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ABSTRACT

We address the design of a unified multilingual system for handwriting recognition. Most of multi-
lingual systems rests on specialized models that are trained on a single language and one of them is
selected at test time. While some recognition systems are based on a unified optical model, dealing
with a unified language model remains a major issue, as traditional language models are generally
trained on corpora composed of large word lexicons per language. Here, we bring a solution by con-
sidering language models based on sub-lexical units, called multigrams. Dealing with multigrams
strongly reduces the lexicon size and thus decreases the language model complexity. This makes pos-
sible the design of an end-to-end unified multilingual recognition system where both a single optical
model and a single language model are trained on all the languages. We discuss the impact of the
language unification on each model and show that our system reaches state-of-the-art methods perfor-
mance with a strong reduction of the complexity.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Offline handwriting recognition is a challenging task due to
the high variability of data, as writing styles, the quality of
the input image and the lack of contextual information. The
recognition is commonly done in two steps. First, an optical
character recognition (OCR) model is optimized for recogniz-
ing sequences of characters from input images of handwritten
texts (Plötz and Fink (2009); Singh (2013)). Second, a language
model is used to model language constraints (Mikolov et al.
(2010); Croft and Lafferty (2013); Mousa and Ney (2014)). At
decoding step, both models are combined to get a prediction.
Recent improvements in deep learning techniques (Graves et al.
(2013); LeCun et al. (2015); Schmidhuber (2015)) have en-
hanced the capacity of optical models. In contrast, only few
works have been dedicated to language models for handwriting
recognition. They are generally trained to model sequences of
words and sequences or characters (Messina and Kermorvant
(2014)).

Most recognition systems are defined to recognize texts writ-
ten in a specific language and only few works proposed mul-
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tilingual recognition systems. A multilingual recognition sys-
tem allows to process documents written in various languages,
without prior knowledge about the language. They are of two
types. The first one consists in defining one specific system per
language and selecting one of them to get a prediction (Miguel
et al. (2012); Mathew et al. (2016)). The second one consists in
defining a unified recognition system where at least a part of the
system is trained on several languages. Recent works proposed
unified OCR models, by merging the character sets of every lan-
guages, as in Bluche and Messina (2017); Moysset et al. (2014);
Kozielski et al. (2014b). Some characters are often shared by
languages of the same origin, which may be beneficial to im-
prove recognition performance. For instance, Latin languages
share at least 21 characters (Diringer (1951)) while 14 Arabic
and Persian languages share at least 28 characters (Märgner and
El Abed (2012)).

Designing a unified language model is less straightforward
than designing a unified optical model. This is due to the word
lexicons sizes which are often large (to model as much as pos-
sible each language). Thus, combining word lexicons from
various languages strongly increases the model complexity and
may become intractable. One solution is to consider a lexicon
of characters but language models based on characters perform
often poorly (Plötz and Fink (2009)).

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/
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Designing a unified language model is attractive for taking
into account similarities between languages of the same ori-
gin that exist at the lexical, morphological or syntactic levels
(Kalindra (2004)). In this respect, language models based on
sub-lexical units have been recently proposed for handwritten
recognition (Swaileh et al. (2017), Swaileh et al. (2016)). Deal-
ing with sub-lexical units has a number of advantages: on the
one hand, it allows to significantly reduce the lexicon size and,
on the other hand, to improve the recognition rate, as it partly
tackles the out-of-vocabulary words problem.

In this paper, we proposes an end-to-end unified multilingual
recognition system for handwriting recognition, where both the
optical model and the language model combine various lan-
guages. Both models rest on state-of-the-art methods. On the
one hand, we make use of an optical model based on deep recur-
rent neural networks. On the other hand, our language model
uses sequences of sub-lexical units, called multigrams. Dealing
with multigrams allows to reduce the lexicon size from each
language and thus to build a unified language model of rea-
sonable size. We evaluate our approach on languages of the
same origin (French and English), as the similarities between
the languages may impact the capacity of the system. In our
experiments, we show that a) combining languages of the same
origin in a unified framework allows to strengthen the capac-
ity of the optical model; b) combining the languages does not
significantly affect the robustness of the language model. This
allows to build a language model estimated on all the training
corpus, without the need to separate the languages; c) build
a unified multilingual system seems better than dealing with
specific-language systems, where one of them must be selected
to provide a prediction.

The rest of the paper is organized as follows: Section 2 in-
troduces the related works on multilingual handwriting recog-
nition systems; In section 3, we present the framework of the
unified multilingual handwriting recognition system that we
propose here; Then, we show and discuss experimental results
where the English and French languages are combined (section
4) before concluding.

