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The effects of nonmagnetic impurity doping on magnetic and ferroelectric properties of multiferroic
delafossite CuCrO2 are investigated by means of density functional theory calculations and Monte Carlo
simulations. Density functional theory calculations show that replacing up to 30% of Cr3+ ions by Ga3+ ones
does not significantly affect the remaining Cr-Cr superexchange interactions. Monte Carlo simulations show that
CuCr1−xGaxO2 preserves its magnetoelectric properties up to x � 0.15 with a spiral ordering, while it becomes
disordered at higher fractions. Antiferromagnetic transition shifts towards lower temperatures with increasing
x and eventually disappears at x � 0.2. Our simulations show that Ga3+ doping increases the Curie-Weiss
temperature of CuCr1−xGaxO2, which agrees well with experimental observations. Moreover, our results show
that the incommensurate ground-state configuration is destabilized by Ga3+ doping under zero applied field
associated with an increase of frustration. Finally, coupling between noncollinear magnetic ordering and electric
field is reported for x � 0.15 through simulating P -E hysteresis loops, which leads to ferroelectricity in the
extended inverse Dzyaloshinskii-Moriya model.

DOI: 10.1103/PhysRevB.98.174403

I. INTRODUCTION

Delafossite oxides [1–4] have attracted a lot of attention
from researchers due to their interesting novel properties
[5] and potential applications. For instance, the simultaneous
transparency and p-type conductivity of CuAlO2 [6] and of
PdCoO2 in thin-film form [7] may be applied in optoelec-
tronics. Thermoelectric delafossites have been reported, too
[8–11]. Furthermore, a strong coupling of the magnetic and
structural degrees of freedom paves the way to multiferroics
in the magnetic compounds CuFeO2 and CuCrO2 [12–23].

With their layered structure depicted in Fig. 1, ABO2

delafossites strikingly profile as two-dimensional (2D) mate-
rials. This intuition is supported by the electronic transport
of PdCoO2, where the anisotropy ratio of the resistivity can
reach 1000 at low temperature [24–26]. This strongly sug-
gests the conducting Pd layers should be decoupled from the
insulating CoO2 layers. Yet density functional theory (DFT)
calculations yield a quite substantial dispersion of the band
crossing the Fermi energy when varying the component of the
momentum orthogonal to the layers [27], thereby indicating
that the decoupling of the layers is only incomplete [28].
Likewise, for the magnetic compound CuCrO2, recent DFT
calculations yielded out-of-plane Heisenberg couplings that
are much smaller than the dominant in-plane ones [29].

Delafossite CuCrO2 is a semiconducting compound, with
an activation energy close to 280 meV [18]. It crystallizes
in the R3̄m space group, with lattice parameters a = 2.97 Å
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and c = 17.11 Å [30], forming Cu+, O2−, and Cr3+ triangular
layers stacked along the vertical direction, as schematically
shown in Fig. 1. The triangular Cr3+ (S = 3/2) layers are
responsible for the magnetism in the compound. CuCrO2 un-
dergoes a magnetic phase transition toward an antiferromag-
netic noncollinear state at a Néel temperature TN � 24–27
K [20,29,31,32], with a Curie-Weiss temperature θCW �
−(170–176) K [18,29,31]. In this multiferroic, the magnetic
configuration below TN is a proper-screw spiral incommensu-
rate Y-state known as an ICY state with a magnetic propaga-
tion vector q = (0.329, 0.329, 0) [32]. In this state, the spiral
ordering distorts the crystal slightly along the [110] direction
[33], leading to the appearance of hard-axis anisotropy along
the distorted direction [29]. Such a noncollinear spiral spin
structure breaks the space-inversion symmetry leading to the
emergence of spontaneous ferroelectricity along the distorted
[110] direction through the variation of the hybridization
between Cr d orbitals and O p orbitals caused by the spin-
orbit coupling [34]. Because, in proper-screw structures, the
magnetic propagation vector q is perpendicular to the spiral
plane, magnetoelectric coupling cannot be described by the in-
verse Dzyaloshinskii-Moriya (DM) model [34–36], but rather
by its extended form developed by Kaplan and Mahanti [37].
Thus, ferroelectric polarization induced between two canted
spins Si and Sj is given by

