
HAL Id: hal-02110718
https://normandie-univ.hal.science/hal-02110718

Submitted on 11 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast linear sum assignment with error-correction and no
cost constraints

Sébastien Bougleux, Benoit Gaüzère, David Blumenthal, Luc Brun

To cite this version:
Sébastien Bougleux, Benoit Gaüzère, David Blumenthal, Luc Brun. Fast linear sum as-
signment with error-correction and no cost constraints. Pattern Recognition Letters, 2018,
�10.1016/j.patrec.2018.03.032�. �hal-02110718�

https://normandie-univ.hal.science/hal-02110718
https://hal.archives-ouvertes.fr

Fast Linear Sum Assignment with

Error-Correction and no Cost Constraints

Sébastien Bougleux†, Benoit Gaüzère?, David B. Blumenthal‡, and
Luc Brun*

†Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC UMR
6072, 14000 Caen, France

?Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen,
LITIS, 76000 Rouen, France

‡Free University of Bozen-Bolzano, Faculty of Computer Science,
Dominikanerplatz 3, 39100 Bozen, Italy

*Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC UMR
6072, 14000 Caen, France

July 10, 2019

Abstract

We propose an algorithm that efficiently solves the linear sum as-
signment problem with error-correction and no cost constraints. This
problem is encountered for instance in the approximation of the graph
edit distance. The fastest currently available solvers for the linear sum
assignment problem require the pairwise costs to respect the triangle in-
equality. Our algorithm is as fast as these algorithms, but manages to
drop the cost constraint. The main technical ingredient of our algorithm
is a cost-dependent factorization of the node substitutions.

1 Introduction

Finding correspondences between structured or unstructured data is a funda-
mental problem in data processing and analysis, in particular in computer vi-
sion, pattern recognition and machine learning. In various application scenarios,
data is represented by attributed graphs, and the correspondence problem hence
translates to the task to compute those graphs G, from a given collection, that
“correspond best” to a given graph H.

One way to formalize correspondence between graphs is to say that two
attributed graphs G and H correspond well, if and only if they are close to each
other w. r. t. some distance measure. A very sensitive and therefore widely used

1

distance measure is the graph edit distance (GED) [7, 26, 20]. It is defined as
the minimum cost of an edit path between G and H. An edit path between
G and H is a sequence of elementary edit operations that transform G into
H, where the elementary edit operations are removal or insertion of an edge
or an isolated node and substitution of a node’s or an edge’s attribute. Each
elementary edit operation comes with an associated non-negative edit cost.

Since it is NP -hard to exactly compute GED [31], algorithms that com-
pute lower and upper bounds are important. Many existing algorithms [21,
31, 20, 12, 32, 9, 3, 2, 30, 10] proceed as follows: In a first step, they lossily
transform the problem of computing the graph edit distance between G and H
into an instance C of the linear sum assignment problem with error-correction
(LSAPE), where C is a real-valued matrix. LSAPE is similar to the linear sum
assignment problem for bipartite graphs (LSAP), but also allows node removals
and insertions in addition to node substitutions. In a second step, a LSAPE
solver is called to compute an optimal solution X? for C. Subsequently, X? is
interpreted as an edit path between G and H and hence gives an upper bound
for GED. By using the optimality of X?, some approaches also allow to derive
a lower bound of the GED from the cost of X? under C [31, 32, 3, 2]. In ad-
dition to that, LSAPE arises as a subproblem in several approaches that refine
the upper bound by local or hybrid greedy search strategies [22, 25, 11]. This
is also the case for approaches based on relaxations of quadratic programming
formulations of GED and conditional gradient descent [5, 4, 10].

The runtime performance of the approaches mentioned in the previous para-
graph crucially depend on the performance of the LSAPE solver they employ.
Existing LSAPE solvers fall in two categories. Solvers of the first kind reduce
LSAPE to LSAP [23, 21, 27, 29, 28]: Using different strategies, they first trans-
form an instance C of LSAPE into an instance C of LSAP and then use standard
approaches available for LSAP such as the Hungarian Algorithm for computing
an optimal solution X

?
for C. Finally, X

?
is transformed into an optimal so-

lution X? for the LSAPE instance C. Algorithms of the second kind directly
solve LSAPE by adapting existing approaches for LSAP [13, 14, 4]. Further-
more, LSAPE solvers can be separated in general methods [23, 21, 13, 14, 4] and
cost-constrained methods that are only applicable to those instances of LSAPE
that respect the triangle inequality [27, 29, 28].

The fastest currently available LSAPE solver is the algorithm FBP which
reduces an instance C ∈ R(m+1)×(n+1) of LSAPE to an instance C ∈ Rn×m
of LSAP. However, FBP requires C to respect the triangle inequality. In this
paper, we propose the algorithm FLWC, a fast solver for LSAPE without cost
constraints. Like FBP, FLWC reduces C to a (n × m)-sized instance of LSAP.
Unlike FBP, FLWC does not require C to respect the triangle inequality. FLWC

builds upon the insight that node substitutions whose costs do not respect the
triangle inequality can be factorized into removals and insertions. A thorough
experimental evaluation shows that, for instances that do respect the triangle
inequality, FLWC is as fast as FBP, while, for unconstrained instances, FLWC clearly
outperforms all competitors.

The remainder of the paper is organized as follows: In Section 2, we formally

2

introduce LSAPE and LSAP. In Section 3, we discuss related work. In Section 4,
we present FLWC. In Section 5, we empirically evaluate the performance of FLWC
w. r. t. the performance of existing competitors.

2 Preliminaries

2.1 Linear Sum Assignment Problem

The linear sum assignment problem (LSAP) is defined on complete bipartite
graphs Kn,m = (U ,V,U × V), where U = {ui}i∈I and V = {vj}j∈J are sets of
nodes, and I = {1, . . . , n} and J = {1, . . . ,m} are index sets. In the following,
we will assume w. l. o. g. that n ≤ m. This can easily be enforced by exchanging
the roles of U and V, if necessary. An edge setM⊂ U ×V is called a maximum
matching for Kn,m if and only if all nodes in U are incident with exactly one edge
inM and all nodes in V are incident with at most one edge inM. A maximum
matching M can be encoded with a binary matrix X = (xi,j) ∈ {0, 1}n×m by
setting xi,j = 1 just in case (ui, vj) ∈ M. In the following, we will always
represent matchings with their induced binary matrices. The set Πn,m of all
maximum matchings for Kn,m is hence given as follows:

Πn,m =
{

X ∈ {0, 1}n×m :

∀j ∈ J,
∑n
i=1 xi,j ≤ 1

∀i∈ I,
∑m
j=1 xi,j = 1

} (1)

When n = m, maximum matchings become perfect matchings, and Πn,n be-
comes the set of all n× n permutation matrices.

Given a cost matrix C = (ci,j) ∈ Rn×m for the edges of Kn,m, LSAP asks
to compute a maximum matching for Kn,m which minimizes the induced edge
costs.

Problem 1 (LSAP) Given a cost matrix C ∈ Rn×m, LSAP consists to find

a maximum matching X
? ∈ Πn,m with X

? ∈ argminX∈Πn,m
L(X,C), where

L(X,C) =
∑n
i=1

∑m
j=1 ci,jxi,j.