2. Related works

Multilingual handwriting recognition systems have some
similarities with methods proposed for multilingual speech
recognition systems, as in Ghoshal et al. (2013) and Kumar
et al. (2005). In general the problem can be solved using two
types of approaches: the selective approaches and the unified
approaches. In the following we only focus on works dedicated
to handwriting recognition but the analysis stands for speech
recognition as well.

2.1. Selective approaches

The selective approaches are based on specialized recogni-
tion systems, i.e. each system is dedicated to one language,
and the output of one of them is selected at the time of pro-
cessing one specific sample (Peng et al. (2013)). There are two
kinds of selective approaches. The first one consists in apply-
ing specialized recognition systems in parallel to get several

transcripts. The transcript with the highest confidence score is
then selected. A major issue is to compare the confident scores
given by each specialized system, as they span over different
scales (Lee and Kim (1997)).

The second approach is based on a language detection mod-
ule, as in Mathew et al. (2016) and Barlas et al. (2016). This
module aims at detecting the language of the input script. This
allows to select the specialized system corresponding to the
language detected. For instance, Miguel et al. (2012) applied
first a probabilistic model for language identification and then
a specialized language model based on characters to obtain a
prediction. However, these approaches are prone to wrong lan-
guage detections, which has a direct impact on the system per-
formance (Moysset et al. (2014); Kozielski et al. (2014a)).

2.2. Unified approaches

Regarding the unified approaches, there is one or more com-
ponents that model multiple languages in a unified framework.
Three types of unified recognition systems have been presented
in the literature: there are systems where 1) only the optical
model is trained on multiple languages, i.e. in a unified man-
ner, and then specialized language models are used; 2) the op-
tical model is partially-unified as an encoding part is done on
multiple languages and then decoding parts are defined for each
language; 3) both the optical model and the language model are
trained in a unified framework.

2.2.1. Systems with a unified optical model only
Most multilingual handwriting recognition systems are based

on a unified optical model and on a specialized language model.
For instance, Kessentini et al. (2008) defined a multilingual sys-
tem based on a unified Hidden Markov Model (HMM) for Ara-
bic and Latin handwriting recognition. Similarly, Lee and Kim
(1997) proposed an interconnected network based on Hidden
Markov Models for Hangul and English languages.

Kozielski et al. (2014a) presented a comparative study about
the use of traditional HMMs and LSTM neural networks to con-
struct a unified optical model for English and French. Special-
ized language models are used as the authors argue that the lan-
guages have different vocabularies (i.e. words). They evaluated
the two systems on the Maurdor dataset and showed that the
unified LSTM-based system outperforms the HMM-based sys-
tem. However, any of the two approaches highlights the feasi-
bility of unifying optical models of multiple languages of the
same origin (Latin scripts). Similarly, Moysset et al. (2014)
built a unified multilingual system for both printed and hand-
written recognition. The system is composed of a unified opti-
cal model based on a Recurrent Neural Network (RNN) and of
a set of specialized language models (for the English, French
and Arabic languages).

2.2.2. Systems based on a partially-unified optical model only
Bluche and Messina (2017) proposed a unified multilingual

system where an encoder part based on gated convolutional
neural network is trained in a unified manner. Then, special-
ized Bi-directional Long Short Memory RNNs (BLSTM-RNN)
are defined for the decoding step of the optical model. Finally,
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the authors used specialized hybrid words/characters language
models to get the final character string predictions.

2.2.3. Systems where both the optical and language models are
unified

Ray et al. (2015) introduced a bilingual recognition system
consisting of a unified BLSTM optical model and a unified
3-gram language model. The training corpus contains docu-
ments written in two languages where each paragraph is related
to a specific language. Four unified optical models are trained
on various data representations (binarizations, segmentations),
which allows to get 4 recognition hypotheses from a single test
sequence. Then, a sliding window process is applied to match
every 3 consecutive words from a recognition hypothesis with
3-grams estimated by the language model. A cumulative score
computed on the entire hypothesis sequence allows to select the
most probable hypothesis. This process can be seen as a verifi-
cation algorithm, which limits the recognition only to the words
belonging to the training corpus.

