
HAL Id: hal-02106895
https://normandie-univ.hal.science/hal-02106895

Submitted on 23 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using proof failures to help debugging MAS
Bruno Mermet, Gaële Simon

To cite this version:
Bruno Mermet, Gaële Simon. Using proof failures to help debugging MAS. International Conference
on Agents and Artificial Intelligence, Feb 2019, Prague, France. pp.523-530. �hal-02106895�

https://normandie-univ.hal.science/hal-02106895
https://hal.archives-ouvertes.fr


Using proof failures to help debugging MAS

Bruno Mermet1 and Gaële Simon1

1Normandie Univ., Université Le Havre Normandie, CNRS, Greyc, 1400 Caen, France
{Bruno.Mermet, Gaele.Simon}@unicaen.fr

Keywords:
Multi-Agent Systems, Proof Failure, Debugging

Abstract:
For several years, we have worked on the usage of theorem proving techniques to validate Multi-
Agent Systems. In this article, we present a preliminary case study, that is part of larger work
whose long-term goal is to determine how proof tools can be used to help to develop error-free
Multi-Agent Systems. This article describes how an error caused by a synchronisation problem
between several agents can be identi�ed by a proof failure. We also show that analysing proof
failures can help to �nd bugs that may occur only in a very particular context, which makes it
di�cult to analyse by standard debugging techniques.

1 Introduction

This article takes place in the general context
of the validation of Multi-Agents Systems, and
more speci�cally in the tuning stage. Indeed, for
several years now, we have worked on the valida-
tion of MAS thanks to proof techniques. This is
why the designed the GDT4MAS model (Mermet
and Simon, 2009) has been designed, which pro-
vides both formal tools to speci�y Multi-Agent
Systems and a proof system that generates au-
tomatically, from a formal speci�cation, a set of
Proof Obligations that must be proven to guaran-
tee the correctness of the system.

In the same time, we have begun to study how
to answer to the following question: �What hap-
pens if the theorem prover does not manage to
carry out the proof ?�. More precisely, is it possi-
ble to learn anything from this failures (that we
call in the sequel proof failures), in order to de-
bug the MAS ? Answering to this question in a
general context is tricky. Indeed, a �rst remark is
that a proof failure may occur in three di�erent
cases:

• �rst case: a true theorem is not provable
(Gödel Incompleteness Theorem);

• second case: a true theorem can not be au-
tomatically proven by the prover because �rst-
ordre logic is semidecidable;

• third case: an error in the MAS speci�cation

has led to generate a false theorem that, hence,
cannot be proven.

So, when a proof failure is considered, the �rst
problem is to determine the case it corresponds
to. It would be rather long and o�-topic to give
complete explanations here. However, it is im-
portant to knwow that the proof system has been
designed to generate theorems that have good
chances to be proven by standard strategies of
provers, without requiring the expertise of a hu-
man. Moreover, unprovable true theorems gen-
erally do not correspond to real cases. Thus, in
most cases, a proof failure will correspond to a
mistake in the speci�cation, and this is the con-
text that is considered in the sequel.

The subject of our study is then the follow-
ing: if some generated proof obligations are note
proven automatically, can we learn from that in
order to help to correct the speci�cation of the
MAS ? So, the main idea is to check wether proof
failures can be used to detect, even correct bugs
in the speci�cation of the MAS.

Indeed, contrary to what is presented in (Das-
tani and Meyer, 2010), where authors consider
that proof-based approaches are dedicated to
MAS validation and that other approaches must
be considered for debugging and tuning, we aim
at using proof failures to capture mistakes very
early in the design of a MAS and to help to cor-
rect them.



In this article, we begin by a brief presenta-
tion of existing works dealing with the debugging
of MAS. In part 3, we present the GDT4MAS
model, the proof mechanism, and the associated
tools. Section 4 presents the core of our work. In
the last part, we conclude on the work presented
here and we present the future or our research in
this domain.

