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Motivated by the discovery of multiferroicity in the geometrically frustrated triangular antiferromagnet CuCrO2

below its Néel temperature TN , we investigate its magnetic and ferroelectric properties using ab initio calculations
and Monte Carlo simulations. Exchange interactions up to the third nearest neighbors in the ab plane, interlayer
interaction, and single ion anisotropy constants in CuCrO2 are estimated by a series of density functional theory
calculations. In particular, our results evidence a hard axis along the [110] direction due to the lattice distortion
that takes place along this direction below TN . Our Monte Carlo simulations indicate that the system possesses a
Néel temperature TN ≈ 27 K very close to the ones reported experimentally (TN = 24–26 K). Also we show that
the ground state is a proper-screw magnetic configuration with an incommensurate propagation vector pointing
along the [110] direction. Moreover, our work reports the emergence of spin helicity below TN which leads to
ferroelectricity in the extended inverse Dzyaloshinskii-Moriya model. We confirm the electric control of spin
helicity by simulating P -E hysteresis loops at various temperatures.
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I. INTRODUCTION

Through the discovery of the mineral CuFeO2 in 1873,
Friedel opened the door to the delafossites ABO2 [1,2]. Such
a family crystallizes in the layered R3̄m space group (see
Fig. 1). The diversity of properties they exhibit raises up
an ever increasing interest in this class of compounds. In
particular, the discovery of simultaneous transparency and
p-type conductivity in CuAlO2 by Kawazoe et al. [3], laid the
groundwork for the development of transparent optoelectronic
devices. Furthermore, depending on the chemical composition,
a plethora of behaviors can be evidenced. For instance, for
A in a d9 configuration, e.g., A = Pd or Pt, highly metallic
compounds with anomalous temperature dependence of the
resistivity have been reported [4–7]. The transport in these
compounds has been found to be strongly anisotropic, with a
degree of anisotropy that may reach 1000 [4,5,8]. For A in a d10

configuration, the semiconducting materials CuBO2, with B =
Cr, Fe, Rh, may be turned into promising thermoelectric ones
through hole doping [9–11]—in particular, an especially high
power factor has been found in the case of CuRh1−xMgxO2

[12], which transport coefficients served as a basis for the
apparent fermi liquid scenario [13]. Regarding the magnetic
compounds CuFeO2 and CuCrO2, many studies point toward
a strong coupling of the magnetic and structural degrees of
freedom [14–22], which paves the way to multiferroelectricity.

With its frustrated triangular lattice CuCrO2 received a lot
of attention since it is ferroelectric without applying magnetic
fields or doping upon Cr3+ sites, unlike CuFeO2 [17,23]. The
emergence of ferroelectricity in CuCrO2 is induced by the
proper-screw magnetic ordering below the Néel temperature
TN , and the control of this ferroelectricity by an applied
magnetic field is very important for new spin-based device
applications. CuCrO2 forms a rhombohedral lattice where the
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edge-shared CrO6 layers are alternatively stacked between
Cu+ layers along the c axis as shown in Fig. 1. Due to the
weak interlayer interaction J4 (Fig. 2), the material behaves as
a quasi-two-dimensional magnet, which makes it even more
interesting.

The magnetic properties of CuCrO2 have been investigated
by neutron diffraction experiments [20,24–27]. It was shown
that the magnetic configuration of CuCrO2 below TN is
proper screw with an incommensurate propagation vector
q = (0.329, 0.329, 0) [27] pointing along the [110] direction.
Such deviation from the commensurate magnetic configuration
of q = (1/3, 1/3, 0) is due to the lattice distortion that takes
place along the [110] direction below TN upon the spiral-spin
ordering which leads to anisotropic in-plane exchange inter-
actions J1 and J ′

1 (Fig. 2) [28]. Polarized neutron-diffraction
measurements on single crystals of CuCrO2 [20] showed that
the spins are oriented in a spiral plane parallel to the (110)
plane suggesting that the [110] direction is a hard axis.

