 12.924 14.255 13.378 12923
16 13.085 12.84 13.233 13.215 13.14
24 13.115 12.924 13.991 13.247 13.12
32 13.203 13.02 13258 13336 13.139
48 13.287 13.075 13.336 13.34 13.1
HLM
8 9.034 9.036 9.243 9.112 9.05
16 9.009 9.001 9.015 9.132 9.052
24 9.001 8.996 9.194 9.081 9.004
32 9.012 8.987 8.757 9.051 9.033
48 9.007 8.969 9.116 9.043 9.016

performs best on the underlay network of random or Watts—Strogatz model. In the

global scheme, a small difference is noticed between the obtained MRT for different

underlay network models that vanishes when increasing the average degree. The

structure of the overlay network is different depending on cache management policy.

It always has small-world features when the items of local cache are kept based on

Initial networks

- Barabasi-Albert
Random

—- Euclidean plane

-@- Euciidean Sphere

- Watts-Strogatz

0 8 16 2 32 40 48

cache size

(a) SID

0 8 1 2 32 0 3
cache size

(c) SandPile

cache size

(b) RID

cache size

(d) HLM

Fig. 3 The impact of cache size on the MRT (average degree of initial networks = 8, rumor spreading,
TTL=5).a SID. b RID. ¢ Sandpile. d HLM

Page 14 of 17

Salman et al. Computational Social Networks (2015) 2: 10 Page 15 0f 17

250
200
150
100
50
0

0 10 20 30 40 50 60 70 80 90

— Recentness' — Reinforcement’ — Reinforcement+Activeness'

Fig. 4 In-degree distribution of overlay networks

their recentness only. It is more scale free when activeness or reinforcement is used.
In that case, MRT is enhanced for using reinforcement or/and activeness. Notice that
the scale-free property is more helpful for the overlay than for the underlay networks.
Indeed, nodes with the highest in-degree are also the most often selected for
migration.

Conclusion

In this study, the evolution of a complex system modeling distributed computer systems
is simulated. The nodes of the DCSs have the resources to execute the jobs submitted to
the system. The global objective of the system is to execute the jobs at a rate that matches
their arrival rate. Nodes are associated to software agents that can take local decisions that
guide the system behavior through two mechanisms: knowledge discovery (what is the
workload of the other nodes?) and load balancing (if I am too much loaded, to which node
can I send jobs?). In this paper, different methods are tested for these two mechanisms.
The nodes are initially linked by a physical network, as the internet or a local network
(the underlay graph). Knowledge discovery can be done by two ways: either locally, one
node knows the load of its neighbors in the underlay graph, or globally, one node keeps
information from a subset of nodes throughout the network (this knowledge is repre-
sented by the arcs of an overlay graph). Our tests show, as expected, that the performance
of the global scheme is better in terms of response time. More importantly, the structure

16
>~ * * * —e
12 -
[- . - =
= [L L @ L
x 8
=
—&— recentness
4 reinforcement
—@- activeness
0 - Both (Reinf.+Act.)
0 8 16 24 32 40 48 56
Average Degree
Fig. 5 The impact of using cooperation mechanism on MRT values. Watts—Strogatz model, rumor spreading,
SID load balancing strategy

Salman et al. Computational Social Networks (2015) 2: 10 Page 16 of 17

of the underlay network has little influence then; the overlay graph acquires a “small-
world” structure (and, for some variants of the global scheme, a “scale-free” structure that
is even more efficient). Four load balancing strategies were tested. All of them were able
to keep the system in a steady state. However, strategies, which make use of all the infor-
mation available, obtain a slightly better response time than others less sophisticated (and
less complicated) like the Sandpile-based one.

The conclusions of this study may extend to other complex systems, especially social
networks with information communication and the sharing (with or without fairness)
of goods, resources, tasks, or jobs: when the knowledge discovery inside the network is
efficient enough, the structure of the initial network is not important. Furthermore, the
paper provides some insight on the way the sharing process (in our context, the load
balancing) may be implemented to guarantee that the system reaches equilibrium.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MAS carried out the simulation and the test and participated in drafting the manuscript. CB conceived the study and
participated in the study design. ES participated in the design of the study and in the drafting of the manuscript. All
authors performed the results analysis, read, and approved the final manuscript.

Authors’ information

MAS is a PhD student in computer science at LITIS, Normandy University, Le Havre, France, with high skills in distributed
computer systems. He is with the University of Babylon, Hillah, Iraq.