2 State of the art

Ensuring the correctness of a MAS is a cru-
cial issue, but this is a very hard problem, as it
has been established several times (Drogoul et al.,
2004). As for classical software, there are mainly
two kinds of methods to check the correctness of
a MAS: proof and test. If interested, the reader is
encouraged to refer to previous articles (Mermet
and Simon, 2009; Mermet and Simon, 2013) for a
more comprehensive state of the art on the sub-
ject. In this section, we focus on works dealing
with the tuning of erroneous systems.

2.1 Test

Most works about the debugging of MAS deal
with test used to discover a potential problem,
and they also deal with how to provide one or
more test cases allowing to reproduce the prob-
lem. Tests can be situated at di�erent levels, as
exposed in (Nguyen et al., 2009):

• at the unit level: this is for instance the goal
of the work presented in (Zhang et al., 2009).

• at the agent level: there are numerous works
at this level. Some propose �xUnit� tools to
specify unit tests (Tiryaki et al., 2006), whereas
others propose to add to the system agents ded-
icated to test (Nguyen et al., 2008)

• at the MAS level: principles of test at the
MAS level are not yet many. One of the reasons
is certainly the di�culty of the problem, well
detailed in (Miles et al., ). But there are however
a few works in this domain (Tiryaki et al., 2006;
Nguyen et al., 2010).

2.2 Trace analysis

Another kind of works dealing with the debug-
ging of MAS relies on the trace analysis. These
works mainly focus on three of the tasks associ-
ated to debugging: discovering the problem, iden-
tifying the potential causes and �nding the true

one. (Lam and Barber, 2005; Vigueras and Botía,
2007; Serrano et al., 2009).

Traces are analysed using two di�erent meth-
ods: either they study the ordering of messages
exchanged between agents, or they use knowl-
edge provided by the designer of the system using
data mining techniques to check if this knowledge
can be found in the MAS trace, in order to dis-
cover bugs and to explain them. The combina-
tion of these two techniques is for example stud-
ied in (Dung N. Lam, 2005).

2.3 Visualization

A few work deal with visualization tools for MAS,
although this kind of tools may be interesting.
But designing relevant views is a very hard prob-
lem because of the potential huge number of enti-
ties interacting. Some works propose to generate
views from traces (Vigueras and Botía, 2007).

2.4 Proof failures

Using proof failure is a prospective domain, that
has not yet been examined in depth. Some works
propose to provide the prover with tools that
might use proof failures (Kaufmann and Moore,
2008). About the usage of these proof failures, a
few ideas are proposed in (Dennis and Nogueira,
2005), but they have not been implemented.

3 The GDT4MAS model

This approach, that integrates a model and an
associated proof system, o�ers several interesting
characteristics for the design of MAS: a formal
language to describe the behaviour of agents and
the expected properties of the system, the usage
of the well-known and expressive �rst-order logic,
and an automatisable proof process.

We brie�y present here the GDTM4MAS
method, more detailed in (Mermet and Simon,
2009; Mermet and Simon, 2013).

3.1 Main concepts

The GDT4MAS model requires to specify several
concepts described here.

Environment The environment of the MAS is
speci�ed by a set of typed variables and an in-
variant property iE .



Agent types Each agent type is speci�ed by a
set of internal typed variables, an invariant and a
behaviour. The behaviour of an agent is mainly
de�ned by a Goal Decomposition Tree (GDT). A
GDT is a tree of goals, whose root correspond to
the main goal of the agent. A plan is associated
to each goal: when this plan is executed with
success, the goal it is associated to (called parent

goal) is achieved. A plan can be made either of
a single action, or a set of goals (called subgoals)
linked by a decomposition operator. A goal G is
mainly described by its name nG, a satisfaction

condition scG and a guaranted property in case of

failure gpf G.
The satisfaction condition (SC) of a goal is

formally speci�ed by a formula that must be true
when the execution of the plan associated to the
goal succeeds. Otherwise, the guaranted property
in case of failure (GPF) of the goal speci�es what
is however guaranted to be true when the execu-
tion of the plan associated to the goal fails (It is
of course not considered when the goal is said to
be a NS goal, that is to say a goal whose plan
always succeeds).

