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Abstract

Graph kernels are powerful tools to bridge the gap between machine learning and data

encoded as graphs. Most graph kernels are based on the decomposition of graphs into

a set of patterns. The similarity between two graphs is then deduced from the sim-

ilarity between corresponding patterns. Kernels based on linear patterns constitute a

good trade-off between accuracy performance and computational complexity. In this

work, we propose a thorough investigation and comparison of graph kernels based on

different linear patterns, namely walks and paths. First, all these kernels are explored

in detail, including their mathematical foundations, structures of patterns and compu-

tational complexity. Then, experiments are performed on various benchmark datasets

exhibiting different types of graphs, including labeled and unlabeled graphs, graphs

with different numbers of vertices, graphs with different average vertex degrees, cyclic

and acyclic graphs. Finally, for regression and classification tasks, performance and

computational complexity of kernels are compared and analyzed, and suggestions are

proposed to choose kernels according to the types of graph datasets. This work leads

to a clear comparison of strengths and weaknesses of these kernels. An open-source

Python library containing an implementation of all discussed kernels is publicly avail-

able on GitHub to the community, thus allowing to promote and facilitate the use of

graph kernels in machine learning problems.
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1. Introduction

In recent years, machine learning has becoming a considerably effective and effi-

cient tool in multiple real-world tasks, such as regression and classification problems.

Machine learning algorithms have been defined on vector spaces, allowing to take ad-

vantage of the easiness in linear algebra operations. While many data can be repre-

sented by vectors, such as images by unfolding them into vectors, it turns out that

many data types are too complex to be vectorized.

Graphs are able to model a wide range of real-world data, by encoding elements

as well as the relationship between them. Considering for example a molecule repre-

sented by a graph: its vertices stand for the molecule atoms, while its edges model the

relationship between them, such as bond types between two atoms. Due to these prop-

erties, graph representation has broad applications in wide domains, such as 2D and 3D

image analysis, document processing, biometric identification, image database, video

analysis, biological and biomedical applications, bioinformatics, chemoinformatics,

web data mining, etc., where it models structures such as molecules, social networks,

and state transition (Conte et al., 2004).

Therefore, it is natural to raise the problem of applying machine learning meth-

ods for graph data, in order to unleash the power of these two powerful tools. To

achieve this goal, it is essential to represent the graph structure in forms that are able

to be accepted by most popular machine learning methods, without losing consider-

able information while encoding the graphs. When machine learning algorithms rely

on (dis)similarity measures between data, the problem boils down to measuring the

similarity between graphs. Graph similarity measures can be roughly grouped in two

major categories: exact similarity and inexact similarity (Conte et al., 2004). The for-

mer requires a strict correspondence between the two graphs being matched or between

their subparts, such as graph isomorphism and subgraph isomorphism (Kobler et al.,

2012). Unfortunately, the exact similarity is a binary measure which can only take val-

ues from {0, 1}, and cannot be computed in polynomial time by these methods; Hence

it is neither useful nor practical for real-world data.

Inexact similarity measures are commonly applied for graphs, in which category
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Figure 1: Illustrative comparison between graph embedding and kernels, for two arbitrary graphs G and G′.

Through graph embedding, the two graphs are represented by two vectors, X and X′. By kernels, the two

graphs are implicitly embedded by a function ΦH (·) into a Hilbert space H , yielding ΦH (G) and ΦH (G′);

Moreover, their inner product 〈ΦH (G),ΦH (G′)〉 is easily computed using a kernel function k(G,G′).

graph embedding and graph kernels lie. These strategies consist in embedding the

graphs into a space where computations can be easily carried out, such as combining

embedded graphs or performing a classification or regression task. The two strategies

are detailed next, with an illustration of this embedding in Figure 1.

Graph embedding explicitly computes vectors that encode some information of the

graphs. Riesen et al. (2007) proposed a method where a set of prototype graphs is

selected as a baseline. Each graph is then compared to each prototype by means of

a dissimilarity measure. The dissimilarities of a graph to each prototype compose a

finite-dimension feature vector of real numbers. In this way graphs are transformed

into vectors.

Kernels allow an implicit embedding by representing graphs in a possibly infinite-

dimension feature space which relaxes the limitations on the encoded information.