In a previous work (Swaileh et al. (2016)), we introduced a
unified bilingual recognition system based on syllables. The
proposed system is composed of a unified optical model based
on HMMs and a bilingual n-gram language model of sylla-
bles. In this work, French and English linguistic ressources
were used to decompose words into syllables. Besides, no Out-
Of-Vocabulary (OOV) words were considered by the language
models. This simplifies the recognition task but this is a serious
limitation. This preliminary work showed that a unified lan-
guage model based on sub-lexical units (syllables) is feasible
and can be envisaged as an alternative to word-based language
models. A major issue concerns the linguistic expertise which
is required to get word decompositions into syllables, and sylla-
bles databases are only available for a few number of languages.

This review shows that very few works have proposed mul-
tilingual handwriting recognition systems that are completely
unified. Such approaches should have the advantage to train a
unique system whatever the languages that are considered. This
should avoid to face the issues highlighted in the selective ap-
proaches, when the system is composed of specialized models.

3. Design of a unified multilingual system

3.1. Unified recognition system proposal

Similarly to standard handwriting recognition system, our
proposed system is composed of two components: 1) an optical
model which is trained to recognize a sequence of characters
from a sequence of observations; 2) a language model which
is trained to model language constraints in sequences of words
(Figure 1).

Designing a unified optical model can be done easily by com-
bining the character sets. Combining the character sets may
have many advantages when the languages are of the same ori-
gin, i.e. where some characters are shared between the lan-
guages. On the one hand, the system complexity is reduced as
the shared characters are modeled only once. In addition, the
number of occurrences of the shared characters is larger in the
training set and the optical model can take benefit from this.

Moreover, we also expect the optical model to generalize better
as the shared characters come from various languages, so they
appear in different contexts in the text.

In contrast to optical models, designing a unified language
model is less straightforward. This is especially due to the
model complexity that increases. Indeed, if one expects the
multilingual language model to perform equally well for every
language, then the size of the working lexicon is the sum of
each lexicon size. This explains why multilingual unified sys-
tems are generally based on a unified optical model only and
they use several specific language models, as it is the case in
Kozielski et al. (2014a), Moysset et al. (2014) and Bluche and
Messina (2017).

In this paper, we propose a unified language model based on
sub-lexical units, called multigrams. Here, we consider multi-
grams as sequences of characters of variable length. Some ex-
amples of word decomposition into multigrams are illustrated
in Table 1 and the proposed system architecture is illustrated in
Figure 1. Working with a language model based on multigrams
has many advantages compared to language model based on
words. First, the lexicon size is strongly reduced, as we only
consider sub-parts of words i.e. short sequences of characters.
This allows to build a unified language model based on a lexi-
con of reasonable size. Second, sub-lexical units can generate
an open-vocabulary (i.e. words that do not belong to the train-
ing lexicon can be generated during decoding if the transitions
between their multigrams have non zero probabilities). This al-
lows to reduce the Out-Of-Vocabulary words rate and increases
the effective coverage rate. Third, compared to other sub-lexical
units such as syllables, multigrams do not obey any linguis-
tic rule but statistical rules. Therefore defining the decomposi-
tion of a word into multigrams is a statistical data-driven pro-
cess which does not require any linguistic expertise, and can
be apply to any language. Finally, multigrams can be seen
as a good trade-off between words and characters to improve
the capacity of language models on specific languages (Swaileh
et al. (2017)). The many advantages of language models based
on multigrams led us to design a multilingual language model
based on a unified lexicon of multigrams. To our knowledge,
this is the first work that proposes an end-to-end unified mul-
tilingual system where the language model is based on sub-
lexical units that can be obtained using a data-driven process
for any language and which is applied in an open-vocabulary
recognition task.

3.2. Recognition system architecture

We present the various components which compose our mul-
tilingual recognition system.

3.2.1. Optical model
The recognition of a number of different language scripts

within a unified optical model rests on three unification steps.
The first step is to use the same observation descriptors for all
script images, thus obtaining a unified feature vector. The sec-
ond step is to define a unified character set by combining all the
characters of the languages of interest. In the case of languages
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Fig. 1. Our unified multilingual recognition system composed of a unified optical model dealing with text images of any language and a multilingual
language model based on a unified multigram lexicon. At test time, the decoding process consists in combining both models to get a transcription.

of the same origin, the unified character set contains fewer char-
acters than the sum of the character sets of the different lan-
guages, owing to the shared characters. The third step is to
train a statistical model, that relates to the unified optical model
of the recognition system, using the unified character set and the
unified descriptor set (feature vectors). The training algorithm
(initial parameters, estimation scheme, and training strategy)
is the same for any example in the multilingual training cor-
pus. Here, we use a BLSTM-RNN network trained using the
Connectionist Temporal Classification approach (Graves et al.
(2005, 2006)). Details on our implementation are given in sec-
tion 4.2.