The electric polarization emerges upon the spiral-spin
ordering [20,29,30], which reflects the strong coupling be-
tween noncollinear magnetic ordering and ferroelectricity
in CuCrO2. Within the spin-current model or the inverse
Dzyaloshinskii-Moriya (DM) mechanism [31–33], the electric
polarization Pij produced between the canted spins Si and Sj ,
located at sites i and j , respectively, is given by

Pij ∝ eij × (Si × Sj ) ≡ p1, (1)

where eij is a unit vector joining the sites i and j . However,
Eq. (1) fails to explain the emergence of ferroelectricity in
CuCrO2 because in the proper-screw configurations, (Si ×
Sj ) is parallel to eij (eij is along the [110] direction due
to symmetry considerations [29]) unlike the cycloid spin
structures.

Based on symmetry considerations, Kaplan and Mahanti
[34] introduced an additional contribution p2 ∝ (Si × Sj ) to
the macroscopic polarization which contributes in both cycloid
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FIG. 1. Delafossite structure of CuCrO2.

and proper-screw configurations. Therefore, within this model,
now referred to as extended DM model, the total polarization
is given by

P = p1 + p2. (2)

In this study, we investigate the magnetoelectric properties
of CuCrO2 by means of a combination of density functional
theory (DFT) calculations and Monte Carlo (MC) simulations.
More precisely, we estimate a set of exchange interactions and
anisotropy constants and confront it with the experimental
magnetic properties and we verify the appearance of spiral-
spin ordering at low temperatures which can be related to the
ferroelectric polarization.

In Sec. II we detail briefly the DFT method that we used to
extract the coupling and anisotropy constants in CuCrO2, while

FIG. 2. Interlayer and intralayer exchange interactions within an
ab plane (blue bonds correspond to J1 and red bonds correspond to
J ′

1 with J1/J
′
1 < 1).

the model and MC method are presented in Sec. III. Section IV
is devoted to the results where we discuss the magnetic and
ferroelectric properties of CuCrO2. A conclusion is given in
Sec. V.

II. DFT COMPUTATIONAL METHOD

We performed a series of DFT calculations using the
full-potential linear muffin-tin orbital method as implemented
in RSPT [35] code. An experimental crystal structure [36]
was considered, taking into account a small in-plane lattice
distortion, suggested in Ref. [28]. Our results are in line with
earlier calculations [21]. The DFT+U [37] approach was used
in order to take into account the effect of strong correlations
between Cr 3d electrons. The adopted values of Hubbard U

and Hund’s exchange JH were 2.3 and 0.96 eV, which were
extracted from first-principles calculations for a similar system
LiCrO2 [39]. The same computational scheme was used in
a prior study on the magnetic properties of CuCrO2 [22].
The fully localized limit [38] form of the double-counting
correction was applied. The exchange parameters between
Cr3+ ions were calculated using the linear response method
[40,41]:

Jij = T

2S2

∑

n

Trm
[
�̂iĜ

↑
ij (iωn)�̂j Ĝ

↓
ji(iωn)

]
, (3)

where T is the electronic temperature and ωn is the nth
Matsubara frequency, �̂i read the on-site exchange splitting,
and Ĝσ

ij is the intersite Green’s function for the spin projection
σ . The latter two quantities are matrices of m = 2l + 1
dimensions. The so-called muffin-tin head projection scheme
was applied to construct the set of localized Cr-d orbitals (more
details can be found in Ref. [42]).

The Jij ’s were extracted from both ferromagnetic and
antiferromagnetic configurations. The obtained values turned
out to be insensitive to the assumed magnetic order, which
implies that they can be used as fixed parameters in a
Hamiltonian describing the interacting spins. The Jij ’s were
extracted from the scalar-relativistic calculation, whereas
full-relativistic treatment was employed for the estimation of
the magnetocrystalline anisotropy constants. The latter were
calculated directly from the total energies corresponding to
three different directions of the magnetization. In order to
ensure the convergence of the results, the calculations were
performed on a grid of 1372 k points in the entire Brillouin
zone with the angular momentum cutoff lmax = 8.

