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Abstract— In this paper, we study weakly dynamic undirected 

graphs, that can be used to represent some logistic networks. The 

goal is to deliver all the delivery points in the network. The 

network exists in a mostly stable environment, except for a few 

edges known to be non-stable. The weight of each of these non-

stable edges may change at any time (bascule or lift bridge, 

elevator, traffic congestion...). All other edges have stable weights 

that never change. This problem can be now considered as a 

Minimum Spanning Tree (MST) problem on a dynamic graph.  

We propose an efficient polynomial algorithm that computes in 

advance alternative MSTs for all possible configurations. No 

additional computation is then needed after any change in the 

problem because the MSTs are already known in all cases. We 

use these results to compute critical values for the non-stable 

weights and to pre-compute best paths. When the non-stable 

weights change, the appropriate MST may then directly and 

immediately be used without any recomputation. 

Keywords—Dynamic Graph: Minimum Spanning Tree; Route 

Planning. 

I.  INTRODUCTION 

Static graphs have a long history of being used to 
efficiently represent static problems. In these problems, all the 
data are known from the start. The real world is not static, 
however, and the solutions to static problems may not always 
be used [13], [2]. Some data may change, or be unknown in 
advance. In territorial systems, for example, the traversal 
duration of a location may depend on traffic density, the 
presence or not of traffic jams, work in progress, etc. that are 
all time dependent and usually hard to predict. Thus several 
approaches have been proposed to study parametric graphs [1] 
or dynamic and temporal graphs [6], [14]. 

Fully dynamic algorithms, for example, are applied to 
problems that can be solved in polynomial time. They start 
with a computed optimal solution, and then try to maintain 
them when changes occur in the problem. They often propose 
sophisticated data structures to reach this goal [8], [11]. 

When the delay between a change and the moment a new 
solution is needed is very small, or when the problem itself is 
NP-hard, faster algorithms are needed.  These reoptimizing 
algorithms usually start from an initial solution that is not 
optimal but is expected to be of good quality, if possible. As 
soon as a change is detected, they compute a new solution, 
trying to do it faster that classical algorithms. Or they compute 
a new solution as fast as the classical algorithms but this 
resulting solution is better than the ones found by classical 
algorithms. These algorithms include meta-heuristics such as 
ants colony algorithms or swarm algorithms [3]. 

Another approach used is probabilistic. Probabilities are 
associated to some variables in the graph, such as the value of 
a weight, or the presence of a vertex or of a constraint, for 
example. The algorithms used in these problems usually 
compute a solution then do some robustness analysis in the 
probability space [9]. Or they do a quick re-optimization of the 
solution once the parameters of the problem are perfectly 
known [4], [10].   

More specifically, on the computation of MST on 
Dynamic Graphs, several solutions are proposed: using 
partition and topology trees [15,16], using sparsification [17], 
using randomized algorithms [18], using logarithmic 
decomposition [19]. Almost all the proposed solutions follow 
the same general idea: 

 an initial MST is computed for the initial state of the 
graph, 

 an additional structure is added, 

 this additional structure is used to re-compute as efficiently 
as possible the new MST as soon as a change is detected 
in the dynamic graph, 

 this structure is usually itself updated too. 



LOGISTIQUA 2017  April, 27-28  ENSIAS, Rabat, Morocco 

 
These solutions are developed for the most general case of 

fully dynamic graphs: anything can change, at any time. 

In this paper, we study weakly dynamic undirected graphs, 
that can be used to represent some logistic networks.  

For example, one might wish to “minimize the maximum” 
elevation change in a truck delivery problem: suppose that you 
are designing a path through a mountainous region. Since 
costs associated with traction power, and the wear and tear 
associated with braking, increase quickly with absolute 
elevation change, you may wish to choose an path that 
minimizes the maximum elevation change, and then add an 
additional cost for the duration of the trip.  

This can be solved as a MST problem. However, an edge 
can see its weight changing during the trip (due to a traffic 
jam, an accident ...). In that case, a predefined MST is not 
minimal anymore. It seems interesting to anticipate these 
weight changes during the trip because the uncertainties of the 
network are known most of the time. This paper proposes to 
study that problem.  