This is a classical combinatorial optimization problem, also known as the min-
imum cost maximum (or perfect) matching problem in bipartite graphs. It can
be solved in polynomial time and space complexities with several algorithms.
For instance, if the cost matrix C is balanced, i. e., if n = m, it can be solved
in O(n3) time and O(n2) space with the Kuhn-Munkres Hungarian Algorithm
[15, 19]. For the unbalanced case, it can be solved in O(n2m) time [6]. See
[16, 8] for more details.

2.2 Linear Sum Assignment Problem with Error-Correction

Given a maximum matching X for Kn,m = (U ,V,U × V) and a cost matrix
C ∈ Rn×m, a cell xi,j of X with xi,j = 1 can be interpreted as a substitution of

3

the node ui ∈ U by the node vj ∈ V with associated substitution cost ci,j . LSAP
can hence be viewed as the task to substitute all the nodes of U by pairwise
distinct nodes of V such that the substitution cost is minimized. Note that,
under this interpretation, LSAP does not require all nodes in V to be taken care
of, as, if n < m, there are always nodes in V that do not substitute any node in
U .

There are scenarios such as approximation of GED, where one is faced with
a slightly different matching problem: First, in addition to node substitutions,
one also wants to allow node insertions and node removals. Second, one wants
to enforce that all the nodes in V are taken care of. The linear sum assignment
problem with error-correction (LSAPE) models these settings. To this purpose,
the sets U and V are extended to Uε = U ∪ {ε} and Vε = V ∪ {ε}, where ε is a
dummy node. An edge set M = S ∪ R ∪ I ⊂ Uε × Vε is called error-correcting
matching for Kn,m,ε = (Uε,Vε,Uε×Vε) if and only if it does not contain the edge
(ε, ε) and all nodes in U and V are incident with exactly one edge inM. The set
S ⊂ U × V contains all node substitutions, R ⊂ U × {ε} contains all removals,
and I ⊂ {ε} × V contains all insertions. The set Πn,m,ε of all error-correcting
matchings for Kn,m,ε is hence given as

Πn,m,ε =
{

X =

(
Xsub xrem

xins 0

)
∈ {0, 1}(n+1)×(m+1) :

∀j ∈ J, xεj +
∑n
i=1 xi,j = 1

∀i∈ I, xiε +
∑m
j=1 xi,j = 1

} , (2)

where Xsub = (xi,j) ∈ Rn×m encodes node substitutions, xrem = (xi,ε) ∈ Rn×1

encodes node removals, and xins = (xε,j) ∈ R1×m encodes node insertions.
Assume now that C ∈ R(n+1)×(m+1) is a cost matrix of the form

C =

(
Csub crem

cins 0

)
, (3)

where Csub = (ci,j) ∈ Rn×m contains the substitution costs, crem = (ci,ε) ∈
Rn×1 contains the removal costs, and cins = (cε,j) ∈ R1×m contains the insertion
costs. Then LSAPE asks to compute an error-correcting matching for Kn,m,ε

such that the sum of the induced substitution, removal, and insertion costs is
minimized.

Problem 2 (LSAPE) Given a cost matrix C ∈ R(n+1)×(m+1) of form (3),
LSAPE consists to find an error-correcting matching X? ∈ Πn,m,ε with X? ∈
argminX∈Πn,m,ε L(X,C), where L(X,C) =

∑n
i=1

∑m
j=1 ci,jxi,j +

∑n
i=1 ci,εxi,ε +∑m

j=1 cε,jxε,j.

Table 1 summarizes the notations introduced in this section.

4

Table 1: Frequently used notations

syntax semantic

C ∈ R(n+1)×(m+1) instance of LSAPE

C ∈ Rn×m instance of LSAP
X ∈ Πn,m,ε error-correcting matching

X ∈ Πn,m maximum matching
X? ∈ Πn,m,ε optimal error-correcting matching

X
? ∈ Πn,m optimal maximum matching

L(X,C) cost of error-correcting matching X w. r. t. C

L(X,C) cost of maximum matching X w. r. t. C

3 State of the Art for LSAPE

3.1 Unconstrained Reduction to LSAP

The standard algorithm extended bipartite matching (EBP) [20, 21, 23] solves
LSAPE by transforming it to LSAP. Given an instance C of LSAPE, EBP con-
structs an instance C ∈ R(n+m)×(m+n) of LSAP as

C =

(
Csub ω(1n×n − In) + diag(crem)

ω(1m×m − Im) + diag(cins) 0m×n

)
,

where ω denotes a very large value and the operator diag maps a vector (vi)
k
i=1 to

the diagonal matrix (di,j)
k
i,j=1 with di,i = vi and di,j = 0 for all i 6= j. EBP then

calls a LSAP solver to compute an optimal maximum matching X
? ∈ Πn+m,m+n

for LSAP. By construction, X
?

is of the form

X
?

=

(
X
?

sub X
?

rem

X
?

ins X
?

comp

)
, (4)

where X
?

sub ∈ {0, 1}n×m, X
?

rem ∈ {0, 1}n×n, and X
?

ins ∈ {0, 1}m×m. The south-

east quadrant X
?

comp ∈ {0, 1}m×n contains assignments from dummy nodes to
dummy nodes which are not needed for encoding node removals or insertions
but are anyway computed by LSAP algorithms. X

?
is then transformed into

an optimal error-correcting matching X? ∈ Πn,m,ε for LSAPE with L(X?,C) =

L(X
?
,C) by setting X?

sub = X
?

sub, x?rem = X
?

rem1n, and x?ins = 1TmX
?

ins. The
time complexity of EBP is dominated by the complexity of solving the LSAP
instance C. Therefore, EBP runs in O((n+m)3) time.

3.2 Cost-Constrained Reductions to LSAP

The algorithms fast bipartite matching (FBP) [27] and square fast bipartite match-
ing (SFBP) [28, 29] build upon more compact reductions of LSAPE to LSAP than
EBP. However, both FBP and SFBP are applicable only to those instances C of

5

LSAPE which respect the following triangle inequalities:

∀(i, j)∈ I × J, ci,j ≤ ci,ε + cε,j (5)

In other terms, FBP and SFBP can be used for instances of LSAPE where substi-
tuting a node ui ∈ U by a node vj ∈ V is never more expensive than removing
ui and inserting vj . The following proposition is the key-ingredient of both FBP

and SFBP. Recall that we have assumed w. l. o. g. that n ≤ m.

Proposition 1 (Cf. [27, 28, 29]) Let X? ∈ Πn,m,ε be an optimal error-correcting
matching for an instance C ∈ R(n+1)×(m+1) of LSAPE which satisfies (5). Then
X contains no node removal, i. e., satisfies xrem = 0n. Note that this implies
that X? contains exactly m − n node insertions and hence that xins = 0m, if
n = m.

Given an instance C of LSAPE that satisfies (5), FBP constructs an instance
C ∈ Rn×m of LSAP by setting C = Csub − crem1Tn − 1mcins. Subsequently,

FBP computes an optimal maximum matching X
? ∈ Πn,m for C. Because of

Proposition 1, it then holds that the matrix X? ∈ Πn,m,ε defined by X?
sub = X

?
,

x?rem = 0n, and x?ins = 1Tm − 1TnX
?

is an optimal error-correcting matching for
C.

The variant FBP0 of FBP transforms C into a balanced instance C0 ∈ Rm×m
of LSAP, by adding the matrix 0m−n,n below C defined for FBP. After solving
this instance, FBP0 transforms the resulting optimal maximum matching(

X
?