Indeed, as generalizations of the scalar inner product, kernels are natural similarity

measures between data, expressed as inner products between elements in some feature

space. By employing the kernel trick (Schölkopf and Smola, 2002), one can evaluate

the inner products in the feature space without explicitly describing each representation

in that space. Kernels have been widely applied in machine learning, with well-known

popular machines, such as Support Vector Machines (SVM). Therefore, defining ker-

nels between graphs is a powerful design to bridge the gap between machine learning
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Figure 2: Different types of graph patterns. G1, G2, G3 are examples of linear patterns, non-linear (acyclic)

patterns and cyclic patterns, respectively.

and data encoded as graphs.

When comparing graphs and analyzing their properties, the similarity principle has

been widely investigated (Johnson and Maggiora, 1990). It states that molecules hav-

ing more common substructures turn to have more similar properties. This principle

can be generalized to other fields where data is modeled as graphs. It provides a theo-

retical support to construct graph kernels by studying graphs’ substructures, which are

also referred to as patterns. There are three major types of patterns considered in the

literature, as illustrated by G1, G2 and G3 in Figure 2. The most fundamental patterns

are linear patterns, which are composed of sequences of vertices connected by edges,

as given by G1. However, when a substructure contains vertices that have more than

two neighbors, as given by G2, linear patterns are insufficient to completely describe

the structure. This is where non-linear patterns become useful, with either non-linear

(acyclic) patterns (as in G2) or cyclic patterns, which contain cycles (as in G3).

Despite that non-linear patterns may encode more complex structural information

than linear patterns, the latter are of great interest. Linear patterns tend to require much

lower computational complexity than non-linear patterns. Nevertheless, while linear

patterns explore less complex structures, non-linear patterns normally include or imply

them. For example, the treelet pattern is non-linear as a whole, while treelets whose

maximal size is less than 4 are linear (Gaüzere et al., 2012). This property is important

especially for big graphs, as it may be much more time consuming to construct non-

linear kernels and cyclic kernels on big graphs. Therefore in this article, we focus on

studying and comparing the existing graph kernels based on different linear patterns.

A linear pattern is defined as a walk or a path. A walk is an alternating sequence

of vertices and connecting edges; while a walk can contain the same vertex more than

once, a path is a walk without repeated vertices. Based on the principle of comparing
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all possible walks in two graphs, Gärtner et al. (2003) constructed the common walk

kernel and proposed closed forms to compute two special cases of this kernel. In the

meantime, Kashima et al. (2003) introduced randomness into the walk-based graph

kernels by generating walks with marginal distributions. Prior knowledge is able to

be brought into this kernel, named the marginalized kernel, by choosing parameters of

these distributions. More recently, Vishwanathan et al. (2010) built a framework for

kernels with the so-called generalized random walk kernel, and offered four methods

to reduce the computational complexity of some special cases. Both the common walk

kernel and the marginalized kernel are special cases of this generalized kernel.

Due to their structures, walks may bring artifacts to graph kernels due to tottering

and halting (see Section 3.1.4 for details on these shortcomings). Graph kernels based

on paths, on the other hand, are relieved from these issues. Borgwardt and Kriegel

(2005) proposed the shortest path kernel, based on the comparison of each pair of

vertices of two graphs by checking whether their weighted shortest paths have the same

length. Ralaivola et al. (2005) constructed the structural shortest path kernel, where the

vertices and edges on two shortest paths are compared successively, rather than the

lengths of the shortest paths. While these two kernels are both based on shortest paths,

Suard et al. (2007) proposed a path kernel that compares all paths in the two graphs. In

practice, only paths shorter than a given length are considered.

In this article, we thoroughly study graph kernels based on linear patterns, with an

emphasis on the aforementioned kernels, and compare them theoretically and experi-

mentally. Among them, the generalized random walk kernel is split into four different

kernels due to the computing methods they use. Considering the theoretical aspects,

we examine their mathematical expressions with connections between them, and their

computational complexities, as well as the strengths and weaknesses of each kernel.

In the exhaustive experimental analysis conducted in this paper, each kernel is applied

on various datasets exhibiting different types of graphs, and a thorough performance

analysis is made considering both accuracy and computational time. This rigorous

examination allows to provide suggestions to choose kernels according to the type of

graph data at hand. Finally, all the implementations are publicly available as an open-

source Python library on GitHub. In this library, every kernel is able to tackle different
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types of graphs, and several computation methods are provided for kernels.