Pij ∝ eij × (Si × Sj ) + (Si × Sj ), (1)

where eij is a unit vector joining sites i and j . On the other
hand, it was shown that doping CuCrO2 with nonmagnetic
(S = 0) impurities allows exploring novel phenomena in such
a quasi-2D compound [38]. For example, it was found that
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FIG. 1. Crystal structure of delafossite ABO2 (A=Cu, B=Cr)
with the hexagonal unit cell.

spiral ordering under zero applied magnetic field can be desta-
bilized by the substitution of Cr3+ by Al3+ [39,40]. However,
an increase in TN was seen by the substitution of Cr3+ by
Mg2+ [41,42], reflecting the important role of hole doping in
the phase transition. It was also shown that doping CuCrO2 by
Ga3+ in the Cr3+ sites results in a material that may combine
the good characteristics from both semiconductors CuCrO2

and CuGaO2 [43,44]. This case of Ga3+ doping is very crucial
because it allows studying the effect of magnetic dilution in
CuCr1−xGaxO2 without a steric effect [45] due to the very
close ionic radii of Cr3+ (rCr3+ = 61.5 pm) and Ga3+ (rGa3+ =
62 pm). Indeed, no significant change in the structural pa-
rameters of the unit cell of CuCrO2 has been detected [45].
On the other hand, it was shown that Ga3+ directly affects
the antiferromagnetic nature of the compound, leading to the
possibility of a spin glass behavior [46]. Moreover, neutron
powder diffraction experiments performed on CuCr0.9Ga0.1O2

showed that the magnetic peaks observed at 1.8 K correspond
to a propagation vector q = (0.329, 0.329, 0) where they
are significantly broadened compared to that of CuCrO2,
which evidences a disorder in the magnetic configuration [45].
Nevertheless, magnetoelectric properties of CuCr1−xGaxO2

are still rarely studied, and therefore, complementary in-
vestigations are necessary for better understanding of these
materials. Based on that, we aim to investigate the effects
of Ga3+ doping on the magnetic and ferroelectric properties
of multiferroic CuCrO2 by means of DFT calculations and
Monte Carlo (MC) simulations.

FIG. 2. Modeled structural configurations. Cr (Ga) atoms are
represented by blue (green) spheres. Cu and O atoms are omitted.
Configuration I corresponds to x ≈ 0.11; II and III correspond to
x ≈ 0.22, and IV, V, and VI correspond to x ≈ 0.33.

The remainder of this paper is organized as follows: Sec. II
presents the DFT computational details. Section III presents
the model and MC method. Section IV is devoted to discus-
sions of the obtained results, and a conclusion is given in
Sec. V.

II. DFT COMPUTATIONAL DETAILS

Conventional DFT calculations usually underestimate the
value of the band gap (or even predict metallic solution) for
transition-metal oxides. The DFT+U [47] method has been
shown to improve the situation for pristine CuCrO2, providing
optical gaps and valence band spectra in good agreement with
experiments [5,18,48]. For this study we apply the Hubbard
correction to Cr 3d states by setting Hubbard U and Hund’s
JH parameters to 2.3 and 0.9 eV, respectively, following
previous studies for undoped CuCrO2 [19,29].

DFT+U calculations are performed using the full-
potential linear muffin-tin orbital method as implemented in
the RSPT [49] software. In order to model Ga doping, a 3 ×
3 × 1 supercell of CuCrO2 is constructed. Substituting one,
two, or three Cr atoms for Ga allows us to model the following
concentrations: x ≈ 0.11, 0.22, and 0.33. For a given concen-
tration, we simulate several different atomic arrangements. In
total, we consider six different atomic arrangements, which
are depicted in Fig. 2.

All other computational details are exactly the same as the
ones used in our previous work on pristine CuCrO2 [29]. For
that study, the calculations were performed for a ferromag-
netic state, and a good description of the magnetic properties
was achieved. Here we follow the same recipe in order not to
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FIG. 3. Schematic representation of the considered intralayer
exchange paths between Cr3+ ions.

complicate the DFT calculations with spin noncollinearity. In
order to quantify the effect of lattice relaxation introduced by
Ga doping, optimization of the atomic positions is performed
for x ≈ 0.11 using VASP [50,51]. Since DFT equilibrium
lattice constants are off from experiment by a few percent,
it is common to discuss the relative structural modifications
with respect to the pristine system. According to our results,
the differences between nearest-neighbor Ga-O and Cr-O
bond distances is less than 0.1%; thus, the effects of lattice
distortions can safely be neglected. In order to be consistent
with the previous study, all the results presented in this work
are obtained for an unrelaxed CuCrO2 structure. Heisenberg
exchange parameters are calculated using the magnetic force
theorem [52,53] as implemented in the RSPT [54] code.