The network exists in a mostly stable environment, except 
for a few edges known to be non-stable. That is, the weight of 
each of these non-stable edges may change at any time (due to 
bascule or lift bridge, elevator, traffic congestion...). 

II. PROBLEM DESCRIPTION 

Definition 1: A Weakly Dynamic Graph [7],[12] is a graph 
with valuated edges or arcs, in which there is one unstable 
valuated edge (in an undirected graph) or valuated arc (in a 
directed graph) between two known nodes v1 and v2 of the 
graph. That edge or arc has an unknown positive value x that 
may change at any time. All other edges are stable and their 
values never change. 

 

Fig. 1  Example of a Weakly Dynamic Graphs The dashed line 

represents the unstable edge. 

The general MST problem starts with a more general 

problem. Let G = (V, E) be a simple undirected graph, with V 

being the set of vertices, and E being the set of edges of G.  

Definition 2: an Edge-Constrained Spanning Tree ECST 

(V, E, E
+
, E

-
) of an undirected graph G = (V, E) is a spanning 

tree of G with E
+
 and E

-
 being two disjoints subsets of E, and 

such that all edges in E
+
 are in this spanning tree and no edge 

of E
-
 is in this spanning tree. 

In the following, we will call E
+
 the set of mandatory 

edges, and E
-
 the set of forbidden edges. We can notice that: 

 this definition of mandatory is different from the definition 

of mandatory for an edge in MST in other papers, where an 

edge is said to be mandatory if all spanning trees must 

include it, else this spanning tree will not be minimal, 

 the term "constrained" applied to a spanning tree has also 

the different meaning in other papers that some global 

criterion must be satisfied by the tree, such as a maximal 

weight, diameter or degree. 

Of course, an edge-constrained spanning tree as we 
defined it may not always exist. For example, the subset E

+
 of 

mandatory edges may already include a cycle, or the subset E
-
 

of forbidden edges may be such that the graph without its 
edges is not a connected graph anymore. Without loss of 
generality, we will suppose in the rest of this paper that one 
edge-constrained spanning tree actually exists.  

An edge-weighted edge-constrained minimal spanning tree 
problem P = (V, E, w, E

+
, E

-
), is a problem in which: 

 V is a set of vertices,  

 E is a set of edges (i, j) | i ϵ V,  j ϵ V,  

 w is a weight function with w : E  → R, 

 E
+
 is a subset of E of mandatory edges that must belong to 

the tree, E
- 
is a subset of E of forbidden edges that are not 

allowed to belong to the tree. 

Definition 3: a minimum (resp. maximum) spanning tree T  

in an edge weighted edge-constrained minimum (resp. 

maximum) spanning tree problem P = (V, E, w, E
+
, E

-
) is an 

edge-constrained spanning tree of G = (V, E) that verifies 

ECST(V, E, E
+
, E

-
) and such that no other spanning tree that 

verifies ECST(V, E, E
+
, E

-
) has a lower (resp. higher) weight. 

III. SOLUTION 

A. Preliminary results 

 A solution of the classical minimum (resp. maximum) 

spanning tree problem is then a solution of the edge 

weighted edge-constrained minimum (resp. maximum) 

spanning tree problem P = (V, E, w, ø, ø). 

 Computing a minimum or maximum edge-weighted edge-

constrained spanning tree without the forbidden edges of 

E
-
 is trivial. Just build a subgraph of G = (V, E) without 

these edges and apply an algorithm such a Prim algorithm 

[20], or Kruskal algorithm [21], (or any other). 

 Computing a minimum or maximum edge-weighted edge-

constrained spanning tree in a problem P with mandatory 

edges is more difficult. 

First we suppose that E
+
 has only one edge (i, j). A 

modified Prim algorithm may then be used. In this algorithm, 

instead of starting from a random vertex, and without any 
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initial edge in the tree, we may start with the initial set of 

vertices {i, j} and with the initial edge (i, j) in the tree and 

apply Prim algorithm from there. 

Theorem 1: in an edge-weighted edge-constrained 

spanning tree problem P = (V, E, w, E
+
, E

-
), if E

+
 has only one 

edge, then the modified algorithm of Prim that starts from 

edge (i, j) of E
+
 computes a minimum edge-constrained 

spanning tree. 