The paper is organized as following: Section 2 introduces preliminaries for graph

and for kernels in machine learning. Section 3 presents detailed discussions on different

graph kernels. Experiments and analysis are performed in Section 4. Finally, Section 5,

concludes this work.

2. Preliminaries

This section introduces notations and terminologies required to study graph kernels.

2.1. Basic concepts of graph theory

In the following, we define notations that will be used in this paper. Definitions that

are only used in specific sections will be given in the corresponding parts. For more

details, we refer interested readers to (West et al., 2001). First, we clarify definitions

of different types of graphs. Figure 3 shows types of graphs mentioned below. Let | · |
denote the cardinality of a set, namely the number of its elements. For a subset A of a

set X, the indicator function 1A : X → {0, 1} is defined as

1A(x) =



























1 if x ∈ A;

0 if x < A.

Definition 1 (graph). A graph G is defined by an ordered pair of disjoint sets (V, E)

such that V corresponds to a finite set of vertices and E ⊂ V × V corresponds to a set

of edges. If (u, v) ∈ E, then u is adjacent to v. We denote the number of graph vertices

as n, i.e., n = |V |, and the number of graph edges as m, i.e., m = |E|.

Definition 2 (labeled and unlabeled graph). A labeled graph G is a graph that has

additionally a set of labels L along with a labeling function ℓ that assigns a label

to each edge and/or vertex. In edge-labeled graphs, the labeling function ℓe : E → L

assigns labels to edges only. In vertex-labeled graphs, the labeling function ℓv : V → L

assigns labels to vertices only. In fully-labeled graphs, the labeling function ℓ f : V ∪

E → L assigns labels to both vertices and edges. Unlabeled graphs have no such

labeling function.
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unlabeled graph undirected graph directed graphedge-labeled graphvertex-labeled graph

Figure 3: The different types of graphs. In vertex- and edge-labeled graphs, vertices and edges with different

labels are distinguished by color in the figure.

Definition 3 (symbolic and non-symbolic labels). Labels defined in Definition 2 are

either symbolic or non-symbolic, for vertices and/or edges. A symbolic label is a dis-

crete symbol, such as the type of atoms or chemical bonds. A non-symbolic label is a

continuous value. Due to this difference, symbolic labels are considered equal as long

as they are the same and unequal otherwise (namely the Kronecker delta function; see

below), while non-symbolic labels are compared by continuous measures, for instance,

the Gaussian kernel (see below). Both symbolic and non-symbolic labels can be one-

dimensional or multi-dimensional vectors. A label is also referred to as an attribute.

Two similarity measures are used between labeled vertices and edges: Kronecker

delta function for symbolic labels and Gaussian kernel for non-symbolic labels.

Definition 4 (Kronecker delta function). The Kronecker delta function between two

labels ℓi and ℓ j is defined as

k(ℓi, ℓ j) = δℓiℓ j
=



























1 if ℓi = ℓ j;

0 if ℓi , ℓ j,

(1)

where ℓi, ℓ j ∈ L. For the sake of conciseness, it is denoted as the delta function.

Definition 5 (Gaussian kernel). The Gaussian kernel between ℓi, ℓ j ∈ L is defined as

k(ℓi, ℓ j) = exp

(

−
‖ℓi − ℓ j‖2

2δ2

)

, (2)

where δ is the tunable bandwidth parameter.

Definition 6 (directed and undirected graph). A directed graph is a graph whose

edges are directed from one vertex to another, where the edge set E consists of or-

dered pairs of vertices (u, v). An ordered pair (u, v) is said to be an edge directed from
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u to v, namely an edge beginning at u and ending at v. In contrast, a graph where the

edges are bidirectional is called an undirected graph, i.e., if (u, v) ∈ E, then (v, u) ∈ E.

Graph substructures, such as walks, paths and cycles, allow to describe graphs,

thus providing elegant ways to construct graph kernels. The concepts of the adjacency

matrix, neighbors and degrees of vertices are fundamental for building these kernels.