III. MODEL AND MONTE CARLO METHOD

A model based on triangular lattices stacked vertically
along the c axis is used to build a three-dimensional
(3D) simulation box (L × L × Lz). The single unit cell of
CuCrO2 contains three Cr3+ ions located at (a/3, 2a/3, c/6),
(0, 0, c/2), and (2a/3, a/3, 5c/6). The hexagonal symmetry
of CuCrO2 results in a complex network with several intra-
and interlayer superexchange paths. Within our model, we
consider three intralayer interactions (J1, J ′

1, J2, and J3,
shown in Fig. 3) and an interlayer interaction (J4). Note
that S = 3/2 is large enough to treat classically; therefore,
3D vectors are considered to model Cr3+ spins, and the
classical Heisenberg Hamiltonian is used to model exchange
interactions. Our total Hamiltonian is then given by

H = −
∑
〈i,j〉

Jij Si · Sj − Dx

∑
i

S2
ix − Dz

∑
i

S2
iz

+ gμBB ·
∑

i

Si − A0E ·
∑
〈i,j〉

Si × Sj , (2)

where Jij stands for exchange interactions between interact-
ing spins Si and Sj , the x axis corresponds to the [110] direc-
tion, and the z axis corresponds to the [001] direction. Dx < 0
and Dz > 0 refer to the hard- and easy-axis anisotropy
constants, respectively. The fourth term corresponds to
the Zeeman energy, where B is an applied magnetic field

(μB is the Bohr magneton, and g = 2 is the Landé factor).
The last term of the Hamiltonian represents the coupling
between the spins and an applied electric field E where
the sum runs over the magnetic bonds along the [110]
direction. A0 is a coupling constant related to the spin-orbit
and spin-exchange interactions [20]. The latter contribution
evidences the direct coupling between ferroelectricity and
magnetic ordering in proper-screw structures (Pij ∝ Si × Sj )
and allows modeling ferroelectric properties as proposed by
Kaplan and Mahanti [37].

Since Ga3+ is nonmagnetic and produces neither steric
effects nor additional holes upon doping in the Cr3+ sites, we
treat the impurity as a lattice vacancy where we discard all the
surrounding interactions as well as the single-ion anisotropy
at the substituted site.

To characterize the magnetic ordering relative to the ICY
state, we calculate the vector chirality per plane, defined as

κ = 1

Nm

1

S2

2

3
√

3

∑
p

(S1 × S2 + S2 × S3 + S3 × S1), (3)

where Nm is the number of magnetic bonds in each triangular
plane and the sum runs over the triangular plaquettes in each
plane. After that we calculate

� = 1

Nplanes

∑
planes

|κ |, (4)

the average of the norm of κ over the number of planes Nplanes

in the system. In the ICY state, � ≈ 1, and the spins lie in
the (110) spiral plane if κ is along the [110] direction, while
� < 1 reflects the destabilization of the ICY state. The energy
of the ICY state in the distorted infinite crystal is calculated as

EICY(q ) = −S2(1 − x)[J ′
1cos(4πq ) + 2J1cos(2πq ) + J2

+ 2J2cos(6πq ) + J3cos(8πq ) + 2J3cos(4πq )

+ J4 + 2J4cos(2πq )], (5)

where x represents the fraction of Ga3+ ions in the system
and q is the propagation vector corresponding to a given set
of exchange interactions. The simulated ground-state (GS)
energy will be compared to EICY to characterize the stable
magnetic configuration relative to the ICY state for x 	= 0.