III. MODEL AND MONTE CARLO SIMULATION

To model the magnetic properties of CuCrO2, we note
that Cr3+ ions with S = 3/2 spins are large enough to be
treated classically, so we used the following classical three-
dimensional (3D) Heisenberg Hamiltonian:

H = −
∑

〈i,j〉
Jij Si · Sj − Dx

∑

i

S2
ix − Dz

∑

i

S2
iz

+ gμBB ·
∑

i

Si , (4)
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FIG. 3. Simulated temperature dependence of the specific heat
per spin of CuCrO2. The parameter values are given in Table I for
d = 0.003.

where Jij refers to the exchange interactions up to the fourth
neighbors (Fig. 2). The x axis corresponds to the [110]
direction and the z axis corresponds to the [001] direction.
Dx < 0 and Dz > 0 correspond to the hard and easy axes
anisotropy constants, respectively. The last term corresponds
to the Zeeman energy where B is the applied magnetic field
(μB is the Bohr magneton and g = 2 is the Landé factor).

To model the ferroelectric properties of CuCrO2 and the
coupling between the spins and the electric field E, we added
the following term to the previous Hamiltonian:

He = −A0E ·
∑

〈i,j〉
Si × Sj , (5)

where the sum runs over the magnetic bonds along the
[110] direction, and A0 is a coupling constant related to
the spin-orbit and spin-exchange interactions. Adding this
contribution leads to the model for multiferroics proposed by
Kaplan and Mahanti [34].

Our MC simulations [43] were performed on 3D triangular
lattices (Fig. 1 with only Cr3+ ions) with periodic boundary
conditions (PBCs) using the standard Metropolis algorithm
[44] and the time-step-quantified method [45] when needed.

Typically, the first 2 × 104 MC steps were discarded
for thermal equilibration before averaging over the next
3 × 105 MC steps. Note that our results are averaged over
24 simulations with different random number sequences so
that statistical fluctuations are negligible.

IV. RESULTS AND DISCUSSIONS

It was reported in Ref. [28] that the lattice undergoes a
tiny in-plane distortion d = (a2 − a1)/a1 below TN with a1

and a2 being the lattice constants along the [110] and the
[100] directions, respectively. As a first step, we consider
d = 0.0001 [28] to calculate the exchange interactions and
anisotropy constants in CuCrO2. The extracted values given
in Table I (line 1) are very close to the ones reported in
Ref. [46] concerning J1 and J ′

1 as well as the single ion

TABLE I. Estimated DFT values of the exchange interactions
and anisotropy constants (in meV). More precisely, for d = 0.0001,
the calculated value of Dx was smaller than 10−4 meV, which is
negligible.

d J ′
1 J1 J2 J3 J4 Dx Dz

0.0001 −2.419 −2.407 0.012 −0.266 −0.060 0.000 0.033
0.003 −2.709 −2.383 0.012 −0.266 −0.060 −0.001 0.033

anisotropy constants. Note that here J1/J
′
1 is very close to 1

(J1/J
′
1 = 0.995). Knowing that PBC favors the commensurate

configuration when J1/J
′
1 is close to 1, large enough sizes are

required to obtain an incommensurate magnetic ground state
(GS).

However, a MC simulation with 90 × 90 × 2 unit cells was
not able to reproduce an incommensurate GS with this set of
interactions (d = 0.0001). Thus larger sizes of the simulation
box were required which are not accessible within reason-
able computer time [47]. Therefore we enhanced the lattice
distortion by a factor of 30 (i.e., d = 0.003). We found that
the new set of Jij ’s (J1/J

′
1 = 0.88) and anisotropy constants

(Table I) is a good candidate to reproduce an incommensurate
GS for a system of reasonable size 45 × 45 × 2 unit cells. It
is worth noting that the considered distortions mainly affect
the first nearest neighbors interactions while the remaining
interactions are not affected. Also it is very interesting to note
that the magnitude of the in-plane anisotropy constant (Dx)
increases when enhancing the lattice distortion reflecting that
this anisotropy results from the lattice distortion.