?

)
for C0 into an optimal error-correcting matching X? ∈ Πn,m,ε for C, by applying

the same transformation rules as FBP on X
?
.

Like FBP0, SFBP transforms an instance C into a balanced instance C ∈
Rm×m of LSAP. However, C is now defined as follows:

C =

(
Csub

1m−ncins

)
In the next step, SFBP computes an optimal maximum matching

X
?

=

(
X
?

sub

X
?

ins

)
for C. SFBP then constructs the matrix X? ∈ Πn,m,ε by setting X?

sub = X
?

sub,

x?rem = 0n, and x?ins = 1TmX
?

ins. Again, Proposition 1 ensures that X? is indeed
an optimal error-correcting matching for LSAPE.

The time complexities of FBP, FBP0, and SFBP are dominated by the com-
plexities of solving the LSAP instances C. Therefore, FBP runs in O(n2m) time,
while FBP0 and SFBP run in O(m3) time. These are significant improvements
over EBP. However, recall that FBP, FBP0, and SFBP can be used only if the cost
matrix C respects the triangle inequalities (5).

6

Adaptations of Classical Algorithms LSAPE can also be solved directly
by adapting algorithms originally designed for LSAP. An adaptation of the
Jonker-Volgenant Algorithm is proposed in [14]. An adaption of the Hungar-
ian Algorithm, denoted HNGε in this paper, has been suggested in [4]. Both
modifications lead to an overall time complexity of O(n2m).

4 A Compact Reduction from LSAPE to LSAPE
without Cost Constraints

The main contribution of this paper is to show that LSAPE without cost con-
straints can be reduced to an instance of LSAP of size n × m. The reduc-
tion translates into the algorithm FLWC (fast solver for LSAPE without cost
constraints), which, like FBP, runs in O(n2m) time, but, unlike FBP, FBP0, and
SFBP, does not assume the costs to respect the triangle inequalities (5). The
following Theorem 1 states the reduction principle. It relies on a cost-dependent
factorization of substitutions, removals and insertions. In Section 4.1, we dis-
cuss special cases and present FLWC. In Section 4.2, we present the proof of
Theorem 1.

Theorem 1 (Reduction Principle) Let C∈R(n+1)×(m+1) be an instance of

LSAPE and let X
? ∈ Πn,m be an optimal maximum matching for the instance

C of LSAP defined by

∀(i, j) ∈ I × J, ci,j = δCi,j,εci,j + (1− δCi,j,ε)(ci,ε + cε,j)− δn<m cε,j, (6)

where

δn<m =

{
1 if n < m
0 else

, δCi,j,ε =

{
1 if ci,j ≤ ci,ε + cε,j
0 else

Furthermore, let the function fC : Πn,m → Πn,m,ε be defined as follows:

∀(i, j)∈ I × J, xi,j =
(
fC(X)

)
i,j

= δCi,j,εxi,j (7)

∀i∈ I, xi,ε =
(
fC(X)

)
i,ε

= 1−
m∑
j=1

δCi,j,εxi,j (8)

∀j ∈ J, xε,j =
(
fC(X)

)
ε,j

= 1−
n∑
i=1

δCi,j,εxi,j (9)

Then X? = fC(X
?
) is an optimal error-correcting matching for C with cost

L(X?,C) = L(X
?
, C) + δn<m

∑m
j=1 cε,j.

Example 1 Assume that n = 2, m = 3, and consider the instance C of LSAPE
and the induced instance C of LSAP:

C =


i� j 1 2 3 ε

1 3 5 1 4
2 8 9 4 4
ε 2 4 0 0

 apply (6)
=====⇒ C =

(i� j 1 2 3

1 1 1 1
2 4 4 4

)

7

u1

u2

v1

v2

v3

1

4

(a) X
?

u1

u2

ε

v1

v2

v3

ε

3

4

4

0

(b) X?

u1

u2

ε

v1

v2

v3

ε

9

4

4

(c)

u1

u2

ε

v1

v2

v3

ε

3

4

2

(d)

Figure 1: Illustration of the reduction principle stated in Theorem 1

For instance, we have c1,1 = δC1,1ε3 + (1 − δC1,1ε)(2 + 4) − δ2<32 = 3 − 2 = 1

and c2,2 = δC2,2ε9 + (1 − δC2,2ε)(4 + 4) − δ2<34 = 8 − 4 = 4. Fig. 1(a) shows

an optimal maximum matching X
? ∈ Πn,m for C, and Fig. 1(b) shows an

optimal error-correcting matching X? = fC(X
?
) ∈ Πn,m,ε for C. Note that

fC factorizes the substitution (u2, v2) into the removal (u2, ε) and the insertion
(ε, v2), since c2,2 > c2,ε + cε,2 (Fig. 1(c)). On the other hand, the substitution
(u1, v1) is not factorized, since c1,1 ≤ c1,ε + cε,1 (Fig. 1(d)). Furthermore, we

have L(X?,C) = 11, L(X
?
, C) = 5, and δn<m

∑m
j=1 cε,j = 6. Therefore, it

holds that L(X?,C) = L(X
?
, C) + δn<m

∑m
j=1 cε,j, as stated by our reduction

principle.

4.1 Discussion of Special Cases and Presentation of FLWC

Theorem 1 states that a general instance C ∈ R(n+1)×(m+1) of LSAPE, which is
not required to respect the triangle inequalities (5), can be reduced to a (n×m)-
sized instance of LSAP. However, there is still room for improvement if C does
respect the triangle inequalities.

Proposition 2 Let C ∈ R(n+1)×(m+1) be an instance of LSAPE that respects
the triangle inequalities (5). Then the reduction principle specified in Theorem 1
can be carried out without knowledge of the removal costs crem. If n = m holds,
too, then knowledge of the insertion costs cins is not necessary, either.

Proof 1 The proposition immediately follows from the facts that δCi,j,ε = 1 holds
for all (i, j) ∈ I × J if C respects (5), and that δn<m = 0 if n = m.2.

Proposition 2 is useful, because in many application scenarios for LSAPE,
C is not given but has to be computed. Furthermore, C is often known a priori
to respect the triangle inequalities, for instance, because its entries contain the
distances between elements in a metric space. In such settings, the overall
performance of an algorithm that calls a LSAPE solver as a subroutine can
improve significantly if only parts of the cost matrix C have to be computed.
Table 2 summarizes which parts of C have to be known for our reduction from
LSAPE to LSAP. The case n > m can straightforwardly be obtained from the

8

case n < m by transposing C. Recall that both FBP and FBP0 always require
the entire cost matrix C to be known. SFBP requires the same parts of C as
our approach, but reduces LSAPE to a larger instance of LSAP (max{n,m} ×
max{n,m} vs. n×m).

Table 2: Required parts of C for our reduction from LSAPE to LSAP

triangle ineqs. hold triangle ineqs. do not hold

n = m Csub Csub, cins, crem
n < m Csub, cins Csub, cins, crem
n > m Csub, crem Csub, cins, crem

Algorithm 1 shows the algorithm FLWC, which turns our reduction from
LSAPE to LSAP into a method for computing an optimal error-correcting
matching. FLWC only uses those parts of C which are really required by the
reduction (cf. Table 2).