MC simulations [55] are performed on 46 × 46 × 2
(six atomic planes) stacked triangular lattices with periodic
boundary conditions using the standard Metropolis algo-
rithm [56]. Hysteresis loops are simulated using the time
step quantified algorithm [57] with the Metropolis transition
probability. At each temperature, 105 MC steps are per-
formed for thermal averaging after discarding 5 × 103 MC
steps for thermal equilibration. Various Ga3+ fractions (x =
0, 0.02, 0.05, 0.1, 0.15, 0.2, and 0.3) are considered. For
each fraction, random substitution of S = 0 sites takes place
through the whole system. Thus, the configurational aver-
age over randomness is necessary to obtain the correct bulk
properties. Here the configurational average is done over 112
different doped configurations with different random-number
sequences.
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FIG. 4. Calculated Cr-Cr exchange interactions in
CuCr1−xGaxO2 as a function of the distance (in units of the
lattice constant) for different values of x. Inset: Zoomed-in image
showing only J1 and J ′

1 interactions.

IV. RESULTS AND DISCUSSION

A. Main outcomes of DFT calculations

Our calculations predict the undoped system is insulating
with a fundamental gap of about 1.52 eV. The obtained
value is in good agreement with the experimental estimate of
1.28 eV [58]. Upon Ga doping, the fundamental gap tends
to slightly increase, reaching a value of 1.6 eV for the highest
studied concentration (x ≈ 0.33). For all considered structural
configurations (Fig. 2), the magnetic moments of Cr ions are
close (within 0.02μB uncertainty) to the value obtained for
the undoped system, which is about 2.62μB . The calculated
exchange interactions for various Ga concentrations for all
superexchange paths are shown in Fig. 4. The results obtained
for all considered structural models and all Cr atoms in the
3 × 3 × 1 supercells are shown together.

In order to clearly see the trends in the different exchange
interactions, we compute the averaged exchange couplings
over the different individual bonds as well as the various
configurations corresponding to a given concentration with
their corresponding standard deviations using the data shown
in Fig. 4. The results are given in Fig. 5. For the configuration
with x ≈ 0.11, it can be seen that the estimates of the various
exchange interactions are roughly the same as for x = 0. For
larger x, among all considered couplings, the J2 coupling is
the most affected by Ga doping, showing the largest standard
deviations and the most pronounced shift of its mean value.

The reason for this can be inferred by examining the
projected density of states (DOS). In Fig. 6(a) we show the
calculated total and partial DOSs for configuration II (Fig. 2),
corresponding to a Ga concentration of x ≈ 0.22. As one can
see, the s and p states of Ga hybridize with the p states of the
neighboring oxygen sites. This means that Ga orbitals are able
to affect the superexchange between the distant Cr atoms by
providing an additional contribution from the Cr-O-Ga-O-Cr
exchange paths. This is further supported by Fig. 6(b), where
the real-space picture of the J2 couplings for one of the Cr
atoms is presented. An inspection of Fig. 6(b) reveals that the

FIG. 5. Calculated averaged Cr-Cr exchange interactions in
CuCr1−xGaxO2 for different concentrations x. The bars on the sym-
bols denote the standard deviation from the mean value of each Jij .

more Ga atoms there are in the proximity of the corresponding
Cr-Cr bond, the larger the change in Jij is with respect to the
undoped case [J2(x = 0) ≈ 0.012 meV].

FIG. 6. (a) Total and partial densities of states calculated for
configuration II in Fig. 2 and (b) the next-nearest-neighbor exchange
couplings J2 (in meV) for the Cr1 atom in the same structural
configuration.
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Nevertheless, the dominant exchange couplings J1 and
J ′

1 are quite robust and show no significant effect on Ga
impurities because they have shorter exchange paths, i.e.,
Cr-O-Cr, which are not mediated by Ga atoms and hence do
not depend on their distribution.

Note that it is not correct to interpret the results shown in
Fig. 5 as an induced disorder in the exchange couplings as
is typically done because the modifications of the couplings
are not random but appear strictly in the proximity of the
Ga sites. The facts that these modifications are small for the
dominant interactions and that J2 does not play an essential
role in magnetic ordering (due to its smallness relative to J1

and J ′
1) allow us to neglect these effects. Hence, for our further

MC simulations we use the original set of Cr-Cr exchange
interactions corresponding to the undoped CuCrO2 [29] for
all Ga concentrations.