A. Magnetic properties

In order to characterize the GS configuration and to
estimate the Néel temperature TN we perform a first set of
simulations without applying an external magnetic field. The
following procedure is considered: we start the simulations
from random spin configurations at a high enough temperature
(Ti = 35 K > TN ) and we then cool down to Tfinal = 0.01 K
with a constant temperature step �T = 0.5 K.

Since size effects are expected to be seen close to TN as
well as on the GS configuration in our frustrated system, our
simulations were repeated for various system sizes (30 × 30 ×
2, 45 × 45 × 2, 60 × 60 × 2, and 90 × 90 × 2). No significant
size dependence was seen on either the phase transition
temperature or on the GS configuration (not shown here).
Because further investigations like the Curie-Weiss behavior
require more temperatures to be examined (Ti = 300 K) and
therefore more computer time, we choose to present here the
results of the size 45 × 45 × 2 in order to gain time and to
work with a unique size throughout the paper.

In order to estimate the Néel temperature, we calculate the
specific heat per spin defined as

C = 1

N

∂U

∂T
= 〈E2〉T − 〈E〉2

T

NkBT 2
, (6)

where U (T ) = 〈E〉T with E being the energy of each magnetic
configuration, 〈. . . 〉T means thermal average, N is the number
of spins, and kB is the Boltzmann constant. For the parameter
set given in Table I (d = 0.003) the phase transition as signaled
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FIG. 4. Simulated temperature dependence of the order parame-
ter in CuCrO2 (at T ≈ 0 K, κ ≈ 0.988).

by the peak of the specific heat (Fig. 3) takes place at
TN = 27.0 ± 0.5 K. This value is in good agreement with the
reported experimental values (TN = 24–26 K) [9,27,29]. This
may be taken as a first validation of the extracted exchange
interactions of Table I.

To characterize the nearly 120◦ GS configuration we
consider the spin chirality defined as

κp = 1

S2

2

3
√

3
(S1 × S2 + S2 × S3 + S3 × S1), (7)

where 1, 2, and 3 refer to the spins at the corners of each
elementary triangular plaquette p in an ab plane. Then we
define the order parameter per plane to be λ = 1

np
‖∑

p κp‖
where np is the number of plaquettes per plane, and finally the
order parameter of the whole system is defined as κ = 〈λ̄〉T
where λ̄ is the average of λ over the ab planes. We found that
the direction of the vector chirality (λ) of each ab plane is
pointing along the [110] direction confirming the fact that the

FIG. 5. Simulated temperature dependence of the magnetization
per spin and the inverse susceptibility under B = 0.5 T magnetic field
in CuCrO2.

FIG. 6. Simulated temperature dependence of the spin-spin corre-
lation functions along [100] calculated at distances a2 (black circles),
2a2 (red squares), and 3a2 (blue triangles) in CuCrO2.

spins are oriented in the (110) plane as reported in Ref. [20].
Figure 4 shows the variation of the order parameter as a func-
tion of temperature. At T ≈ 0 K, κ ≈ 0.988 indicates a small
deviation from the commensurate (120◦) configuration of
κ = 1. Moreover, the simulated value of q ≈ (0.322, 0.322, 0)
confirms that the GS is an incommensurate configuration
very close to the reported experimental configuration of
q = (0.329, 0.329, 0) [27]. This good agreement may be taken
as further validation of the parameters of Table I.

On the other hand, the magnetic field dependence of
the magnetization calculated along the easy axis (z axis)
shows a linear behavior (−5T < Hz < 5T ) confirming the
antiferromagnetic nature of the GS (not shown here).