Algorithm 1: FLWC

input: an instance C ∈ R(n+1)×(m+1) of LSAPE
output: an optimal error-correcting matching X? ∈ Πn,m,ε for C

1 if n > m then
2 C← CT ; (n,m)← (m,n);

3 initialize C ∈ Rn×m;
4 for i ∈ {1, . . . , n} do
5 for j ∈ {1, . . . ,m} do
6 if C respects triangle inequalities then
7 if n = m then
8 ci,j ← ci,j ;
9 else

10 ci,j ← ci,j − cε,j ;

11 else
12 ci,j ← δCi,j,εci,j + (1− δCi,j,ε)(ci,ε + cε,j)− δn<m cε,j ;

13 call LSAP solver to compute opt. max. matching X
? ∈ Πn,m for C;

14 X? ← fC(X
?
);

15 if C was transposed in lines 1–2 then

16 X? ← X?T ;

17 return X?;

If the adaption of the Hungarian Algorithm to unbalanced instances of LSAP
is used in line 13, FLWC runs in O(min{n,m}2 max{n,m}) time and O(nm)
space. Table 3 compares FLWC’s time and space complexities to the complexities
of existing competitors. Note that our reduction principle can also be used for
the fast computation of a suboptimal solution for LSAPE. To this end, it suffices

9

to replace the optimal LSAP solver in line 13 of Algorithm 1 by a suboptimal
one such as one of the the greedy heuristics suggested in [24].

Table 3: Time and space complexities of existing algorithms for LSAPE under
the assumptions that reductions to LSAP use the Hungarian Algorithm for
solving LSAP

method time space

cost-constrained methods
FBP [27] O(min{n,m}2 max{n,m}) O(nm)
FBP0 [27] O(max{n,m}3) O(max{n,m}2)
SFBP [29] O(max{n,m}3) O(max{n,m}2)

general methods
EBP [21] O((n+m)3) O((n+m)2)
HNGε [4] O(min{n,m}2 max{n,m}) O(nm)
FLWC [our approach] O(min{n,m}2 max{n,m}) O(nm)

4.2 Proving the Correctness of the Reduction Principle

The first step towards the proof is the following Proposition 3, which constitutes
a relation between error-correcting matchings and maximum matchings.

Proposition 3 Let X∈Πn,m,ε be an error-correcting matching. Furthermore,
let ZX = (U ,V, {(ui, vj) ∈ U × V : xi,εxε,j = 1}) be the bipartite graph between
U and V whose edges encode all combinations of node removals and insertions,
let Z? be the set of of maximum matchings for ZX, and let the set YX be defined
as follows:

YX = {Xsub + Z? : Z? ∈ Z?} (10)

Then Y ∈ Πn,m holds for each Y ∈ YX.

Proof 2 Let Isub = {i ∈ I :
∑m
j=1 xi,j = 1} and Jsub = {j ∈ J :

∑n
i=1 xi,j =

1} be the set of indices of those nodes of U and V that are substituted by X.
Furthermore, let s = |Isub| be the number of substitutions encoded by X, and
let Z? be a maximum matching for ZX. We observe that ZX can be viewed as
the complete bipartite graph between the nodes Urem = {ui : i ∈ I \ Isub} and
Vins = {vj : j ∈ J \ Jsub} that are removed and inserted by X, and that we
have |Urem| = n − s ≤ m − s = |Vins|. These observations imply that we have∑
j∈J z

?
i,j = 0 for each i ∈ Isub and

∑
j∈J z

?
i,j = 1 for each i ∈ I\Isub. Similarly,

we have
∑
i∈I z

?
i,j = 0 for each j ∈ Jsub and

∑
i∈I z

?
i,j ≤ 1 for each j ∈ J \Jsub.

This gives us
∑
j∈J xi,j + z?i,j = 1 for each i ∈ I and

∑
i∈I xi,j + z?i,j ≤ 1 for

each j ∈ J , which implies Xsub + Z? ∈ Πn,m.2

Example 2 Consider the error-correcting matching X shown in Fig 2(a). Since
X removes u2 and inserts v2 and v3, ZX contains the edges (u2, v2) and (u2, v3)
(Fig 2(b)). There are exactly two maximum matchings for ZX, namely Z?1 =

10

u1

u2

ε

v1

v2

v3

ε

(a) X

u1

u2

v1

v2

v3

(b) ZX

u1

u2

v1

v2

v3

(c) Y1

u1

u2

v1

v2

v3

(d) Y2

Figure 2: Illustration of Proposition 3

{(u2, v2)} and Z?2 = {(u2, v3)}. This implies that YX = {Y1,Y2} with Y1 =
{(u1, v1), (u2, v2)} (Fig. 2(c)) and Y2 = {(u1, v1), (u2, v3)} (Fig. 2(d)).

We now introduce the notion of a minimally-sized error-correcting match-
ing. To this purpose, we call two error-correcting matchings X,X′ ∈ Πn,m,ε

equivalent w. r. t. an instance C of LSAPE (in symbols: X ∼C X′) if and only
if, for all (i, j) ∈ I × J , xi,j = x′i,j or ci,j = ci,ε + cε,j and xi,j = x′i,εx

′
ε,j or

x′i,j = xi,εxε,j . By definition of ∼C, the cost L is invariant on the equivalence
classes induced by ∼C.

Definition 1 (Minimally-Sized Error-Correcting Matching) Let C ∈ R(n+1)×(m+1)

be an instance of LSAPE and X ∈ Πn,m,ε be an error-correcting matching. Then
X is called minimally-sized if and only if | supp(X)| < | supp(X′)| holds for all
X′ ∈ [X]∼C

, where supp(X) is the support of X.

In other words, X is minimally-sized just in case it always favours substi-
tution over removal plus insertion, if the costs are the same. By construc-
tion, each equivalence class [X]∼C

contains exactly one minimally-sized error-
correcting matching. In particular, there is always a minimally-sized optimal
error-correcting matching.

The next step is to characterize a subset Πn,m,ε(C) ⊆ Πn,m,ε which contains
all optimal minimally-sized error-correcting matchings for a given instance C of
LSAPE.

Proposition 4 Let C∈R(n+1)×(m+1) be an instance of LSAPE, and let the set
Πn,m,ε(C) ⊆ Πn,m,ε of cost-dependent error-correcting matchings be defined as
follows:

Πn,m,ε(C) = {X ∈ Πn,m,ε : ∀(i, j) ∈ I × J, (1− δCi,j,ε)xi,j = 0,
∀(i, j) ∈ I × J, δCi,j,εxi,εxε,j = 0}

Then Πn,m,ε(C) contains all minimally-sized optimal error-correcting matchings
for the instance C of LSAPE.

Proof 3 Assume that there is a minimally-sized optimal error-correcting match-
ing X? ∈ Πn,m,ε \ Πn,m,ε(C). Then there is a pair (i, j) ∈ I × J such that
(1−δCi,j,ε)x?i,j = 1 or δCi,j,εx

?
i,εx

?
ε,j = 1. Assume that we are in the first case, i. e.,

11

that δCi,j,ε = 0 and x?i,j = 1. This implies ci,j > ci,ε + cε,j. Now consider the
error-correcting matching X′, which, instead of substituting ui by vj, removes
ui and inserts vj (x′i,εx

′
ε,j = 1). Since δCi,j,ε = 0, X′ is cheaper than X?. This

contradicts X?’s optimality. If we are in the second case, we have x?i,εx
?
ε,j = 1

and ci,j ≤ ci,ε + cε,j. Since X? is minimally-sized, we can strengthen the last
inequality to ci,j < ci,ε+cε,j. Consider the error-correcting matching X′, which,
instead of removing ui and inserting vj, substitutes ui by vj (x′i,j = 1). Again,
X′ is cheaper than X?, which is a contradiction to X?’s optimality.2

The following Proposition 5 shows that the transformation function fC de-
fined in Theorem 1 indeed maps maximum matchings to error-correcting match-
ings and that it is surjective on Πn,m,ε.