3.2.2. Language model
Similar to the traditional n-gram language model of words,

the n-gram language model of sub-lexical units (made of multi-
grams) is estimated with back-off coefficients. The idea is to
replace words in the traditional language model by their corre-
sponding multigrams sub-lexical units.

Training a multigram-based n-gram language model involves
three main steps (as for training any n-gram statistical model):
the training corpus tokenization; the lexicon size and type de-
termination; and the language model parameter estimation with
a fixed n-gram order. The tokenisation step replaces any word
of the training corpus by its corresponding k-multigram decom-
position, where k is the multigram order (see section 3.1). Table
1 gives an example of word decomposition into k-multigrams,
for various values of k. The training corpus that contains text
from two or more languages can be considered as a multilingual
language model training corpus.

The second step is to fix the size of the language model lexi-
con. Due to the compact size of the lexicon of k-multigrams, all
words in the training corpus can be considered. The multigram
order k defines the type of k-multigram lexicon.

Table 1. Illustration of a French (FR) and English (EN) word decomposi-
tion into k-multigrams with 2 6 k 6 5

words 2-multigram 3-multigram 4-multigram 5-multigram
FR Merci Me r ci Mer ci Merc i Merci
EN darling d ar li ng dar l ing dar ling dar ling

The third step is to define the order n of the n-gram language
model. Then, the model parameters can be estimated using the
defined lexicon and the tokenized training corpus. High values
of n are required if one wants to ensure modeling long term
dependencies.

3.2.3. Decoding
During the recognition process, the outputs of the unified op-

tical and language models are combined into a search graph.
The search graph can be decoded using dynamic programming
such as the well-known Viterbi algorithm. Here the search
graph is a weighted finite State Transducer (WFST). It is build
by the composition of three sub-transducers representing the
tokens (characters), the lexicon and the language model (gram-
mar) respectively. The token transducer (T) represents all pos-
sible characters that can be produced by the unified optical
model, from the input frames. The lexicon transducer (L) rep-
resents the possible k-multigrams of the languages of interest
that can be produced from the character set. The language
model transducer (G) represents the n-gram language model of
k-multigrams which is trained from the multilingual training
text dataset.

According to equation 1, the composition of the tokens, lex-
icon and language model transducers is performed after suc-
cessive application of the minimization and determination pro-
cesses on the lexicon and language model transducers:

S = T ◦ min(det(L ◦G)) (1)
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where ◦, det and min denote composition, determinization and
minimization respectively and S denote the combined trans-
ducer. Both operators aim at reducing the branching factor of
the search graph.

Decoding consists in applying the Viterbi algorithm on the
combined transducer, so as to find the best (or the n best) se-
quence(s) of multigrams corresponding to the observation (the
input observation feature sequence). Two hyper-parameters are
used to guide the decoding process: the language model scale
parameter γ and the word insertion penalty parameter β that
controls the insertion of frequent short words. These two pa-
rameters need to be optimized to find an optimum coupling of
the optical model with the multigram language model, because
these two models are estimated independently from each other
during training.

During decoding, we seek for the sentence Ŵ that maxi-
mizes the posterior probability P(W |O) among all possible sen-
tences W. Using Bayes’ formula and introducing the two hyper-
parameters mentioned above, we obtain the formula given in
equation 2 which governs the decoding process:

Ŵ = arg max
w

P(W |O) = arg max
w

P(O|W)P(W)γβLength(W) (2)

where O is the observation sequence extracted from the image
and P(O|W) is the probability of the observation sequence given
the sentence W. P(W) is the prior probability of the sentence
deduced from the language model.

3.3. Deriving multigram sub-lexical units
In this paper, we propose a unified language model based on

sub-lexical units called multigrams. We consider multigrams as
sequences of characters of variable length. The interest of using
such decomposition have been highlighted in subsection 3.1.
Here, we focus on the description of the data-driven statistical
model that allows to learn a set of sub-lexical units from tex-
tual data. Textual data can be either the transcriptions from the
training corpus, or any other textual resource of the languages
considered. The aim is to obtain a set of sub-lexical units that
will serve as the main components of the multi-lingual language
model in our recognition system. The problem must be con-
sidered as unsupervised, because the sequence of multigrams
corresponding to a given observation sequence of character (a
word or a sentence) is unknown. To address this problem, we
define a generative Hidden Semi-Markovian Model (HSMM,
Murphy (2002); Yu (2010)) where the k hidden states of the
model account for the character length of the multigrams. In
other words, the HSMM is trained to model the segmentation
of a sequence of characters into multigrams in an unsupervised
manner. As in Deligne and Bimbot (1995), it is assumed that
the multigrams are independent from one another. This means
that multigrams follow a zero-order Markov process. We have
a 0/1 duration probability of the hidden states, and there is a
bijective relation between states and durations.