Definition 7 (neighbors and degree). In a graph G = (V, E), a neighbor of a vertex

v ∈ V is a vertex u that meets the condition (u, v) ∈ E. The degree of a vertex v ∈ V

is the number of these neighbors, namely |{u ∈ V | (u, v) ∈ E}|. The degree of the

graph, denoted by d, is the largest vertex degree of all its vertices. If G is directed, then

|{u− ∈ V | (u−, v) ∈ E}| is called the indegree of vertex v, and |{u+ ∈ V | (v, u+) ∈ E}| is

the outdegree of v.

Definition 8 (adjacency matrix). The adjacency matrix of an n-vertices graph G =

(V, E) is an n × n matrix A(G) = [ai j], where ai j = 1E((vi, v j)), namely ai j = 1 if

(vi, v j) ∈ E and 0 otherwise.

Definition 9 (walks, paths and cycles). For a graph G = (V, E), a walk of length h is a

sequence of vertices W = (v1, v2, . . . , vh+1) where (vi, vi+1) ∈ E for any i ∈ {1, 2, . . . , h}.

The length of a walk W is defined as its number of edges h. If each vertex appears only

once in W, then W is a path. A walk with v1 = vh+1 is called a cycle. If each vertex

appears only once except for v1, then the cycle is called a simple cycle. Note that when

h = 0, a walk or path is a single vertex without edges.

Definition 10 (label sequences). The (contiguous) label sequence of a

length h walk/path W of a fully-labeled graph is defined as s =

(ℓv(v1), ℓe((v1, v2)), ℓv(v2), ℓe((v2, v3)), . . . , ℓv(vh+1)). For a vertex-labeled or edge-

labeled graph, the label sequence of W is constructed by removing all edge labels

ℓe((vi, v j)) or vertex labels ℓv(vi) in s, respectively.

2.2. Kernel methods

In this section, formal definitions of a kernel and Gram matrix are first introduced.

Then the kernel trick is presented to show its ability of evaluating inner products in
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some feature space. To this end, two classical kernel based machine learning methods

are presented next, kernel ridge regression and support vector machines for classifi-

cation, and applied in this paper to assess the relevance of graphs. For more details

on kernel methods, we refer interested readers to (Shawe-Taylor and Cristianini, 2004;

Schölkopf and Smola, 2002). Let X denotes the input space.

Definition 11 (positive semi-definite kernel). A positive semi-definite kernel defined

on X is a symmetric bilinear function k : X2 → R that fulfills the following condition

n
∑

i=1

n
∑

j=1

ci c j k(xi, x j) ≥ 0, (3)

for all x1, . . . , xn ∈ X and c1, . . . , cn ∈ R.

Positive semi-definite kernels have some general properties. Of particular inter-

est, the products and sums, weighted with non-negative coefficients, of a set of posi-

tive semi-definite kernels are also positive semi-definite kernels. Moreover, any limit

limn→∞ kn of a sequence of positive semi-definite kernels kn is also a positive semi-

definite kernel (Schölkopf and Smola, 2002). These properties are useful for construct-

ing graph kernels that are introduced in this paper. The first one is applied for all

six graph kernels discussed in this paper, and the second one is applied for both the

common walk kernel and the generalized random walk kernel.

Mercer’s theorem states that any positive semi-definite kernel k corresponds to an

inner product in some Hilbert spaceH (Mercer, 1909). In other words, for all (xi, x j) ∈

X2, we have

k(xi, x j) = 〈ΦH (xi),ΦH (x j)〉H , (4)

where ΦH : X → H is an embedding function. The positive semi-definiteness of

the kernel is a sufficient condition to the existence of this function. For the sake of

conciseness, positive semi-definite kernels are simply denoted as kernels in this paper.

Kernel based methods in machine learning take advantage of Mercer’s theorem,

in order to transform conventional linear models into non-linear ones, by replacing

classical inner products between data with a non-linear kernel. Let X = {x1, x2, . . . , xN}
be the finite dataset of N samples available for training the machine learning method,
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with associated data labels {y1, y2, . . . , yN} where yi ∈ {−1,+1} for binary classification

and yi ∈ R for regression (extensions to multiclass classification and vector output is

straightforward (Honeine et al., 2013)). It turns out that one does not need to have

access to the raw data X for training and evaluating, but only the evaluation of the

kernel on all pairs of the data, namely the Gram matrix K is sufficient. A Gram matrix K

associated to a kernel k for a training set X is an N×N matrix defined as Ki, j = k(xi, x j),

for all (xi, x j) ∈ X2.