SC and GPF are called state transition formu-

lae (STF), because they establish a link between
two states, called the initial state and the �nal

state, corresponding to the state of the system
just before the agent tries to solve the goal and
the state of the system when the agent has just
ended the execution of the plan associated to the
goal. In an STF, a given variable v can be primed
or not. The primed notation (v′) represents the
value of the variable in the �nal state whereas a
non-prime notation (v) represents the value of the
variable in the initial state. A STF can be non de-
terministic when, considering a given initial state,
several �nal states can satisfy it. This is for in-
stance the case of the following STF : x′ > x.
This means that the value of variable x must be
greater after the execution of the plan associated
to the goal than before. For instance, if the value
of x is 0 in the initial state, �nal states with a
value of 2 or 10 for x would satisfy this STF.

Decomposition operators GDT4MAS pro-
poses several decomposition operators, in order
to specify several types of behaviours. In this ar-
ticle, we only use two of them:

• the SeqAnd operator speci�es that subgoals
must be executed in the given order (from the
left to the right on the graphical representation
of the GDT). If the behaviour of the agent is
sound, achieving all of the subgoals achieves the

parent goal. If the execution of the �rst subgoal
fails, the second subgoal is not executed;

• the SyncSeqAnd operator works similarly to
the SeqAnd operator, but it o�ers the possibily
to lock a set of variables in the environment dur-
ing the execution of the plan. Thus, other agents
won't be able to modify these variables as long
as the execution of the plan is not �nished.

Actions Actions are speci�ed by a precondi-
tion, specifying in which states it can be executed,
and a postcondition, specifying by an STF the ef-
fect of the action.

Agents Agents are de�ned as instances of agent
types, with speci�c initialisation values for the
variables of the type.

3.2 GDT example

Figure 1 shows the GDT of an agent made of three
goals (represented by ellipses with their name and
their SC): goal A is the root goal. Thanks to the
SeqAnd operator, it is decomposed into 2 subgoals
B and C. These goals are leaf goals and so, an
action (represented by an arrow) is associated to
each of them.

3.3 Proof principles

3.3.1 General Presentation

The proof mechanism aims at proving the follow-
ing properties:

• Agents preserve their invariant proper-
ties (Mermet and Simon, 2013);

• Agents preserve the invariant properties of
the environment;

• Agents behaviours are consistent; (plans as-
sociated to goals are correct);

• Agents respect their liveness properties.
These properties formalize expected dynamic
characteristics.

Moreover, the proof mechanism relies on proof

obligations (PO). POs are properties that must
be proven to guarantee the correctness of the sys-
tem. They can be automatically generated from a
GDT4MAS speci�cation. They are expressed in
�rst-order logic and can be veri�ed by any �rst-
order logic prover. Finally, the proof system is
compositional: The proof of the correctness of a
given agent type is decomposed into several small
independant proof obligations, and most of the



time, the proof of a given agent type can be per-
formed independently of the others.

3.3.2 Proof schema

The GDT4MAS method de�nes several proof

schemas. These proof schemas are formulae that
are used to generate proof obligations.

3.3.3 PVS

PVS (Prototype Veri�cation System) (Owre
et al., 1992) is a proof environment relying mainly
on a theorem prover that can manage speci�ca-
tions expressed in a typed higher order logic. The
prover uses a set of prede�ned theories dealing,
among others, with set theory and arithmetic.
The prover can work in an interactive way: in-
deed, the user can interfer in the proof process.