Let O1:T = O1 . . .Ot . . .OT be an observation sequence of
length T (T characters), where Ot is the observation (character)
at time t. One denotes S = {s1, . . . , sM} the set of possible
states and Q1:T a state sequence of length T , where each term

Q[t1,t2] is an element of S starting at time t1 and ending at time
t2 with a duration d = t2 − t1 + 1. The joint probability of
an observation sequence and a state sequence is expressed as
follows:

P(O,Q) =
∏

l

P(O[t−dl+1,t] | Q[t−dl+1,t])P(Q[t−dl+1,t])

=
∏

l

P(O[t−dl+1,t]|dl) (3)

Equation 3 presents a way to define a Discrete Hidden Semi-
Markov Model of zero order to model multigrams of variable
length. The HSMM is trained using the well-known Baum-
Welch algorithm, based on the Forward-Backward algorithm.
Given a maximal length dmax for multigrams, any possible se-
quence of characters for which the length does not exceed dmax

is considered in the model.
Once the HSMM has been trained, the decoding step consists

in assigning a sequence of multigrams to any sequence of char-
acters of the training corpus. In other words, the goal is to find
the most probable sequence of multigrams Q∗, given any obser-
vation sequence O1:T of the training corpus, which is defined as
follow:

Q∗ = arg max
q1:T

(
P(O1:T ,Q1:T = q1:T )

)
(4)

Equation 4 can be solved using the Viterbi algorithm. The
optimal path is obtained using a backward pass defined as fol-
low:

d∗i = arg max
d

(
arg max

d′

(
δt−d(d′) b(O[t−d+1:t])1/d)) (5)

t∗i = t∗i−1 − d∗i (6)

where δt(d) ∆
= max

q1:t−d
P(O1:t,Q[t−d+1,t] = d, q1:t−d) and t∗0 = T .

The exponent term 1/d is a penalty term defined to favor longer
multigrams at the expense of shorter ones. Indeed, the Viterbi
algorithm tends to produce short multigrams because the emis-
sion term b(O[t−d+1:t]) is related to the occurrences of multi-
grams and the shorter multigrams are often more frequent than
the longer ones.

We train one HSMM per language. Each one is optimized
to produce the most frequent multigrams which appear in the
training texts of a given language. Finally, language specific
multigram lexicons are combined. After the tokenization step
of the whole training corpus into multigrams, the unified lan-
guage model is trained as described in section 3.2.2. At test
time, the unified language model is applied on a text whatever
its language, using the decoding step described in section 3.2.3.

4. Multilingual system evaluation: English and French case
study

4.1. Datasets and lexicon units properties
We apply our multilingual system on the English IAM (EN)

and the French RIMES (FR) handwriting databases. The
RIMES database (Gorski et al. (1999)) contains handwritten
mails of different writers. The IAM database (Marti and Bunke
(2002)) is inspired from the LOB corpus (Johansson (1980))
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and it is composed of texts from different writers. These
databases are divided into three parts: the training, the valida-
tion and the test datasets. Our unified system is trained on the
combination of the FR and EN training datasets. The hyper-
parameters γ and β used for decoding (see section 3.2.3) are
optimized using the FR+EN validation dataset. The system
is evaluated on the FR and EN specialized test datasets inde-
pendently. Table 2 shows the number of text line images per
dataset.

Table 2. Numbers of text line images in the FR and EN datasets used for
training, validation and test.

Databases
Number of text line images

per dataset
Training Validation Test

FR 9947 1333 778
EN 6482 976 2915

FR+EN 16429 2309 —-

The unified optical model is trained on the joint FR+EN
training dataset. The FR dataset is composed of 100 character
classes while the EN dataset contains only 79 character classes.
77 of them (including white space) are shared between the two
datasets so that the unified dataset sets contains 102 character
classes only. The entire EN character set is included in the FR
training dataset, except the two characters ”#” and ”&”. Most
of the additional character classes in the FR dataset are accented
characters.

For training the multilingual language model, we used the
combined training sets from the French and English languages.
By nature, this dataset brings a relatively small vocabulary
which we refer to as ”small FR+EN”. In addition, we also
trained the language model on a very large dataset of text sam-
ples made of both English and French texts which we later re-
fer to as ”large FR+EN”. This large dataset was collected as
follows. Regarding the FR dataset, we collected 52, 930 para-
graphs from French Wikipedia pages. This Wikipedia and the
RIMES training datasets are joint and the 29.1k most frequent
words are used for training the language model. Regarding the
EN dataset, we combined the LOB (excluding IAM validation
and test examples), Brown and Wellington datasets to form the
large EN lexicon used for training the language model.