Kernel-based machine learning relies on the minimization of a regularized cost

function, namely

arg min
ψ∈H

N
∑

i=1

c(yi, ψ(xi)) + λ ‖ψ‖2,

for some cost function c and positive regularization parameter λ. The generalized rep-

resenter theorem (Schölkopf et al., 2001) states that the optimal solution has the form

ψ(x) =

N
∑

i=1

ωi k(xi, x),

where k is the kernel inducing the Hilbert space H . The coefficients ωi’s are ob-

tained using the Gram matrix. For example, the kernel ridge regression corresponds

to the square loss c(yi, ψ(xi)) = (yi − ψ(xi))
2, which leads to [ω1 . . . ωN]⊤ = (K +

λI)−1[y1 . . . yN]⊤ (Murphy, 2012). The SVM for classification considers the hinge loss

c(yi, ψ(xi)) = max(0, 1 − yiψ(xi)), and the optimal coefficients are efficiently obtained

by quadratic programming algorithms (Boser et al., 1992).

Kernel-based methods provide an elegant and powerful framework in machine

learning for any input space, without the need to exhibit the data or optimize in that

space, as long as one can define a kernel on it. Besides conventional kernels, such

as the Gaussian and polynomial kernels for vector spaces, novel kernels can be engi-

neered by combining other valid kernels, such as using additive or multiplicative rules

(Definition 11). Of particular interest in kernel engineering are R-convolution kernels

(Haussler, 1999), which provide the foundation of kernels based on bags of patterns.

Since they can be regarded as the cornerstones to engineer graph kernels using graph

patterns, we provide next some details on the R-convolution kernels.
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2.3. Pattern-based kernels

R-convolution kernels propose a way to measure similarity between two objects

by measuring the similarities between their substructures (Haussler, 1999). Sup-

pose each sample xi ∈ X has a composite structure, namely described by its “parts”

(xi1, xi2, . . . , xiD) ∈ X1 × X2 × · · · × XD, for some positive integer D. Since multiple

decompositions could exist, let R(x) denotes all possible decompositions of x, namely

R(x) =
{

x ∈ X1 × X2 × · · · × XD

∣

∣

∣ x is a decomposition of x
}

.

For each decomposition space Xd, let kd be a kernel defined on this space to mea-

sure the similarity on the d-th part. Then, a generalized convolution kernel, called

R-convolution kernel, between any two samples xi and x j from X is defined as:

k(xi, x j) =
∑

(xi1,...,xiD)∈R(xi)
(x j1,...,x jD)∈R(x j)

D
∏

d=1

kd(xid, x jd). (5)

By simply changing the decomposition, many different kernels can be obtained

from the R-convolution kernel. When it comes to graphs, it is natural to decompose

them into smaller substructures, such as paths, walks, trees, and cycles, and build graph

kernels based on similarities between those components, as it is more easy to compare

them. The kernels differ mainly in the ways of composition and the similarity measures

used to compare the substructures.

3. Graph Kernels Based on Linear Patterns

The fundamental class of graph kernels based on bags of patterns are based on

walks and paths as elementary decompositions. In this section, we shall focus on

studying their mathematical representations and comparing their computational com-

plexities. Table 1 provides an insight into the characteristics of theses kernels.

3.1. Graph kernels based on walks

Depending on how walks are generated, several walk based graph kernels have

been proposed.
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Table 1: Characteristics of graph kernels based on linear patterns.

Kernels

Substructures Labeling

Directed
Edge

Weighted

Computational

Complexity

(Gram Matrix)

Explicit

Representation
Weighting

linear non-linear cyclic
symbolic non-symbolic

vertices edges vertices edges

Common walk ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ O(N2n6) ✗ a priori

Marginalized ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ O(N2rn4) ✗ ✗

Sylvester equation ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ O(N2n3) ✗ a priori

Conjugate gradient ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ O(N2rn4) ✗ a priori

Fixed-point iterations ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ O(N2rn4) ✗ a priori

Spectral decomposition ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ O(N2n2 + Nn3) ✗ a priori

Shortest path ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ O(N2n4) ✗ ✗

Structural shortest path ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ O(hN2n4 + N2nm)) ✗ ✗

Path kernel up to length h ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ O(N2h2n2d2h) ✓ ✓

The “Computational complexity” column is a rough estimation for computing the Gram matrix;

The “Explicit representation” column indicates whether the embedding of graphs in the representation space can be encoded by a vector explicitly

The “Weighting” column indicates whether the substructures can be weighted in order to obtain a similarity measure adapted to a problem of particular prediction.