For our part, we want to minimize the user
intervention. It is the reason why Proof Obliga-
tions are generated so as to maximize the success
rate of automatic proof strategies. The strategy
of PVS we use is a very general one called grind
that uses, among others, propositional simpli�ca-
tion, arithmetic simpli�cation, skolemisation ad
the disjunctive simpli�cation.

3.4 Execution platform

In order to carry out many experiments on the
GDT4MAS model, we are developing a platform
with the following features:

• execution of a GDT4MAS speci�cation;

• generation of proof obligations in the PVS
language;

• proof of a GDT4MAS speci�cation using
PVS.

This platform is developed mainly in Java. Spec-
i�cations are written in XML and can be exe-
cuted in several modes. Among them, there is a
random mode (agents are activated at random)
and a trace mode (agents are activated in a pre-
de�ned order). During the execution, dynamic
charts show in real time the values of selected
agent variables. Moreover, a log console gives in-
formation on the system activity (activated agent,
goal being executed, action executed, etc.).

4 Using Proof Failures

The problem this article deals about is the fol-
lowing. Let suppose we have a GDT4MAS speci-
�cation of a Multi-Agent System. Using the proof

system associated to the model, we can generate
a set of Poof Obligations that must be proven to
guarantee that the speci�cation is correct. But if
at least one of these proof obligations cannot be
proven, it may indicate a bug in the speci�cation,
than might be detected during a particular execu-
tion of the MAS. So, can the information provided
by the proof failure (in particular by the prover)
be used, at least by hand, to identify the error in
the speci�cation ?

There are several kinds of such errors. Here
are a few examples:

• the decomposition operator used to de�ne the
plan associated to a goal is not the good one, so
achieving subgoals does not achieve the parent
goal;

• the Satisfaction Condition associated to a
goal is too weak, and so does not provide prop-
erties required later;

• The triggering context of the agent is wrong,
so the agent can be activated when it must not,
or can not be activated when it would be neces-
sary;

• the invariant associated to an agent time is
wrong or too weak.

In the long term, our goal is to identify sev-
eral error categories for which proof failures are
similar and can be used to help to identify the
error in the speci�cation that has generated the
proof failure. In order to adress this problem,
we have speci�ed a case-study based on the pro-
ducer/consumer system. In this example, we have
introduced two kinds of errors, and we have stud-
ied the proof failures that they have generated, in
order to determine if it was possible, to identify
the errors starting from the proof failures. This
study is presented in the sequel.

4.1 Case study

4.1.1 Description of the MAS used

As written before, our case study relies on a
producer-consumer system. In the basic version,
the system is made of 2 agents, with two ded-
icated agent types: the Producer type and the
Consumer type. For the proof point of view, the
analysis of the system is the same whatever the
number of agents of each type is, even if from
the point of view of the execution, we will see
that there are di�erences. The environment of
the MAS includes a variable named stockE (an



integer). This variable corresponds to the num-
ber of resources (pounds of �oor for instance) that
the producer has already put in the environment.

To produce these resources, the producer uses
internal resources of an other type (wheat for
instance), represented by an internal variable
stockPro whose value represents the amount of
wheat (in pounds) that the producer owns. To
produce one resource of the environment (one
pound of �oor), the producer consumes one of its
own resources (one pound of wheat). This process
is represented by the GDT of the Producer type
(shown in �gure 1) made of three goals: goal B
models the consumption of the internal resource
and goal C models the production of the new re-
source in the environment.

Figure 1: GDT of the Producer type

For its part, the consumer produces resources
of a third type (bags of bread, for instance). The
number of resources produced is represented by
the value of an internal variable of the Consumer
type called stockCons. To produce this kind of
resources, the producer needs to use 2 resources
of the environment (producing a bag of bread re-
quires 2 pounds of �oor). This process is for-
malized by the GDT of the Consumer type (see
�gure 2): goal B models the consumption of 2 re-
sources of the environment and goal C models the
production of a new resource of the third type.