Proposition 5 Let fC : Πn,m → Πn,m,ε be defined as in Theorem 1. Then it
holds that img(fC) ⊆ Πn,m,ε and that img(fC) ⊇ Πn,m,ε(C).

Proof 4 Consider a maximum matching X ∈ Πn,m and let X = fC(X). From
(7) and (8), we have xi,ε +

∑m
j=1 xi,j = 1 for each i ∈ I. From (7) and (9), we

have xε,j +
∑n
i=1 xi,j = 1 for each j ∈ J . This implies X ∈ Πn,m,ε and thus

img(fC) ⊆ Πn,m,ε.
For showing img(fC) ⊇ Πn,m,ε(C), we fix an error-correcting matching

X ∈ Πn,m,ε(C). From Proposition 3, there is a set YX of maximum match-
ings representing X. Consider a matching X ∈ YX, i. e. X = Xsub + Z? with
Z? ∈ Z?X We will show that X = fC(X), which proves the proposition. To this
end, we first show the following equalities:

∀(i, j) ∈ I × J, δCi,j,εz
?
i,j = 0 (11)

Consider a pair (i, j) ∈ I × J with z?i,j = 1. From ZX ∈ Z?X, we know that

xi,εxε,j = 1. As X ∈ Πn,m,ε(C), this implies δCi,j,ε = 0 and hence proves (11).

Now let (i, j) ∈ I × J . It holds that fC(X)i,j = δCi,j,εxi,j + δCi,j,εz
?
i,j = δCi,j,εxi,j =

xi,j, where the first equality follows from the definitions of fC and X, the second
equality follows from (11), and the third equality follows from X ∈ Πn,m,ε(C).
We have hence shown that Xsub = fC(X)sub. Next, we show that fC(X)ins =
xins. Let j ∈ J . We have fC(X)ε,j = 1 −

∑n
i=1 δ

C
i,j,εxi,j −

∑n
i=1 δ

C
i,j,εz

?
i,j =

1 −
∑n
i=1 δ

C
i,j,εxi,j = 1 −

∑n
i=1 xi,j = xε,j, as required. Again, the first equality

follows from the definitions of fC and X, the second equality follows from (11),
and the third equality follows from X ∈ Πn,m,ε(C). The last equality follows from
the fact that X is an error-correcting matching. The argument for showing that
fC(X)rem = xrem is analogous.2

Now we prove the correctness of our reduction principle.

Proof of Theorem 1 1 Let X ∈ Πn,m be a maximum matching. Its cost

12

w. r. t. C is given by:

L(X,C) =
n∑
i=1

m∑
j=1

(δCi,j,εci,j + (1− δCi,j,ε)(ci,ε + cε,j)− δn<mcε,j)xi,j

=
n∑
i=1

m∑
j=1

ci,jδ
C
i,j,εxi,j + (ci,ε + cε,j)(1− δCi,j,ε)xi,j

−δn<m

(
m∑
j=1

cε,j
n∑
i=1

xi,j +
m∑
j=1

cε,j −
m∑
j=1

cε,j

)

=
n∑
i=1

m∑
j=1

ci,j (δCi,j,εxi,j)︸ ︷︷ ︸
=fC(X)i,j

+
n∑
i=1

ci,ε

 m∑
j=1

(1− δCi,j,ε)xi,j


︸ ︷︷ ︸

=Ai

+
m∑
j=1

cε,j

(
δn<m +

n∑
i=1

(1− δCi,j,ε − δn<m)xi,j

)
︸ ︷︷ ︸

=Bj

−δn<m
m∑
j=1

cε,j

Since X is a maximum matching for Πn,m, we know that Ai = 1−
∑m
j=1 δ

C
i,j,εxi,j =

fC(X)i,ε for each i ∈ I. We now distinguish the cases δn<m = 1 and δn<m = 0.
In the first case, we immediately have Bj = 1 −

∑n
i=1 δ

C
i,j,εxi,j = fC(X)ε,j for

each j ∈ J . In the second case, we have n = m and Bj = fC(X)ε,j holds, too,
since, for balanced instances, a maximum matching contains an edge (ui, vj) for
each j ∈ J . We have thus shown the following equality:

∀X ∈ Πn,m, L(X,C) = L(fC(X),C)− δn<m
m∑
j=1

cε,j (12)

Now let X? be a minimally-sized optimal error-correcting matching for C,
X
?

be an optimal maximum matching for C, and X′ = fC(X
?
). From (12), we

know that L(X′,C) = L(X
?
, C) + δn<m

∑m
j=1 cε,j. Therefore, the theorem fol-

lows if we can show that L(X′,C) = L(X?,C). The ≥-direction of the desired
equality follows from X?’s optimality and the fact that, from Proposition 5, we

know that X′ ∈ Πn,m,ε. For showing the ≤-direction, we pick an X
′ ∈ Πn,m

with fC(X
′
) = X?. Such an X

′
exists because, from Proposition 4, we know that

X
? ∈ Πn,m,ε(C), and, from Proposition 5, we have img(fC) ⊇ Πn,m,ε(C). As-

sume that L(X′,C) > L(X?,C). Then (12) implies that L(X
?
, C) > L(X

′
, C),

which contradicts X
?
’s optimality.2

5 Experimental Validation

In our experiments, we compared FLWC to all existing competitors mentioned in
Table 3. We evaluated the runtime of the different methods (Section 5.1) and
their performances when used within approximate approaches for the computa-
tion of GED (Section 5.2). All procedures use the same C++ implementation

13

20 40 60 80 100
0

0.5

1

number m (n is fixed to 10)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

SFBP

HNGε

FBP

FLWC

(a) MW

20 40 60 80 100
0

2

4

6

number n (m is fixed to 100)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

SFBP

HNGε

FBP

FLWC

(b) MW

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

number m (n is fixed to 100)

m
e

a
n

 t
im

e
 (

s
)

EBP

SFBP

HNGε

FBP

FLWC

(c) MW

200 400 600 800 1000
0

1

2

3

4

number n (m is fixed to 1000)

m
e

a
n

 t
im

e
 (

s
)

EBP

SFBP

HNGε

FBP

FLWC

(d) MW

20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

number m (n is fixed to 10)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

SFBP

HNGε

FBP

FLWC

(e) FLAT

20 40 60 80 100
0

0.05

0.1

0.15

0.2

number n (m is fixed to 100)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

SFBP

HNGε

FBP

FLWC

(f) FLAT

200 400 600 800 1000
0

5

10

number m (n is fixed to 100)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

SFBP

HNGε

FBP

FLWC

(g) FLAT

200 400 600 800 1000
0

10

20

30

40

number n (m is fixed to 1000)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