FIG. 7. Simulated temperature dependence of the electric polar-
ization P calculated along the [110] direction in CuCrO2.
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FIG. 8. P -E hysteresis loops simulated at different temperatures
in CuCrO2.

Magnetic properties under 0.5 T were simulated between
300 and 2 K to estimate the Curie-Weiss temperature (θCW ).
Figure 5 shows the variation of the magnetization and inverse
susceptibility measured along the applied magnetic field. It
can be seen that 1/χ obeys well the Curie-Weiss law for
antiferromagnets [1/χ = (T + θCW )/C, with C the Curie
constant] at high temperatures with θCW = 175 ± 1 K close to
the measured experimental values (θCW = 160–170 K) [9,48].
The 1/χ curve starts to deviate from the linear behavior
at about 100 K. In order to understand the origin of this
deviation we calculated the temperature dependence of the
spin-spin correlation function defined as G(rij ,T ) = 〈Si · Sj 〉T
along the [100] direction. As shown in Fig. 6, short-range
antiferromagnetic correlations start to develop below ∼100 K,
which leads to the deviation from the Curie-Weiss law seen
in Fig. 5. Furthermore, these correlation functions exhibit
inflection points close to TN estimated from the specific heat
curve (Fig. 3). Besides, an anomaly in the magnetization curve
(Fig. 5) appears at 28 ± 2 K consistent with the estimate
of TN from the specific heat curve. We note that the ratio
θCW/TN ≈ 6.5 (�1) reflects the frustrated nature of the
GS [49,50].

B. Ferroelectric properties

In this section, we consider the Hamiltonian H + He. In
these simulations, we apply a poling electric field during the
cooling process to obtain a single ferroelectric domain. We
then turn it off just before statistical averaging to calculate
p2 which is associated to the spontaneous ferroelectric
polarization [Eq. (2)] according to Ref. [34]. Figure 7 shows
the temperature dependence of P[110], the projection of p2

along the [110] direction, which starts to develop at TN . It is

clearly seen that by switching the poling electric field, P[110]

can be reversed.
Further insight into the degree of electrical polarization

may be gained through the knowledge of the P -E hysteresis
loops, which are shown in Fig. 8 at different temperatures.
P[110] shows a linear E dependence without hysteresis above
TN because the system is in the paraelectric phase, while clear
hysteresis loops are seen for temperatures below TN . This
strongly suggests that ferroelectricity is induced by the out-of-
plane incommensurate magnetic configuration, in agreement
with Ref. [30].

Also, it can be seen that below TN the saturation field Esat ≈
8.9 × 10−2 MV/m is independent of the temperature. The hys-
teresis loop simulated at 5 K shows an electric coercive field for
P[110] reversal Er ≈ 4.2 × 10−2 MV/m very close to that mea-
sured experimentally (Er = 5.1 × 10−2 MV/m [51]). Note
that the reversal of P[110] results from the reversal of the helicity
of each ab atomic plane. Thus our simulations confirm the elec-
tric control of spin helicity in CuCrO2 as reported in Ref. [20].

V. CONCLUSION

In this paper, we proposed estimates of the exchange inter-
actions and single ion anisotropy constants in the multiferroic
CuCrO2 using DFT calculations. They were checked against
the experimental Néel and Curie-Weiss temperatures as well
as the electric coercive field, thereby proving them to be good
candidates to model the magnetoelectric properties of CuCrO2.
We showed that the lattice distortion that takes place below TN

is responsible for the appearance of a weak in-plane hard-axis
anisotropy. Regarding the magnetic properties, we obtained a
peak in the specific heat curve at TN ≈ 27 K very close to
the experimental observations. Furthermore the ground state
has been shown to be an antiferromagnetic incommensurate
proper-screw configuration. The estimated θCW ≈ 175 K is
in a good agreement with experimental data too. Also, our
simulated P -E hysteresis loops confirm the electric control of
spin helicity which is related to the ferroelectric polarization
below TN .
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