Figure 2: GDT of the Consumer type

In addition to the process described above,

there is an additional constraint: only two re-
sources can be stocked in the environment (in our
example, there is a place for only two pounds of
�oor on the shelf). It means that if there are al-
ready 2 resources in the environment, one of them
should be consumed before the producer can put
a new one in the environment. This constraint for
the producer is formalized by its triggering con-

text: stockPro > 0 ∧ stockE < 2. With such a
triggering context, the producer can be activated
only if it still has resources and if it can store its
production in the environment. Moreover the fol-
lowing invariant is associated to the environment:
stockE > −1 ∧ stocke < 3. This invariant deter-
mines the set of legal values for the stockE vari-
able, according to the constraint presented above.
The following invariant is associated to the Pro-
ducer type: stockPro > −1. Indeed, the number
of internal resources cannot be negative.

The triggering context of the Consumer type
is simpler: stockE > 1. In other words, the con-
sumer cannot act if there is not at least 2 re-
sources available in the environment. The invari-
ant associated to this agent type is similar to the
invariant of the Producer: it speci�es that the
number of its internal resources is a natural num-
ber: stockCons > −1.

4.1.2 Proof failure analysis

When proof obligations are generated from the
case study presented above, a PVS theory made
of 18 theorems is produced, where each theorem
corresponds to a proof obligation that must be
proven to ensure that the speci�cations of both
agent types are correct. These proof obligations
cannot be listed here, but we can recall that, if
proven, they guarantee that:

• each goal decomposition is correct (achieving
the plan associated to a goal achieves this goal);

• for each leaf goal:

� The execution context of the goal implies
the precondition of the action associated to the
goal;

� The postcondition of the action associated
to the goal implies the satisfaction condition
of the goal;

� the environment invariant and the agent in-
variant are preserved by the execution of the
action associated to the goal.

When PVS tries to prove the theory gener-
ated from the GDT4MAS speci�cation, there are
2 proof failures (for two theorems, PVS says that



the proof is �un�nished�). In interactive mode,
PVS provides to the user the last sequent of the
proof branch that it cannot verify. The two un-
proved theorems are the following:

• SCproducerTypeA : this proof obligation is re-
quired to prove that the decomposition of goal A
is correct, that it is to say that the success of the
execution of the plan associated to A achieves A.

• PostInvProducerTypeC : this proof obliga-
tion is required to verify that the execution of
the action associated to goal C preserves the in-
variants of the agent and of the environment.

We introduce now a few notations concerning
the variables that are used in the PVS speci�ca-
tion. These notations are used to represent the
value of a variable in several states of the agent.

• v−2 (v_2) : value of v just before B;

• v−1 (v_1) : value of v just after B;

• v0 (v0) : value of v just before C;

• v1 (v1) : value of v just after C.

For instance, in theorem SCproducerTypeA,
stockE′ is represented by stockE1 and stockE is
represented by stockE_2. Indeed, in our execu-
tion model, the state just before A is considered
to be the same state as the state just before B.

First Proof failure The theorem
SCtproducerTypeA generated by the plate-
form is the following:

SCproducerTypeA: THEOREM

((true)&(stockPro_2>0)&(stockE_2<2)&(stockPro_2>-1)&

(stockE_2>-1)&(stockE_2<3)&(stockPro_1 = stockPro_2-1)&

(stockE_1 = stockE_2)&(stockPro_1 = stockPro0)&

(stockPro_1>-1)&(stockE_1>-1)&(stockE_1<3)&(stockPro0>-1)&

(stockE0>-1)&(stockE0<3)&(stockE1 = stockE0+1)&

(stockPro1 = stockPro0)&(stockPro1>-1)&

(stockE1>-1)&(stockE1<3))

=>

(stockPro1 = stockPro_2 - 1)&(stockE1 = stockE_2 + 1)

We can notice that the right-hand side of the
�implies� corresponds to the satisfaction condi-
tion of goal A with the states introduced above:
stockE1 corresponds to à stockE', stockE_2

corresponds to stockE, stockPro1 corresponds
to stockPro' and stockPro_2 corresponds to
stockPro.