SFBP

HNGε

FBP

FLWC

(h) FLAT

20 40 60 80 100
0

0.02

0.04

0.06

number m (n is fixed to 10)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

HNGε

FLWC

(i) FLAT 25%
removals

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number n (m is fixed to 100)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

HNGε

FLWC

(j) FLAT 25% re-
movals

200 400 600 800 1000
0

5

10

15

number m (n is fixed to 100)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

HNGε

FLWC

(k) FLAT 25% re-
movals

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

number n (m is fixed to 1000)

m
e

a
n

 t
im

e
 (

s
)

EBP

HNGε

FLWC

(l) FLAT 25%
removals

20 40 60 80 100
0

0.02

0.04

0.06

number m (n is fixed to 10)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

HNGε

FLWC

(m) FLAT 50% re-
movals

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

number n (m is fixed to 100)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

HNGε

FLWC

(n) FLAT 50% re-
movals

200 400 600 800 1000
0

5

10

15

number m (n is fixed to 100)

m
e

a
n

 t
im

e
 (

m
s

)

EBP

HNGε

FLWC

(o) FLAT 50% re-
movals

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

number n (m is fixed to 1000)

m
e

a
n

 t
im

e
 (

s
)

EBP

HNGε

FLWC

(p) FLAT 50% re-
movals

Figure 3: Time comparison for Machol-Wien instances (first row) and flat in-
stances (all other rows).

of the Hungarian Algorithm as LSAP solver, which is based on the version pre-
sented in [16, 8]. HNGε is also based on this version, so that all procedures are
comparable.1

5.1 Time Comparison

To illustrate the differences between the methods, we recorded their execution
time on three types of instances, some of which do and some of which do not
respect the triangle inequalities: Machol-Wien instances, flat instances, and
random instances. Experiments on further types yielded similar results. Fig .3
shows the results for Machol-Wien instances and flat instances, Fig. 4 displays

1Procedures are written both in C++ and MATLAB (or GNU Octave). The source code
is available at bougleux.users.greyc.fr/lsape/.

14

bougleux.users.greyc.fr/lsape/

the results for random instances. For each instance type, the tested methods’
execution time is reported for several values of n and m. In the first and
third columns of the figures, n is fixed and m is varied, while in the second
and fourth columns, m is fixed and n is varied. In any case, we have n≤m.
The general methods FLWC, EBP, and HNGε were tested on all instances, the
cost-constrained algorithms FBP, FBP0, and SFBP only on those that respect the
triangle inequalities. Since FBP0 was slower than FBP across all instances, our
plots do not contain curves for FBP0.

Machol-Wien Instances [18] Machol-Wien instances are defined by ci,j = i∗
j ∀(i, j) and thus satisfy the triangle inequalities. They are known to be hard
to optimize for classical LSAP solvers such as the Hungarian Algorithm. This
is also the case for the LSAPE solver HNGε, but not for the other methods. This
is explained by the fact that all methods except for HNGε transform an instance
C of LSAPE into an instance C of LSAP, which reduces the difficulty of the
problem. The first row of Fig. 3 shows the results of our experiments on Machol-
Wien instances. We observe that FLWC and FBP perform very similarly, provide
the best results in all cases, and are more stable than the other methods. EBP

and SFBP are more time consuming, in particular when n and m increases.

Flat Instances In a first series of experiments, we considered flat instances
of the form C = α1n×m, with α = 10. These instances satisfy the triangle
inequalities. Moreover, they are easy to solve, which implies that a large part of
the execution time is spent on the initialization step of the Hungarian Algorithm
and the cost transformations. The results for instances of this kind are displayed
in the second row of Fig. 3. As before, FLWC and FBP are more stable and
efficient than the other methods. In a second series of experiments, we varied
the construction of C in order to enforce that k% of the nodes contained in
the smaller set be removed. This can be achieved by randomly selecting m− n
nodes in the larger set and setting their insertion cost to 0. Subsequently, k% of
the remaining elements are selected and their insertion cost is set to (α/2)− 1.
Similarly, the removal costs of k% of the nodes contained in the smaller set are
set to (α/2)− 1. The resulting instances do not satisfy the triangle inequalities,
and thus FBP, FBP0, and SFBP are not tested (they do not compute an optimal
solution). The results are shown in the third and the fourth row of Fig. 3. Both
FLWC and HNGε clearly outperform EBP, and FLWC is slightly more stable than
HNGε.

Random instances We also carried out experiments on random instances
similar to the ones presented in [28, 29]. These instances are very similar to the
ones that occur in the context of approximation of GED. The cost ci,j encodes
the cost of substituting a node vi and its set of incident edges in a graph G by
a node vj and its set of incident edges in a graph H. Graphs are constructed
locally by assigning node degrees randomly from 1 to dmax = (3/10)|VG|, where
|VG| is the number of nodes in the graph G. Nodes are labeled randomly with

15

20 40 60 80 100
0

0.1

0.2

0.3

number m (n is fixed to 10)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

SFBP

HNGε

FBP

FLWC

(a)

20 40 60 80 100
0

0.2

0.4

0.6

0.8

number n (m is fixed to 100)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

SFBP

HNGε

FBP

FLWC

(b)

200 400 600 800 1000
0

20

40

60

80

number m (n is fixed to 100)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

SFBP

HNGε

FBP

FLWC

(c)

200 400 600 800 1000
0

0.2

0.4

number n (m is fixed to 1000)

m
e
a
n

 t
im

e
 (

s
)

EBP

SFBP

HNGε

FBP

FLWC

(d)

20 40 60 80 100
0

0.05

0.1

0.15

number m (n is fixed to 10)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

SFBP

HNGε

FBP

FLWC

(e)

20 40 60 80 100
0

0.01

0.02

0.03

number n (m is fixed to 100)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

SFBP

HNGε

FBP

FLWC

(f)

200 400 600 800 1000
0

10

20

30

40

number m (n is fixed to 100)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

SFBP

HNGε

FBP

FLWC

(g)

200 400 600 800 1000
0

5

10

15

number n (m is fixed to 1000)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

SFBP

HNGε

FBP

FLWC

(h)

20 40 60 80 100
0

0.02

0.04

0.06

0.08

number m (n is fixed to 10)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

HNGε

FLWC

(i)

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number n (m is fixed to 100)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

HNGε

FLWC

(j)

200 400 600 800 1000
0

5

10

15

20

25

30

number m (n is fixed to 100)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

HNGε

FLWC

(k)

200 400 600 800 1000
0

50

100

150

200

250

number n (m is fixed to 1000)

m
e
a
n

 t
im

e
 (

m
s
)

EBP

HNGε

FLWC

(l)

Figure 4: Time comparison for random instances of LSAPE (see text).

an integer value in {1, . . . , lmax}, where lmax =
√
n ∗m/10. Similarly, edges are

labeled with a binary value. Then ci,j is defined as the cost of substituting
the labels (0 if they are the same, or the constant cs else) plus the cost of an
optimal error-correcting matching between the sets of incident edges. The cost of
substituting two edges is defined as before, and the cost of removing or inserting
an edge is defined by the constant ceri. Similarly, removal and insertion costs are
defined as the cost of removing the node plus the cost of removing its incident
edges, which is given by di ceri+ cnri, where di is the node degree and cnri is its
removal or insertion cost. The three following set of parameters (cs, cnri, ceri)
are considered: (40, 20, 20), (20, 40, 0), and (40, 2, 2). The first parameter setting
(first row of Fig. 4) satisfies the triangle inequality. The second (second row of
Fig. 4) and the third parameter setting (third row of Fig. 4) do not satisfy the
triangle inequalities. However, for the second setting, none of the computed
optimal error-correcting contains removals and insertions, and so all methods
were tested. On the contrary, optimal error-correcting matchings for the third
setting indeed contain up to 20% of removals, which is why we did not carry out
tests for the cost-constrained methods FBP, FBP0, and SFBP. We again observe
that our method FLWC is globally the most stable algorithm and obtains the best
results on average.