Figure 2 gives the lexicon sizes when considering lexicons
of k-multigrams or words. For example the small FR+EN lex-
icon of words contains 12.5k words, while the corresponding
2-multigram lexicon is made of 1.3k elements only. In con-
trast the multilingual ”large FR+EN” lexicon contains 117k el-
ements while there is only 3.1k 2-multigrams to describe the
same dataset. This highlights a significant reduction of the lex-
icon size when using k-multigrams sub-lexical units instead of
words.

4.2. System configurations and Evaluation protocol

The observations given in input of our system are gray-scales
images of text-lines. The input images are normalized to a fixed
height of 100 pixels, preserving the aspect ratio. The gray scale

Fig. 2. Sizes of the small and large lexicons according to the lexical (words)
or sub-lexical (multigrams) decomposition, on the French (FR), English
(EN) and unified (FR+EN) training sets.

is normalized to zero mean and unity variance (standardiza-
tion). The unified optical model is a Recurrent Neural Net-
work (RNN) composed of 4 Bi-directional Long Short Term
Memory (BLSTM) layers with 200 cells in each direction. Our
network is trained using the Connectionist Temporal Classifi-
cation (CTC) approach (Graves et al. (2006)). The model is
implemented using the EESEN toolkit (Miao et al. (2015)) that
has been first introduced for speech recognition. We used the
curriculum learning algorithm for training the observation se-
quences from the shorter sequence to the longer one. Train-
ing starts with a learning rate of 10−5 which decreases during
training. Training ends after 108 training epochs using an early
stopping criterion.

We used 9-gram language models of k-multigrams or words,
and 10-gram language models of characters in any of our ex-
periments. We explored k-multigrams models for 2 ≤ k ≤ 5.
To ensure that long distance dependencies are estimated in the
model, all text lines are concatenated in order to form a sin-
gle text line. Every language model is estimated using the MIT
language modeling toolkit from Hsu (2009), where the back-
off coefficients are estimated using the modified Kneser-Ney
smoothing method (Kneser and Ney (1995)).

Viterbi’s two-pass decoding algorithm is applied at the para-
graph level to track contextual dependencies as much as possi-
ble. The beam search parameter has been fixed to 0.8 in all the
experimentations while language model scale and word inser-
tion penalty are optimized for each scenario (see below).

During test, we are interested in quantifying the contribution
of each stage (i.e. optical model and language model) to the per-
formance of the unified system. In this respect, we conducted
four experiments (scenarios). The first one (UU) consists in
having a whole unified system (both the optical model and the
language model are unified). The second experiment (US) con-
sists in combining a unified optical model with a specialized
language model. The third experiment (SU) combines a spe-
cialized optical model with a unified language model. Finally,
the last one (SS) is composed of specialized models (both the
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Fig. 3. WER (%) on the FR (left) and EN (right) test datasets for the four experimental setups where language models are based on small vocabularies.

optical model and the language model). In the following section
we report and analyze the performance of these four configura-
tion of the system.

4.3. Recognition results

We now evaluate our approach on the small and large EN
and FR vocabularies. We first present observations we obtained
for the four experiments described above in sections 4.3.1 and
4.3.2 and then discussed the results in section 4.4. Finally, we
compare our system with state-of-the-art methods.

4.3.1. Evaluation with small EN and FR lexicons
Figure 3 presents the Word Error Rate (WER) obtained after

training the language model on the small FR and EN datasets
respectively. These figures present the performance of the sys-
tems for 6 differents types of language models: words, charac-
ters, and k-multigrams (with 2 ≤ k ≤ 5).

One can first notice that the unified optical model (US and
UU) significantly improves the specialized framework whatever
the test set (FR and EN) and the configuration of the system
(specialized or unified). The optical model takes advantage of
language similarities to be more robust and more efficient.

Besides, multigram-based language models often outperform
traditional language models based on words or characters. Es-
pecially, the 2-multigrams language models are always better
than the traditional ones. This confirms our hypothesis that
multigrams are a good trade-off between words and charac-
ters for a language modeling task. Compared to the specialized
frameworks, the unified scheme generally provides similar re-
sults except for the FR dataset where a slight improvement is
observed when the optical model is unified.