The sequent that PVS cannot prove when it
tries to prove this theorem is the following:

{-1} (stockPro_2 > 0)

{-2} (stockE_2 < 2)

{-3} (stockPro_2 > -1)

{-4} (stockE_2 < 3)

{-5} (stockPro_1 = stockPro0)

{-6} (stockE_1 = stockE_2)

{-7} (stockPro_2 - 1 = stockPro0)

{-8} (stockE_2 > -1)

{-9} (stockE0 > -1)

{-10} (stockE0 < 3)

{-11} (stockE1 = 1 + stockE0)

{-12} (stockPro1 = stockPro0)

{-13} (stockPro0 > -1)

{-14} (1 + stockE0 > -1)

{-15} (1 + stockE0 < 3)

|-------

{1} stockE0 = stockE_2

The �rst thing we can notice is that the pred-
icate with the stockPro variable that was part
of the right-hand side of the �implies� in the
initial theorem is missing in the consequent of
the sequent. This means that this part of the
theorem has been proven and that the problem
only concerns the part of the satifaction condi-
tion of goal A dealing with stockE. Thus, we
can conclude that the prover cannot prove that
stockE0 = stockE_2 with the hypotheses in the
left-hand side of the theorem.

Indeed, in the hypotheses of the theorems gen-
erated by our proof systems, relations between
variables concern either variables in the same
state (this is for instance the case for invari-
ant properties) or variables in two consecutive
states. So, if the sequent above cannot be proven,
this ought to be because at least one hypothesis
among stockE_2 = stockE_1 or stockE_1 =
stockE0 is missing. But we can observe that the
second one is present in the hypotheses of the se-
quent (number {−6}). So, the only missing pred-
icate is stockE_1 = stockE0, meaning that the
value of stockE is not modi�ed between the end of
the execution of goal B and the beginning of the
execution of goal C. Indeed, between these two
states, another agent in the system might modify
the value of variable stockE. The only way to pre-
vent this is to lock the variable, using a synchro-
nized operator (SyncSeqAnd in our case). With
such a lock, no other agent can modify stockE
during the execution of the decomposition of goal
A. As stockE is an environment variable, at any
time, any agent can modify it (this is not the case
for agent variables, that can only be modi�ed by
the owner agent). So, in the GDT of the Producer
type, the SeqAnd operator must be replaced by a
SyncSeqAnd operator locking variable stockE.



Second proof failure The theorem
PostinvtypeProducteurC generated by our
plateform is the following:

((true)&(stockPro_2>0)&(stockE_2<2)&(stockPro_2>-1)&

(stockE_2>-1)&(stockE_2<3)&(stockPro_1 = stockPro_2-1)&

(stockE_1 = stockE_2)&(stockPro_1 = stockPro0)&

(stockPro_1>-1)&(stockE_1>-1)&(stockE_1<3)&(stockPro0>-1)&

(stockE0 -1)&(stockE0<3)&(stockE1 = stockE0+1)&

(stockPro1 = stockPro0))

=>

(stockPro1 > -1)&((stockE1 > -1)&(stockE1 < 3))

This theorem aims at demonstrating that the
invariant of the agent is preserved by the exe-
cution of the action associated to goal C: this
explains the part stockPro1 > −1 in the right-
hand side of the �implication�. It also aims at
demonstrating that the invariant predicate of the
environment is preserved by the execution of this
action. This explains the part stockE1 > −1 ∧
stockE1 < 3.