CB and ES are full professors in computer science. CB is a specialist in complex systems and the director of the Normandy
Institute of Complex Systems. ES is a specialist in scheduling for parallel computing.

Acknowledgements
This work was supported by the Upper Normandy Region, French government and Europe through the RISC project and
by the Iragi government for the first author.

Received: 19 February 2015 Accepted: 21 June 2015
Published online: 15 July 2015

References

1. Newman, M: The structure and function of complex networks. SIAM Review. 45(2), 167-256 (2003)

2. loannides, YM, Loury, LD: Job information networks, neighborhood effects, and inequality. J. Econ. Lit. 42(4),
1056-1093 (2004)

3. Jackson, MO: An overview of social networks and economic applications*(Jess Benhabib, AB, Jackson, MO, eds.),
Vol. 1, North-Holland (2011). http://dx.doi.org/10.1016/B978-0-444-53187-2.00012-7. http://www.sciencedirect.
com/science/article/pii/B9780444531872000127

4. Willebeek-LeMair, MH, Reeves, AP: Strategies for dynamic load balancing on highly parallel computers. IEEE Trans.
Parallel Distrib. Syst. 4(9), 979-993 (1993)

5. Harchol-Balter, M, Leighton, T, Lewin, D: Resource discovery in distributed networks. In: Proceedings of the
Eighteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 99, pp. 229-237. ACM, New
York, NY, USA, (1999). doi:10.1145/301308.301362

6. Voulgaris, S, Jelasity, M, Steen, M: A robust and scalable peer-to-peer gossiping protocol. In: Moro, G, Sartori, C, Singh,
M (eds.) Agents and Peer-to-Peer Computing, Lecture Notes in Computer Science, pp. 47-58. Springer Berlin
Heidelberg, (2005). doi:10.1007/978-3-540-25840-7_6

7. Cao, J, Sun, Y, Wang, X, Das, S: Scalable load balancing on distributed web servers using mobile agents. J. Parallel
Distr. Comput. 63, 996-1005 (2003)

8. Fukuda, K, Hirotsu, T, Kurihara, S, Akashi, O, Sato, S-y, Sugawara, T: The impact of network model on performance of
load-balancing. In: Namatame, A, Kurihara, S, Nakashima, H (eds.) Emergent Intelligence of Networked Agents,
Studies in Computational Intelligence, pp. 23-37. Springer Berlin Heidelberg, Berlin, (2007).
doi:10.1007/978-3-540-71075-2_3

9. Laredo, J, Bouvry, P, Guinand, F, Dorronsoro, B, Fernandes, C: The sandpile scheduler. Clust. Comput. 17(2), 1-14
(2014)

10. Bak, P, Tang, C, Wiesenfeld, K: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381-384
(1987)

11. Salman, MA, Bertelle, C, Sanlaville, E: A new load balancing strategy for distributed computing systems. In:
Proceedings of the Fourth International Conference on Complex Systems and Applications ICCSA, pp. 143-146.
Normandie University, Le Havre, France, (2014)

12. Salman, MA, Bertelle, C, Sanlaville, E: The behavior of load balancing strategies with regard to the network structure
in distributed computing systems. In: Tenth International Conference on Signal-Image Technology and

http://dx.doi.org/10.1016/B978-0-444-53187-2.00012-7
http://www.sciencedirect.com/science/article/pii/B9780444531872000127
http://www.sciencedirect.com/science/article/pii/B9780444531872000127
http://doi.acm.org/10.1145/301308.301362
http://dx.doi.org/10.1007/978-3-540-25840-7_6
http://dx.doi.org/10.1007/978-3-540-71075-2_3

Salman et al. Computational Social Networks (2015) 2: 10 Page 17 of 17

20.
21.

22.

23.

24,

25.

26.
27.

28.

29.
30.

31

32.