16

5.2 Effect on Approximation of GED

As mentioned in the introduction, many methods approximate GED by lossily
transforming the problem of its computation into an instance C of LSAPE [20,
12, 3, 21, 31, 32, 9]. Lossy transformations from GED to LSAPE can be used
for computing both upper and lower bounds for GED. Given an error-correcting
matching for C computed by any LSAPE algorithm, an upper bound for GED
is derived by computing the distance associated to the edit path induced by the
considered matching. Since this edit path may be suboptimal, the computed
distance might be an overestimation of the exact GED, and thus constitutes
an upper bound. With this paradigm, each error-correcting matching for C
yields a valid upper bound, although the ones induced by optimal matchings
are usually tighter. Note that, if the LSAPE instance C constructed by a
lossy transformation has only one optimal solution, each optimal LSAPE solver
yields the same upper bound for GED. If C has more than one optimal solution,
there might be differences in accuracy, since different LSAPE solvers might pick
different optimal solutions depending on the organization of the input data.
However, these differences in accuracy are arbitrary and hence disappear once
the upper bounds are averaged across enough pairs of input graphs. In other
words, when it comes to the approximation of GED, the only relevant property
of an exact LSAPE solver is its runtime behaviour.

This observation is empirically confirmed by the experiments reported in
Table 4, which shows how different methods for solving LSAPE affect the per-
formance of the algorithm BP suggested in [21], which computes an upper bound
for GED. Given two graphs G1 and G2 on n1 and n2 nodes, respectively, BP
constructs a LSAPE instance C ∈ R(n1+1)×(n2+1). For computing the cell ci,j
for (i, j) ∈ {1, . . . , n1} × {1, . . . , n2}, BP has to solve another LSAPE instance
of size (degG1

(ui) + 1)× (degG2
(vj) + 1), where degG1

(ui) is the degree of node
ui in G1 and degG2

(vj) is the degree of node vj in G2. So altogether, BP has to
solve 1 + n1n2 instances of LSAPE. The tests were carried out on the datasets
Acyclic and MAO from the ICPR GED contest [1]. In order to ensure that
also the cost-constrained LSAPE solvers compute optimal solutions, we defined
metric edit costs by setting the cost of substituting nodes and edges to 1 and
the cost of deleting and inserting nodes and edges to 3. We see that, as ex-
pected, there are no significant differences between the different solvers w. r. t.
the tightness of the produced upper bounds. In terms of runtime, our solver
FLWC performs best, followed by FBP and HNGε.

In contrast to the situation for upper bounds, lossy transformations from
GED to LSAPE which aim at the computation of lower bounds [3, 2] as well as
methods based on conditional gradient descent [5, 4] where LSAPE occurs as a
subproblem crucially depend on the optimality of the computed error-correcting
matching. Therefore, these methods cannot use the existing fast LSAPE solvers
FBP, FBP0, and SFBP, unless the triangle inequalities are known to be satisfied.
For instance, lower bounds for GED are obtained from the cost L(X?,C) of
an optimal error-correcting matching for the LSAPE instance C. If X? is not
optimal, L(X?,C) is not in general a valid lower bound.

17

Table 4: Effect of LSAPE methods on algorithm BP suggested in [21] that
computes an upper bound for GED on datasets with metric costs.

method time in µs average UB time in µs average UB

Acyclic MAO

cost-constrained methods
FBP 1.61 38.86 6.62 107.97
FBP0 2.04 38.89 8.10 107.85
SFBP 2.14 39.28 11.10 107.48

general methods
EBP 4.84 39.14 23.30 107.48
HNGε 1.87 38.97 7.46 107.59
FLWC 1.53 38.86 6.05 108.04

Table 5 shows how different methods for solving LSAPE affect the perfor-
mance of the algorithm BRANCH suggested in [3, 2], which computes a lower
bound for GED. Like BP, given to graphs G1 and G2 on n and n2 nodes, respec-
tively, BRANCH has to solve 1 +n1n2 instances of LSAPE. One of them is of size
(n1 + 1)× (n2 + 1), the other ones are of size (degG1

(ui) + 1)× (degG2
(vj) + 1).

The tests were again carried out on the datasets Acyclic and MAO, but this
time, edit costs that do not satisfy the triangle inequality were used (cf. [1] for
more details on the edit costs, especially equation (1) and setting 3 in Table 2).
First of all, we can see that the classic approach EBP requires more compu-
tational time than other optimized approaches, and that FLWC, FBP, and HNGε
are the fastest methods. Second, we observe that the cost-constrained methods
FBP, FBP0 and SFBP are not able to deal with costs which do not satisfy the
triangle inequality: Very often, they compute invalid lower bounds that exceed
the exact GED, which we computed using a binary linear programming ap-
proach [17]. This is explained by the fact that, if the triangle inequality is not
satisfied, optimal error-correcting matchings might well include both insertions
and removals. However, those error-correcting matchings are not considered by
cost-constrained methods for LSAPE.

Figure 5 shows a case where the cost-constrained methods FBP, FBP0 and
SFBP compute an invalid lower bound. Considering the two graphs G1 and G2

extracted from Acyclic dataset, cost-constrained methods provide a matching
ϕFBP that favours node substitution over removal plus insertion even if removal
plus insertion is cheaper. For instance, ϕFBP matches the nodes 7 and 8 of G1 to
the nodes 9 and 5 of G2, although it is cheaper to first remove 7 and 8 and then
insert 9 and 5, as done by the matching ϕFLWC computed by FLWC. In conclusion,
cost-constrained methods do not guarantee valid lower bounds for general edit
costs, while our algorithm FLWC does.

18

Table 5: Effect of LSAPE methods on algorithm BRANCH suggested in [3, 2] that
computes a lower bound for GED on datasets with non metric costs.

method time in µs # invalid LB time in µs # invalid LB

Acyclic MAO

cost-constrained methods
FBP 1.28 4 8.30 416
FBP0 1.64 4 10.80 416
SFBP 1.91 4 12.81 416

general methods
EBP 5.34 0 21.10 0
HNGε 1.54 0 7.59 0
FLWC 1.23 0 8.50 0

O

C

C

C C

C

C

C C

CC S

S CC

C

C

Figure 5: Example of lower bound computation where FBP based methods do
not allow to compute a valid lower bound.

6 Conclusions

In this paper, we presented FLWC, a new efficient method for solving the linear
sum assignment problem with error correction. The technical backbone of our
method is a cost-dependent factorization of substitutions into removals and
insertions. FLWC runs in O(min{n,m}2 max{n,m}) time and O(nm) space. Its
complexities are hence the same as the ones of the most efficient state of the art
methods FBP and HNGε.