The sequent that PVS cannot prove is the fol-
lowing:

{-1} (stockPro_2 > 0)

{-2} (stockE_2 < 2)

{-3} (stockPro_2 > -1)

{-4} (stockE_2 < 3)

{-5} (stockPro_1 = stockPro0)

{-6} (stockE_1 = stockE_2)

{-7} (stockPro_2 - 1 = stockPro0)

{-8} (stockPro0 > -1)

{-9} (stockE_2 > -1)

{-10} (stockE0 > -1)

{-11} (stockE0 < 3)

{-12} (stockE1 = 1 + stockE0)

{-13} (stockPro1 = stockPro0)

|-------

{1} (1 + stockE0 < 3)

When we compare it with the initial theorem,
it appears that the prover cannot prove a part of
the environment invariant, more precisely the fact
that the value of stockE is always less than 3 be-
cause hypothesis stockE_1 = stockE0 is missing.
This is the same problem that we encountered for
the �rst proof failure. It means that this proof
failure is also a consequence of not having used a
synchronized operator locking variable stockE.

So, this proof failure has allowed us to detect
the same design error that the �rst proof failure.
However, it does not correspond to the same bug.
Indeed, the fact that the prover cannot verify that
stockE0 < 2 shows that it is not guaranted that
the value of stockE is less than 2 before the ex-
ecution of C. As a consequence, there are situa-
tions where, after the execution of C, the value
of stockE is greater than 2, which is forbidden by
the environment invariant. This corresponds to

a new bug that may occur during the system ex-
ecution. An interesting property with this proof
failure is that the bug cannot occur in a system
with a single producer in the system. But if we
consider a MAS with several producers, the prob-
lem will probably occur. For instance, consider a
system with 2 producers p1 and p2, each having a
stockPro variable initialized to 5, an environment
with the variable stockE initialized to 0, and a
single consumer whose variable stockCons is ini-
tialized to 0. Now, supppose that the execution
of the MAS leads to the following interleaving of
agents p1 and p2:

...
p1 (stockPro of p1 takes the value of 4)
p1 (stockE takes the value of 1)
p1 (stockPro of p1 takes the value of 3)
p2 (stockPro of p2 takes the value of 4)
p2 (stockE takes the value of 2)
p1 (stockE takes the value of 3)
...

The execution trace above leads to the bug
pointed out by the proof failure. This trace
has indeed been executed by our plateform and,
thanks to the visualisation of the variables of the
system, we have observed the bug: the value of
stockE indeed reaches the value of 3 during this
execution.

Figure 3: Values of the variables in the MAS over the
time

Review of the proof failures analysis After
the anlysis of these 2 proof failures, we can, at
�rst, notice that the structure of the proof obli-
gations generated by our proof system provides
a �rst way to rapidly identify which part of the
system behaviour is involved in the problem (the
name of the generated theorem helps in this task).
We have also shown that the 2 studied proof fail-
ures help to identify a design error in the spec-



i�cation of the Producer type. The �rst proof
failure has helped to �nd an hypothesis that was
lacking in the theorem, and that led us to �nd how
to �x the problem by using a synchronized oper-
ator in order to lock variable stockE during the
execution of the decomposition of goal A. This
problem is a consequence of a synchronisation
problem between the agents (producer/consumer
in the �rst case, producer/producer in the second
case), identi�ed thanks to the proof failures.

Moreover, each of these proof failures pointed
out 2 di�erent bugs (Satisfaction condition of goal
A not established in some cases, non compliance
with the bounds of stockE in other cases) gen-
erated by the same error in the design. We can
notice that that they would have been di�cult to
identify without our proof system. Namely, the
bug associated to the second proof failure cannot
occur in a system with less than two producers,
and even in a system with 2 producers or more,
the bug can be observed only during speci�c ex-
ecutions. So, using a proof system leads to an
important time saving in bug identi�cation.

We can notice that, if we modify the spec-
i�cation of the Producer agent type using a
SyncSeqAnd operator instead of a SeqAnd opera-
tor to decompose goal A, the proof of the system
is now performed successfully by PVS.