Now we suppose that E
+
 has two edges or more. The 

modified Prim algorithm cannot be used. We propose the 

following modified Kruskal algorithm. Instead of starting 

from an empty subset of G that will slowly be grown into a 

spanning tree, we may start with the initial subset E
+
 and 

apply Kruskal algorithm from there. 

Theorem 2: In an edge-weighted edge-constrained 

spanning tree problem P = (V, E, w, E
+
, E

-
), if E

+
 has one 

edge or more, then the modified Kruskal algorithm that starts 

with all edges (i, j) of E
+
 computes a minimum edge-

constrained spanning tree. 

B. The Proposed Algorithm 

We can now use the above result on a Weakly Dynamic 

Graph with one non-stable edge. Our proposed algorithm 

works in three steps: 

1. First solve the minimum edge-constrained spanning tree 

problem P = (V, E, w, ø, {(i, j)}), i.e. the problem without 

the non-stable edge. Its value is the sum of its edges ds and 

is a constant. This stable Minimum Spanning Tree is called 

MSTs. For example, by applying this on the graph of Fig. 1, 

we have: 

 

Fig. 2 Compute of MSTs without the non-stable edge x, The MSTs 

value is the sum of its edges is a constant ds = 40 

2. Next solve the minimum edge-constrained spanning tree 

problem P = (V, E, w, {(i, j)}, ø), i.e. the problem with the 

mandatory non-stable edge. This variable Minimum 

Spanning Tree is called MSTs. Its value is the sum of its 

edges dv which is the sum of its stable edges, plus the non-

stable value x, that may change at any time. By applying 

this on the graph of Fig. 1, we have: 

 

Fig. 3 Compute of  MSTv with the non-stable edge x, The MSTv value 
dv depends on x :  dv = 32 + x 

3. By comparing the values of ds and dv, we can deduce the 

critical value cv(x) of x.  

Definition 4: the critical value cv(x) of x is the value of x 

such that the minimum spanning tree will be either the first 

tree built (if x > cv(x)), or the second one (if x < cv(x)).  

In our example, we have: ds = 40, dv = 32 + x, thus the 

critical value cv(x) = 8. 

If x < cv(x) then the best MST is the MSTv including the 

non-stable edge x. If x >= cv(x) then the best MST is the MSTs 

(without the non-stable edge x).  

In the example of Fig. 1, one can see that if x is greater 

than 8, then the MSTs computed in step 1 (and presented Fig. 

2) is a correct MST. And if x is lower than 8, then the MSTv 

computed in step 2 (and presented Fig. 3) is a correct MST. 

These two MST are then alternative MST depending on 

the current value of x. 

C. Algorithm complexity 

 About the complexity of our algorithm, the complexity of 
Prim's algorithm = O(|V|

2
) with a choice of the appropriate 

data structure, the complexity can be reduced to O(|E| + |V| log 
|V|) [5], in a similar way, the complexity of Kruskal's 
algorithm can be reduced to O(E log E). Thus, our algorithm 
complexity is O(n²), with n = |V|. 

IV. REMARKS AND CONCLUSION 

Because all MSTs are pre-computed, the two trees built, 

and the critical value cv(x), may be stored somewhere and no 

re-computation is needed each time the non-stable edge 

changes  

 either the new value of x is on the same side of the critical 

value cv(x) than the old value of x, and no change is 

needed, 
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 or the new value of x is on the other side of the critical 

value cv(x) than the old value of x, and the other 

precomputed spanning tree will be used instead of the 

current one. 

Thus, the response time is the best possible. 

In our example, the MSTs of Fig. 2 and Fig. 3 will be 

stored, and the critical value of 8 for x will be used to instantly 

determine which one will be used, without any recomputation. 

These results may be extended to a small number of non-

stable edges, but the combinatorial nature of this problem 

makes it impractical even for a medium number of non-stable 

edges. 

However, if we suppose that only one change is possible at 

any time on one of several non-stable edges, and that the delay 

between two changes is long enough, then after each change 

we can solve m (m being the number of non-stable edges) 

separate one non-stable edge problems (with the 

corresponding trees and critical values for each non-stable 

edge) and again have the best possible response time when the 

next change occurs in one of the m non-stable edge. 

We are currently trying to improve these pre-computations. 
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