Finally one can notice that the performance obtained on the
IAM dataset is rather low for any of the language model type
(word, character or k-multigrams), and system unification type
(SS, SU, US, UU), when a small vocabulary is used for training

the language models. This is a particular difficulty encountered
on the IAM dataset because of the low lexicon coverage rate
of the training dataset lexicon on the test dataset. This is the
reason why most studies have come to use additional linguistic
resources to get better performance. To the next, we analyze
tour systems using a large vocabulary setting.

4.3.2. Evaluation with large EN and FR lexicons
We now report experimentation results on the large EN and

FR datasets described in section 4.1. Figure 4 presents the Word
Error Rate (WER) obtained on the FR and EN test datasets re-
spectively. Similarly to small lexicons, we observe that unify-
ing the optical models (US and UU) improves the recognition
rate. Unifying the language models does not impact the recog-
nition performance, even if the unified lexicons are highly im-
balanced (the unified word lexicon has 116k words with only
29k from the French language). Moreover, dealing with multi-
grams language models generally reduces the WER, compared
to systems based on traditional language models of words or
characters.

4.4. Discussion
We have seen that unifying English and French optical mod-

els allows to significantly improve the recognition performance
of the system. This may be explained by two facts: on the one
hand, there is a lot of shared characters between the two lan-
guages, which increases the number of training samples for the-
ses character classes; on the other hand, the shared characters
appear in a different context (i.e. into different words), which
gives more variability in the data as well. The model can bene-
fit of it for increasing its generalization capacities. The unified
optical model achieves a Character Error Rate (CER) of 10.0%
alone (i.e. without language model) on the FR test set, while the
specialized model has a CER of 12.3%. Similarly, we obtain a
CER of 15.3% on the EN test set with the unified optical model
while the CER of the specialized model is 18.9%.
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Fig. 4. WER (%) on the FR (left) and EN (right) test datasets for the four experimental setups where language models are based on large vocabularies.

Compared to the specialized language model, the contribu-
tion of a unified language model appears rather moderate, as re-
sults are generally equivalent whatever the lexicon size. In fact,
there is no reason to believe that some improvements should be
gain by combining the English and French languages. Indeed,
the language modeling task should become more complex due
to some language similarities. The key point is that unifying
both languages into the language model does not affect the sys-
tem performance, which allows to design a system with only
one language model whatever the languages.

There is only one case where unifying the language model
improves the performance of the specialized system. This is for
the UU setting on the FR test dataset with a small lexicon. In
this case, the system benefits from both a better CER with a
unified optical model and a better coverage of the unified lan-
guage model. This improvement may be explained by the fact
that the OOV rate, computed at a word-level, is reduced in the
unified cases (compared to the specialized ones) and that the
effective coverage rate, computed at a sub-lexical-level, is high.
For instance, the OOV rate on the FR set for the 3-multigrams is
of 1.4% in the specialized case and of 0.7% in the unified one,
while the effective coverage rate for the unified dataset is equal
to 98.5%. In contrast, the OOV rates on the EN set are very
small (0.06% and 0.03% for the specialized and unified case re-
spectively) and the effective coverage rate stay low enough even
if the lexicon has been unified (89.9%). Besides, when lexicons
are large, unifying the languages does not significantly reduce
the OOV rate, which does not impact the recognition perfor-
mance. For example, the unification of languages for the 3-
multigrams only reduce the OOV rate from 0.5% to 0.4% on
the FR dataset and from 2.2% to 1.6% on the EN dataset.

Moreover, languages models based on multigrams often out-
perform traditional language models based on words or charac-
ters and there is always a system based on multigrams which
is better than systems based on traditional models. Another
advantage of dealing with multigrams is related to the lexicon

size, which is highly reduced compared to word lexicons. For
instance, there is 116k words in the large unified EN + FR lexi-
con while there is 71.6k 5-multigrams, 16.9k 3-multigrams and
only 3.1k 2-multigrams.

Finally, we analyze the system complexity according to the
search graph size (number of states and transitions in the FST
automaton S defined in equation 1), the search graph volume on
disk and the decoding time. Besides, the memory and the pro-
cessing time during the decoding process depend on the search
graph size (Mohri et al. (2002)). Note that complexities are
computed from the unified FR+EN lexicon and that the charac-
ter language model is a 9-gram model (in contrast to previous
results based on a 10-gram model) to provide comparable com-
plexities. As illustrated in Table 3, the number of states and

Table 3. Size of decoding search graph (composed automaton S defined in
equation 1) for different language model with a small lexicon.