B. Ground state and phase transition

In this part, we study the effect of Ga3+ doping on the
GS configuration of CuCrO2 as well as phase transition. We
start our simulations from random spin configurations at a
high enough temperature (Ti = 35.01 K) above the transition
temperature of the pure system. We then slowly cool the
system down to a final temperature Tf = 0.01 K according
to Ti+1 = Ti − �T , with �T = 0.5 K. In CuCrO2 (x = 0),
the simulated value of the propagation vector q = (0.326,
0.326, 0) is very close to q = (0.329, 0.329, 0) reported experi-
mentally [32], evidencing that the simulated GS configuration
is the ICY state. In addition, we find � = 0.998 at Tf , in
excellent agreement with its theoretical value calculated for
q = 0.326 according to

�theo = 2

3
√

3
[2 sin(2πq ) − sin(4πq )] = 0.998. (6)

For preliminary information about the GS when x 	= 0,
we compare the simulated GS exchange energy per spin EGS

with that calculated for the ICY state according to Eq. (5).
The dependence of EGS and EICY on x in CuCr1−xGaxO2 is
plotted in Fig. 7. It can be seen that EGS increases linearly
with x due to the loss of magnetic interactions caused by
the introduced vacancies. In comparison with the energy of
the ICY state, it can be noticed that EGS is below EICY for
x 	= 0. This means that the ICY state is no longer stable
in CuCr1−xGaxO2. In addition, � < 1 and decreases when
x 	= 0, confirming the destabilization of the ICY state in
CuCr1−xGaxO2 (Fig. 8). Moreover, we find that κ is along the
[110] direction for x � 0.2, suggesting that the (110) plane
remains a spiral plane in these diluted antiferromagnets. The
latter is confirmed by calculating the average of the absolute
value of the spin components according to

σu = 1

N

〈∑
i

∣∣Si
u

∣∣〉
T

, (7)

where N is the number of spins, u = x, y, z, and 〈· · · 〉T
means thermal averaging. Figure 8 shows that σx � 0 for
x � 0.2, confirming that the spins lie in the (110) plane,
whereas σx 	= 0 for x = 0.3, indicating that the spins go out
of the (110) plane.

FIG. 7. Variation of the simulated GS exchange energy per spin
compared to EICY calculated for q = 0.326 as functions of x in
CuCr1−xGaxO2.

To localize T ∗, the temperature when spiral ordering
emerges, we calculate the chiral susceptibility according to
[59]

χ� = 〈�2〉T − 〈�〉2
T . (8)

Figure 9 shows the thermal variation of χ� simulated for
x � 0.2. It can be seen that T ∗ decreases with increasing
x. For x = 0, T ∗ = 28.5 ± 0.5 K, which corresponds to the
Néel temperature of CuCrO2 [29]. However, upon doping, it is
important to check whether spiral ordering still coexists with
a phase transition or phase transition takes place at another
stage or no longer exists.

FIG. 8. Variation of �, σx , σy , and σz as functions of x in
CuCr1−xGaxO2.

174403-5



ALBAALBAKY, KVASHNIN, PATTE, FRÉSARD, AND LEDUE PHYSICAL REVIEW B 98, 174403 (2018)

FIG. 9. Simulated temperature dependence of χ� in
CuCr1−xGaxO2.

To answer the latter point, we calculate the specific heat
per spin according to

C = 1

N

∂U

∂T
= 〈E2〉T − 〈E〉2

T

NkBT 2
, (9)

where U (T ) = 〈E〉T , with E being the energy of each mag-
netic configuration given by Eq. (2), and kB is the Boltz-
mann constant. Figure 10 shows the temperature profile of
C simulated for each fraction of Ga3+. It can be seen that
the specific heat peak is rounded and shifts towards lower
temperatures with increasing x. Starting from x = 0.2, the
specific heat peak is broadened, and thus, no precise Tpeak can

FIG. 10. Simulated temperature dependence of the specific heat
per spin in CuCr1−xGaxO2.

FIG. 11. Simulated size dependence of the specific heat maxi-
mum in CuCr1−xGaxO2 (error bars are smaller than symbols).