Internet-Based Systems, SITIS 2014, pp. 432-439, Marrakech, Morocco, (2014). doi:10.1109/SIT1S.2014.42 http://dblp.
uni-trier.de/rec/bib/conf/sitis/SalmanBS14

Barabasi, A-L, Albert, R: Emergence of scaling in random networks. Science. 286(5439), 509-512 (1999)

Gilbert, EN: Random graphs. Ann. Math. Stat. 30(4), 1141-1144 (1959)

Erdos, P, Rényi, A: On the evolution of random graphs. Bull. Inst. Internat. Statist. 38(4), 343-347 (1961)

Watts, DJ, Strogatz, SH: Collective dynamics of ‘'small-world" networks. Nature. 393(6684), 440-442 (1998)

Chen, Q, Chang, H, Govindan, R, Jamin, S: The origin of power laws in internet topologies revisited. In: INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
pp. 608-617, (2002). doi:10.1109/INFCOM.2002.1019306

Atwood, J, Ribeiro, B, Towsley, D: Efficient network generation under general preferential attachment. Comput. Soc.
Netw. 2(1), 7 (2015)

Newman, MEJ: Random graphs as models of networks. In: Handbook of Graphs and Networks. Wiley-VCH Verlag
GmbH & Co. KGaA, (2005). doi:10.1002/3527602755.ch2

Nekovee, M: Worm epidemics in wireless ad hoc networks. New J. Phys. 9(6), 189 (2007)

Little, L, McDonald, A: Simulations of agents in social networks harvesting a resource. Ecol. Model. 204(3-4), 379-386
(2007)

Jiang, G, Ma, F, Shang, J, Chau, PY: Evolution of knowledge sharing behavior in social commerce: an agent-based
computational approach. Inf. Sci. 278(0), 250-266 (2014)

Demers, A, Greene, D, Hauser, C, Irish, W, Larson, J, Shenker, S, Sturgis, H, Swinehart, D, Terry, D: Epidemic algorithms
for replicated database maintenance. In: Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, ser. PODC ‘87, pp. 1-12. ACM, New York, (1987)

Giakkoupis, G: Tight bounds for rumor spreading in graphs of a given conductance. In: Schwentick, T, Darr, C (eds.)
STACS, pp. 57-68. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Wadern, (2011). http://www.bibsonomy.org/
bibtex/259fe710466254c52204679218aad9b55/ytyoun

Clementi, AEF, Crescenzi, P, Doerr, C, Fraigniaud, P, Isopi, M, Panconesi, A, Pasquale, F, Silvestri, R: Rumor spreading in
random evolving graphs. CoRR vol. abs/1302, 3828 (2013)

Dunne, CR: Using mobile agents for network resource discovery in peer-to-peer networks. ACM. 1(212), 1-9 (2001)
Pigné, Y, Dutot, A, Guinand, F, Olivier, D: Graphstream: a tool for bridging the gap between complex systems and
dynamic graphs (2008). arXiv preprint arXiv:0803.2093. [Online]. Available: http://graphstream-project.org/

Allen, T: Agents and new directions. In: Introduction to Discrete Event Simulation and Agent-Based Modeling,

pp. 175-190. Springer London, (2011). doi:10.1007/978-0-85729-139-4_12

Boccara, N: Modeling Complex Systems, Springer-Verlag New York (2004)

Lublin, U, Feitelson, DG: The workload on parallel supercomputers: modeling the characteristics of rigid jobs.

J. Parallel Distr. Comput. 63(11), 1105-1122 (2003)

Li, K: Job scheduling and processor allocation for grid computing on metacomputers. J. Parallel Distr. Comput. 65,
1406-1418 (2005)

Li, H, Buyya, R: Model-based simulation and performance evaluation of grid scheduling strategies. Futur. Gener.
Comput. Syst. 25(4), 460-465 (2009)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1109/SITIS.2014.42
http://dblp.uni-trier.de/rec/bib/conf/sitis/SalmanBS14
http://dblp.uni-trier.de/rec/bib/conf/sitis/SalmanBS14
http://dx.doi.org/10.1109/INFCOM.2002.1019306
http://dx.doi.org/10.1002/3527602755.ch2
http://www.bibsonomy.org/bibtex/259fe710466254c52204679218aad9b55/ytyoun
http://www.bibsonomy.org/bibtex/259fe710466254c52204679218aad9b55/ytyoun
http://graphstream-project.org/
http://dx.doi.org/10.1007/978-0-85729-139-4_12

	Abstract
	Keywords

	Introduction
	Resource discovery
	Load balancing

	Network structures
	Graph models
	Barabàsi–Albert
	Random graph
	Random Euclidean
	Watts–Strogatz

	The different uses of the graph models

	Resource discovery and the overlay network
	Load balancing strategies
	SID
	RID
	Sandpile
	HLM

	Improving information management
	Reinforcement
	Information preference

	Agent-based simulation
	Agent modeling
	Parameter settings
	Results
	Local scheme
	Global scheme
	Global scheme with improvement

	Discussion

	Conclusion
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	References