This small case study shows that proof failures
can be used to detect undesired behaviours dur-
ing the execution (bugs associated to each proof
failure) and to determine errors in the speci�ca-
tion linked to these bugs (here, the lack of lock on
an environment variable by the producer agent).

5 Conclusion and perspectives

In this article, we have presented a promising
way to use proof failures in the tuning of MAS. In
particular, we have shown that such a technique
highlights bugs that appears in few executions,
because they can depend on the interleaving of
the actions of the agents. That makes these bugs
hard to detect and to correct with standard de-
bugging techniques because they are hard to re-
produce. Of course, research must continue with
other kinds of proof failures to validate the tech-
nique in a more general way. We also aim at de-
veloping a semi-automatic usage of proof failures,
because it seems that standard patterns of proof
failure emerge. In the longer term, we should be
able to propose a taxonomy of proof failures, asso-
ciating to each kind of proof failure the potential
causes and the potential required patches.

REFERENCES

Dastani, M. and Meyer, J.-J. C. (2010). Speci�cation
and Veri�cation of Multi-agent Systems, chapter
Correctness of Multi-Agent Programs: A Hybrid
Approach. Springer.

Dennis, L. A. and Nogueira, P. (2005). What can
be learned from failed proofs of non-theorems.
Technical report, Oxford University Computer
Laboratory.

Drogoul, A., Ferrand, N., and Müller, J.-P. (2004).
Emergence : l'articulation du local au global.
ARAGO, 29:105�135.

Dung N. Lam, K. S. B. (2005). Automated Inter-
pretation of Agent Behaviour. In AOIS, pages
1�15.

Kaufmann, M. and Moore, J. (2008). Proof
Search Debugging Tools in ACL2.
http://www.cs.utexas.edu/users/moore/-
publications/acl2-papers.html.

Lam, D. N. and Barber, K. S. (2005). Comprehending
agent software. In AAMAS, pages 586�593.

Mermet, B. and Simon, G. (2009). GDT4MAS: an
extension of the GDT model to specify and to
verify MultiAgent Systems. In et al., D., editor,
Proc. of AAMAS 2009, pages 505�512.

Mermet, B. and Simon, G. (2013). A new proof sys-
tem to verify gdt agents. In IDC, pages 181�187.

Miles, S., Winiko�, M., Crane�eld, S., Nguyen, C.,
Perini, A., Tonella, P., Harman, M., and Luck,
M. Why testing autonomous agents is hard and
what can be done about it. AOSE Technical
Forum 2010 Working Paper.

Nguyen, C., Perini, A., Bernon, C., Pavón, J., and
Thangarajah, J. (2009). Testing in Multi-Agent
Systems. In AOSE, pages 180�190.

Nguyen, C., Perini, A., and Tonella, P. (2008).
Ontology-based test generation for multiagent
systems. In AAMAS, pages 1315�1320.

Nguyen, C. D., Perini, A., and Tonella, P. (2010).
Goal-oriented testing for MASs. IJAOSE,
4(1):79�109.

Owre, S., Shankar, N., and Rushby, J. (1992). Pvs:
A prototype veri�cation system. In CADE 11.

Serrano, E., Gómez-Sanz, J., Botía, J., and Pavón,
J. (2009). ntelligent data analysis applied to de-
bug complex software systems. Neurocomputing,
72(13-15):2785�2795.

Tiryaki, A., Öztuna, S., Dikenelli, O., and Erdur, R.
(2006). SUNIT: A Unit Testing Framework for
Test Driven Development of Multi-Agent Sys-
tems. In Agent Oriented Software Engineering
(AOSE), pages 156�173.

Vigueras, G. and Botía, J. (2007). Tracking Causal-
ity by Visualization of Multi-Agent Interactions
Using Causality Graphs. In PROMAS, pages
190�204.

Zhang, Z., Thangarajah, J., and Padgham, L. (2009).
Model based testing for agent systems. In AA-
MAS'09, pages 1333�1334.