Language models vs.
complexity indicators

number of states
(×106)

number of arcs
(×106)

Volume on
disk (MB)

Words 1.37 3.46 71.9
m5gram 1.25 3.15 65.5
m4gram 1.20 3.04 63.1
m3gram 1.11 2.81 58.2
m2gram 0.93 2.40 49.5

characters 0.54 1.48 30.2

transitions is highly reduced using multigram language models
compared to the word-based language models. For instance,
the 2-multigrams model reduces the sum of states and transi-
tions of the search graph by 31%. The volume on the disk is
also divided by 1.45. Similar comments can be made on a large
lexicon with more significant results (Table 4). Dealing with 2-
multigrams allows to reduce the sum of states and transitions of
the search graph by 63% compared to word model. The volume
on disk is also reduced by a factor of 2.7. Whatever the lexicon
size, the character-based model is lighter than the other models
but it never produces the best results in our experiments and it
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Table 4. Size of decoding search graph (composed automaton S defined in
equation 1) for different language model with a large lexicon.

Language models vs.
complexity indicators

number of states
(×106)

number of arcs
(×106)

Volume on
disk (GB)

Words 178 447 9.3
m5gram 126 317 6.6
m4gram 108 269 5.6
m3gram 72 186 4.1
m2gram 65 166 3.4

characters 20 50 1

can perform sometimes poorly (as shown on the EN dataset in
Figure 4). Table 5 shows the decoding time on the FR valida-

Table 5. Decoding time on the RIMES validation set.

Language models
(LMs)

Decoding time with
small LMs

(Minutes:Seconds)

Decoding time with
large LMs

(Minutes:Seconds)
Words 04:28 07:59

m5gram 03:39 07:32
m4gram 03:38 07:55
m3gram 03:34 07:14
m2gram 03:23 06:14

characters 03:14 08:18

tion set, which relates to a measure computed on 1.7 millions
of frames. The decoding time is reduced using multigram lan-
guage models compared to traditional language models based
on words. For instance, using a 5-multigram language model
reduces the time by 18% and by 24% using 2-multigrams on
the small lexicon while there is a reduction of 22% using 2-
multigrams on the large lexicon.

Table 6. Performance comparison of the proposed system with results re-
ported by other studies on the RIMES & IAM test datasets.

System WER (%) on RIMES WER (%) on IAM
Our unified system 9.8 (2-multigrams) 11.2 (5-multigrams)
Our specialized system 10.8 (2-multigrams) 13.5 (5-multigrams)
Voigtlaender et al. (2016) 9.6 9.3
Bluche (2015) 11.8 11.9
Bluche and Messina (2017) 7.9 10.5

To conclude, we compare our multilingual recognition sys-
tem with state-of-the art systems (Table 6). In our system,
the optical model has a simpler architecture compared to state-
of-the-art systems while these systems rest on language mod-
els based on words or hybrid models of words and characters.
Multilingual systems based on multigrams reach performance
closed to most of the state-of-the-art systems, while the system
complexity is reduced. The specialized system presented in Ta-
ble 6 refer to a selective approach where the right specialized
model is always selected (an ideal case). We show that, what-
ever the test set (FR or EN), our unified system makes profit
of the combination of the languages to outperform the selective
approach.

5. Conclusion

We presented an end-to-end unified multilingual system for
handwriting recognition where both the optical model and the
language model are trained on datasets composed of examples
from several languages. Our proposal allows, on the one hand,
to optimize a unique system, whatever the languages that are
in training and, on the other hand, to avoid the use of a deci-
sion process for selecting one specialized system trained on a
specific language.

Our unified optical model is optimized to recognize a unified
character set. In case of languages of the same origin, unifying
the character set reduces the system complexity and increases
the number of training examples per character classes that are
shared between the languages. While traditional language mod-
els are based on words, which can become intractable in case of
unified lexicons, we proposed to build a language model based
on sub-lexical units, called multigrams. Dealing with multi-
grams has many advantages: the multigrams are obtained using
a data-driven process without the need of linguistic expertise;
it reduces the model complexity compared to words; finally, it
allows a better modeling of long dependencies than with char-
acters.

Our experiments on English and French languages with small
or large lexicons, highlighted that the optical model benefits
from the language unification and provides significant improve-
ments compared to specialized systems. A major contribution
is to show that unifying languages that have some similari-
ties does not affect the language models which provide simi-
lar results than the specialized language models. In addition,
dealing with multigrams allows to improve the traditional lan-
guage models based on words or characters. Finally, our sys-
tem reaches state-of-the art performance with a unique and less
complex system.
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