be identified. Precise information about the phase transition
can be gained by investigating size effects on Cmax. Up to
L = 147, it can be noticed that Cmax increases with L for
x � 0.1 (Fig. 11), indicating a second-order phase transition
and long-range ordering in these compounds. Thus, we can
say that the Tpeak here corresponds to TN . For x > 0.1, Cmax

does not respond to size variation; this may result from the
loss in long-range ordering due to the introduced vacancies
and/or a change in the nature of the transition. To validate
the latter predictions, we calculate the spin-spin correlation
functions along the [100] direction according to G(R, T ) =
〈Si · Sj 〉T /S2, with R being the separation distance between
the pairs Si , Sj . Figure 12 shows the variation of G(R, T ) as a
function of R simulated near Tpeak. It can be clearly seen that
antiferromagnetic long-range ordering persists for x � 0.15,
while it starts to disappear for x = 0.2 and is suddenly lost at
x = 0.3. The latter confirms the broadening of Cpeak seen for
x � 0.2 in Fig. 10. Therefore, disordered states are expected
for x � 0.2, while antiferromagnetic ordered states still ex-
ist when x � 0.15, and their transition and spiral ordering
temperatures are listed in Table I. At these fractions, we
can see that spiral ordering emerges simultaneously with the
antiferromagnetic transition. This classifies CuCr1−xGaxO2

as a magnetic multiferroic [60] and makes it very interesting
since ferroelectricity emerges in the magnetically ordered
state. To validate our estimates of phase transition tempera-
tures and to confirm the magnetic nature of each composition
of CuCr1−xGaxO2, magnetic measurements under a small
applied magnetic field are necessary.

TABLE I. Estimated transition temperatures extracted for L =
147 in CuCr1−xGaxO2 (x � 0.15).

x 0 0.02 0.05 0.1 0.15

TN ± 0.5 (K) 28.0 26.5 25.0 21.5 18.0
T ∗ ± 0.5 (K) 28.0 26.5 25.0 21.5 18.0
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FIG. 12. Variation of the simulated normalized spin-spin corre-
lations along the [100] direction near the transition for L = 147 in
CuCr1−xGaxO2.

C. Magnetic properties under a small applied magnetic field

Magnetic properties under a 0.3 T magnetic field applied
along the [110] direction are simulated between 300 and 6 K
to calculate the magnetization per μB per spin, defined as

MB = − g

N
eB ·

∑
i

Si , (10)

with eB being a unit vector along the magnetic field direction.
From these magnetization measurements, one can gain further
information about magnetic interactions as well as magnetic
frustration in the system by estimating the Curie-Weiss tem-
perature θCW .

We start each simulation from a random spin configuration
at Ti = 300 K, and we then cool the system down to Tf = 6 K
with a constant temperature step �T = 2 K. The simulated
temperature dependence of MB per spin for each fraction x

is plotted in Fig. 13. It can be seen that the high-temperature
region of MB , for all fractions, obeys well the Curie-Weiss law
MB/H = C /(T − θCW ), with C being the Curie constant.
A small increase in MB can be seen as x increases. This
is because the molecular field due to the interactions with
the various sublattices acts against the magnetization at high
temperatures. As x increases, the magnitude of the molecular
field decreases due to the loss in magnetic bonds inducing
the small increase in MB . Such an increase in MB leads to
a decrease in |θCW |, as shown in Fig. 14, which displays very
good agreement with the experimental observations [45]. It is
worth noting that for x = 0.3, the MB behavior is still far from

FIG. 13. Simulated temperature dependence of the magnetiza-
tion per spin under B = 0.3 T in CuCr1−xGaxO2.

that of the ideal paramagnet (Fig. 13), indicating that even in
the disordered state seen in CuCr0.7Ga0.3O2, local interactions
have non-negligible effects (θCW 	= 0).

On the other hand, the low-temperature part depends on
x, and we can see different behaviors. For x � 0.1, the
magnetization curves possess cusps consistent with the peaks
seen at the specific heat curves, as shown in Fig. 15. Below
these cusps, MB slightly decreases with temperature, sug-
gesting that CuCr1−xGaxO2 still undergoes a phase transi-
tion toward an antiferromagnetic state which is in agreement
with the presence of antiferromagnetic long-range ordering at
these fractions (Fig. 12). A change in behavior starts in the
vicinity of x = 0.15, where we can still see a cusp in the
low-temperature part (which is more affected by statistical
fluctuations), which may indicate an antiferromagnetic tran-
sition. Our observations are consistent with the experimental
results [45] in terms of the decrease of TN as x increases with-

FIG. 14. Variation of the Curie-Weiss temperature versus x in
CuCr1−xGaxO2.
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FIG. 15. Variation of the transition temperature as a function of
x in CuCr1−xGaxO2.

out losing the antiferromagnetic nature of the system (Fig. 15).
For x � 0.2, MB continuously increases under the effect of B

and does not show any clear anomaly at low temperatures,
indicating that a phase transition to an antiferromagnetic state
no longer exists. Such behavior is consistent with the loss of
long-range ordering seen for x � 0.2 (Fig. 12). On the other
hand, we find that Ga3+ doping enhances the frustration in the
system where we see an increase in the frustration parameter
f = |θCW |/TN [61,62] with the increase of x, as shown in
Table II. We thus meet the main two ingredients of spin glass
systems [63]: frustration and disordered spins, and one can
predict a spin-glass-like behavior for large Ga3+ fractions.