3.1.1. Common walk kernel

A common walk kernel is based on the simple idea to compare all possible walks

starting from all vertices in two graphs (Gärtner et al., 2003). Despite that sometimes

it is referred to as the random walk kernel (Vishwanathan et al., 2010; Borgwardt and

Kriegel, 2005), there is actually no stochastic process applied.

The straightforward way to compute this kernel is by brute force, by searching for

all walks available and trying to match them one by one. As the number of walks in

a graph can be infinite, one needs to fix in advance the maximum length of walks to

some value h. Two steps are required here: Step 1 is to find out all walks in each graph,

where the Depth-first search scheme is usually applied. The computational complexity

of this step is O(ndh) for a graph with n vertices and average vertex degree d. Step 2 is

to compare walks one by one in the two graphs under study, which has a computational

complexity of O(n2d2h). For a dataset of N graphs, the computation of the Gram matrix

requires O(N2n2d2h) operations. Therefore, the computational complexity is exponen-

tial in the length of walks, which is impractical for large-scale graphs. To overcome

this difficulty, other computational methods have been proposed as given next.

In (Gärtner et al., 2003), the fully-labeled direct product graph is employed to re-

duce the computational complexity, within two types of kernels: kernels based on label

pairs and kernels based on contiguous label sequences; the latter one can deal with

labels on vertices and/or edges. In this case, the direct product is defined as following:
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Figure 4: Direct product of fully-labeled graphs

Definition 12 (direct product graph). Consider two graphs, G1 = (V1, E1) and G2 =

(V2, E2). Their direct product graph, denoted G× = G1 × G2, is defined by its vertex

and edge sets as:







































V×(G1 ×G2) =
{

(v1, v2) ∈ V1 × V2

∣

∣

∣ ℓv(v1) = ℓv(v2)
}

E×(G1 ×G2) =
{

((u1, u2), (v1, v2)) ∈ V2(G1 ×G2)
∣

∣

∣

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ ℓe(u1, v1) = ℓe(u2, v2)
}

,

(6)

where ℓv(·) and ℓe(·) are the labeling functions defined in Definition 2. In other words,

vertices with the same labels from graphs G1 and G2 are compounded to new vertices

of graph G×, and an edge between two vertices in graph G× exists if and only if edges

exist between their corresponding vertices in graphs G1 and G2 while these two edges

have the same label. Figure 4 illustrates the direct product G1 × G2 of two fully-

labeled graphs G1 and G2, where {ℓvi
| i = 1, 2, . . . } denotes the set of vertex labels

and {ℓei
| i = 1, 2, . . . } the set of edge labels. This definition is a generalization of the

directed product of unlabeled graphs, which considers that all vertices and edges have

the same labels, and is shown by Figure 2 in (Vishwanathan et al., 2010).

A bijection exists between every walk in the direct product graph and one walk in

each of its corresponding graphs, so that labels of all vertices and edges on these walks

match by order. Consequently, it is equivalent to perform a walk on a direct product

graph and on its two corresponding graphs simultaneously, which makes it possible to

compute the kernel between two graphs by finding out all walks in their direct product

graph. The direct product kernel is then designed this way.

Definition 13 (common walk kernel applying direct product). For a graph G, let

Φ(G) = (Φs1
(G),Φs2

(G), . . . ) be a map to label sequence feature space, expanded by
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basis ΦS (G), where S = (s1, s2, . . . ) is the set of all possible label sequences of walks,

and Φs(G) the feature corresponding to label sequence s. For each possible sequence

s of length h, Φs(G) =
√
λh|Ws|, where |Ws| is the number of walks that correspond to

the label sequence s in G, and λh ∈ R is some fixed weight for length h. Then we have

the direct product kernel k×(G1,G2) = 〈Φ(G1),Φ(G2)〉, with

k×(G1,G2) =

|V× |
∑

i, j=1















∞
∑

h=1

λhAh
×















i j

, (7)

if the limit exists, where A× is the adjacency matrix of the direct product graph G×. As

each component [A×]i j indicates whether an edge exists between vertex vi and v j, then

[Ah
×]i j is the number of all possible walks of length h from vertex vi to v j.