The advantage of our method FLWC over FBP is that, unlike FBP, FLWC remains
valid for any configuration of the cost matrix and does not require the triangle
inequality to holds. Therefore, our method allows to efficiently retrieve a lower

19

bound for the graph edit distance irrespectively of whether or not the edit costs
respect the triangle inequality. This is especially important in settings where
the edit costs are deduced from calculus and where one does not have an a priori
guarantee that the triangle inequality will be satisfied. Situations of this kind
occur, for instance, in some quadratic approximations of the graph edit distance
problem [5, 4].

One advantage of FLWC over HNGε is that, although both algorithms have the
same time complexity, FLWC is slightly faster in practice. In particular, FLWC is
more stable than HNGε, in the sense that it also allows to quickly solve difficult
LSAPE instances with whom HNGε struggles. A second advantage is that FLWC

is much easier to implement: While implementing HNGε’s adaptation of the Hun-
garian Algorithm to LSAPE requires a thorough knowledge of matching theory,
FLWC can be implemented by slightly transforming the cost matrix and then call-
ing a solver for LSAP. Since LSAP is a very famous combinatorial optimization
problem, libraries are available for all major programming languages.

For future work, we are planning to integrate the factorization of the assign-
ment matrix, which is the core of our paper, in a modeling of the graph edit
distance problem as a quadratic assignment problem.

References

[1] Z. Abu-Aisheh, B. Gaüzère, S. Bougleux, Jean-Yves Ramel, L. Brun,
R. Raveaux, P. Héroux, and S. Adam. Graph edit distance contest 2016:
Results and future challenges. Pattern Recogn. Lett., 100:96–103, 2017.

[2] D. B. Blumenthal and J. Gamper. Improved lower bounds for graph edit
distance. IEEE Trans. Knowl. Data Eng., 30(3):503–516, 2018.

[3] David Benjamin Blumenthal and Johann Gamper. Correcting and
speeding-up bounds for non-uniform graph edit distance. In ICDE, pages
131–134, 2017.

[4] S. Bougleux, B. Gaüzère, and L. Brun. A hungarian algorithm for error-
correcting graph matching. In GbRPR, volume 10310 of LNCS, pages 118–
127, 2017.

[5] Sébastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit
Gaüzère, and Mario Vento. Graph edit distance as a quadratic assignment
problem. Pattern Recogn. Lett., 87:38–46, 2017.

[6] F. Bourgeois and J.C. Lassalle. An extension of the Munkres algorithm for
the assignment problem to rectangular matrices. Commun. ACM, 14:802–
804, 1971.

[7] Horst Bunke and Gudrun Allermann. Inexact graph matching for structural
pattern recognition. Pattern Recogn. Lett., 1(4):245–253, 1983.

20

[8] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM,
2009.

[9] Vincenzo Carletti, Benoit Gaüzère, Luc Brun, and Mario Vento. Approx-
imate graph edit distance computation combining bipartite matching and
exact neighborhood substructure distance. In GbRPR, volume 9069 of
LNCS, pages 188–197, 2015.

[10] É. Daller, S. Bougleux, B. Gaüzère, and L. Brun. Approximate graph edit
distance by several local searches in parallel. In ICPRAM, pages 149–158,
2018.

[11] Miquel Ferrer, Francesc Serratosa, and Kaspar Riesen. A first step towards
exact graph edit distance using bipartite graph matching. In GbRPR, vol-
ume 9069 of LNCS, pages 77–86, 2015.

[12] B. Gaüzère, S. Bougleux, K. Riesen, and L. Brun. Approximate graph
edit distance guided by bipartite matching of bags of walks. In S+SSPR,
volume 8621 of LNCS, pages 73–82, 2014.

[13] W. Jones, A. Chawdhary, and A. King. Revisiting Volgenant-Jonker for
approximating graph edit distance. In GbRPR, volume 9069 of LNCS,
pages 98–107, 2015.

[14] W. Jones, A. Chawdhary, and A. King. Optimising the Volgenant-Jonker
algorithm for approximating graph edit distance. Pattern Recogn. Lett.,
87:47–54, 2017.

[15] Harold W Kuhn. Variants of the hungarian method for the assignment
problem. Nav. Res. Logist. Q., 3:253–258, 1956.

[16] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York, 1976.

[17] Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and
Sébastien Adam. Exact graph edit distance computation using a binary
linear program. In S+SSPR, volume 10029 of LNCS, pages 485–495, 2016.

[18] R. Machol and M. Wien. A ’hard’ assignment problem. Oper. Res., 24:190–
192, 1976.

[19] James Munkres. Algorithms for the assignment and transportation prob-
lems. SIAM J. Appl. Math., 5(1):32–38, 1957.

[20] K. Riesen. Structural Pattern Recognition with Graph Edit Distance. Ad-
vances in Computer Vision and Pattern Recognition. Springer, 2015.

[21] K. Riesen and H. Bunke. Approximate graph edit distance computation by
means of bipartite graph matching. Image Vis. Comput., 27(7):950–959,
2009.

21

[22] K. Riesen and H. Bunke. Improving bipartite graph edit distance approxi-
mation using various search strategies. Pattern Recogn., 28(4):1349–1363,
2015.

[23] K. Riesen, M. Neuhaus, and H. Bunke. Bipartite graph matching for com-
puting the edit distance of graphs. In GbRPR, volume 4538 of LNCS, pages
1–12, 2007.

[24] Kaspar Riesen, Miquel Ferrer, Andreas Fischer, and Horst Bunke. Approx-
imation of graph edit distance in quadratic time. In GbRPR, volume 9069
of LNCS, pages 3–12, 2015.

[25] Kaspar Riesen, Andreas Fischer, and Horst Bunke. Improved graph edit
distance approximation with simulated annealing. In GbRPR, volume
10310 of LNCS, pages 222–231, 2017.

[26] A. Sanfeliu and K.-S. Fu. A distance measure between attributed relational
graphs for pattern recognition. IEEE Trans. Syst. Man Cybern., 13(3):353–
362, 1983.

[27] F. Serratosa. Fast computation of bipartite graph matching. Pattern
Recogn. Lett., 45:244–250, 2014.

[28] F. Serratosa. Computation of graph edit distance: Reasoning about opti-
mality and speed-up. Image Vis. Comput., 40:38–48, 2015.

[29] F. Serratosa. Speeding up fast bipartite graph matching through a new
cost matrix. Int. J. Pattern Recogn., 29(2), 2015.

[30] Sousuke Takami and Akihiro Inokuchi. Accurate and fast computation of
approximate graph edit distance based on graph relabeling. In ICPRAM,
pages 17–26, 2018.

[31] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and
Lizhu Zhou. Comparing stars: On approximating graph edit distance.
PVLDB, 2(1):25–36, 2009.

[32] Weiguo Zheng, Lei Zou, Xiang Lian, Dong Wang, and Dongyan Zhao.
Efficient graph similarity search over large graph databases. IEEE Trans.
Knowl. Data Eng, 27(4):964–978, 2015.

22

	Introduction
	Preliminaries
	Linear Sum Assignment Problem
	Linear Sum Assignment Problem with Error-Correction

	State of the Art for LSAPE
	Unconstrained Reduction to LSAP
	Cost-Constrained Reductions to LSAP

	A Compact Reduction from LSAPE to LSAPE without Cost Constraints
	Discussion of Special Cases and Presentation of FLWC
	Proving the Correctness of the Reduction Principle

	Experimental Validation
	Time Comparison
	Effect on Approximation of GED

	Conclusions