D. Ferroelectric properties

As shown in Sec. IV B, in the magnetically ordered states,
CuCr1−xGaxO2 preserves its spiral ordering up to x = 0.15.
Thus, the emergence of spontaneous ferroelectricity can still
be described by the extended inverse DM model given by
Eq. (1). Typically, we start our simulations from random spin
configurations at Ti = 35.01 K, and we slowly cool the system
down to Tf = 0.01 K with a constant temperature step �T =
0.5 K. At each temperature and for the first 3 × 103 MC steps
of the equilibration time, we apply a poling electric field
Ex = 300 kV/m along the [110] direction to select a unique
helicity for all atomic planes and thus a single ferroelectric

TABLE II. Estimated Néel and Curie-Weiss temperatures with
their corresponding frustration parameter f = |θCW |/TN obtained
for L = 147 in CuCr1−xGaxO2.

x

0 0.02 0.05 0.1 0.15

θCW (K) −175 −170 −164 −155 −145
TN (K) 28.0 26.5 25.0 21.5 18.0
f 6.25 6.42 6.56 7.21 8.06

FIG. 16. Simulated temperature dependence of the ferroelec-
tric polarization per magnetic bond along the [110] direction in
CuCr1−xGaxO2.

domain as done experimentally. We then let the system relax
to its equilibrium state during the remaining 2 × 103 MC
steps at each temperature. Figure 16 shows the temperature
profile of P[110] simulated for each fraction x � 0.15. It can
be seen that P[110] decreases as x increases in the system.
This decrease is caused by the loss of magnetic bonds and
the destabilization of the ICY state. Also, it can be noticed
that the temperature at which ferroelectricity starts to emerge
decreases as x increases. This is because ferroelectricity is di-
rectly associated with spiral ordering in these compounds. We
also simulate P -E hysteresis loops at T = 5 K for the various
compositions (Fig. 17). For the pure system (x = 0), we find
an electric coercive field Ec ≈ 53 kV/m, in very good agree-
ment with the one reported experimentally (Ec = 51 kV/m)
[64]. Also, the saturation field Esat ≈ 90 kV/m shows a very

FIG. 17. P -E hysteresis loops simulated at T = 5 K in
CuCr1−xGaxO2.
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small dependence on the Ga fraction. Furthermore, we notice
that the electric coercive field Ec remains roughly constant
(Ec ≈ 53 kV/m) for all fractions, which is a very important
property in such multiferroics.

V. CONCLUSIONS

In this paper, the effects of Ga doping on magnetic and
ferroelectric properties of multiferroic delafossite CuCrO2

were investigated by means of DFT calculations and Monte
Carlo simulations. DFT calculations showed that doping
CuCrO2 by Ga3+ in the Cr3+ sites does not significantly
modify the present superexchange couplings. Monte Carlo
simulations showed that Ga doping destabilizes the ICY state
presented in CuCrO2 even in the absence of applied fields. Our
results suggested that CuCr1−xGaxO2 is still multiferroic for
x � 0.15, while it became disordered at higher fractions. Up
to this limit, the antiferromagnetic transition temperature is
drastically affected by Ga doping while it is still accompanied
by spiral ordering. Also we found that Ga impurities enhance
the frustration in the system, leading to the possibility of

a spin-glass-like behavior in CuCr0.7Ga0.3O2. Finally, P -E
hysteresis loops simulated in CuCr1−xGaxO2 showed a de-
crease in the saturation polarization caused by the introduced
vacancies while preserving roughly the same electric coercive
and saturation fields. Future investigations of this system and
the effects of other types of dopants on the different prop-
erties of CuCrO2 would be interesting. However, additional
complications due to the risk of vacancy formation [65,66],
for example, must be properly addressed.
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