In practice, this limit cannot be computed directly. However for A× that satisfies

certain properties and certain choices of λh, closed-forms can be constructed for com-

putation. Two examples are given here (Gärtner et al., 2003):

• The first one employs exponential series of square matrices eβA× = I + βA×/1! +

β2A2
×/2! + β3A3

×/3! + ... Computing this exponentiation normally requires the

diagonalization of A× as T−1DT , where D is a diagonal matrix, and weight λh =

βh/h! where β is a constant. In this way, k×(G1,G2) =
∑|V× |

i, j=1
[T−1eβDT ]i j, where

eβD can be calculated component-wise in linear time. Diagonalizing matrix A×

has roughly a cubic computational complexity.

• Another one applies geometric series of matrices. Let the weights be λh = γh,

where γ < 1/min{∆+(G),∆−(G)} and ∆+(G),∆−(G) are the maximal outdegree

and indegree of graph G, respectively. Then the geometric series of a matrix is

defined as I + γ1A1 + γ2A2 + . . . The limit of this series can be computed by

inverting the matrix I−γA, which is roughly of cubic computational complexity.

The computational complexity of the common walk kernel composes of two parts.

The first one is the direct product transform. One needsO(n2) to span all vertices of two

graphs pairwise to construct vertices of the direct product graph and O(n4) for edges.

The second part, computing the kernel, requires cubic computational complexity by

applying either exponential or geometric series. Since the computation is based on
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direct product graphs, which could potentially have n2 vertices, thus the computational

complexity is O(n6), which is also the computational complexity of the common walk

kernel (Gärtner et al., 2003).

The common walk kernel constructs an infinite sequence feature space consisting

of all possible walk sequences in graphs whose lengths are theoretically up to infinity.

When the kernel is represented by exponential or geometric series, closed-forms are

available to compute it within polynomial time. However, these closed-forms require

that the coefficient λh has forms chosen specially to converge, which not only is in-

flexible, but also causes the halting problem, excessively restraining the effect of long

walk sequences on the kernel (see Section 3.1.4). Moreover, it is still time consuming

in practice to take all walks into count for large-scale graphs. Furthermore, it is more

likely to induce unnecessary artifacts into the kernel due to trivial walks, which are

irrelevant to the task and therefore decrease the accuracy.

3.1.2. Marginalized kernel

The marginalized kernel relies on walks generated using marginal distributions on

some hidden variables (Kashima et al., 2003), as described next. From the start vertex

of each walk, a conditional probability is given to each vertex to choose the next vertex

to go from its neighbors, which is called the transition probability, and a termination

probability to finish generating the walk. The marginalized kernel is constructed as:

k(G1,G2) =
∑

w1∈W(G1)

∑

w2∈W(G2)

kW (w1,w2)pG1
(w1)pG2

(w2), (8)

where W(G) is the set of all walks in graph G, kW is a joint kernel between two walks,

usually defined as a delta function of label sequences of the two measured walks. pG(w)

is the probability of traversing walk w in G. If w = (v1, v2, . . . , vh), then

pG(w) = p0(v1)

h
∏

i=2

pt(vi|vi−1)pq(vh), (9)

where p0(v) is the initial probability distribution, indicates the probability that walk w

starts from vertex v; pt(vi|vi−1) is the transition probability on vertex vi−1, describes the

probability of choosing vi as the next vertex of vi−1; the termination probability pq(vh)

gives the probability that walk w stops on vertex vh. The latter two probability satisfy
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the relation
∑n

j=1 pt(v j|vi) + pq(vi) = 1. Without any prior knowledge, p0 is set to be

uniform over all vertices of graph G, pt(vi|vi−1) to be uniform over all neighbors of

vertex vi−1, and pq to be a constant.

Kashima et al. (2003) proposed an efficient method to compute this kernel as

k(G,G′) =
∑

v1,v
′
1

s(v1, v
′
1) lim

h→∞
Rh(v1, v

′
1),

where s(v1, v
′
1
) = p0(v1)p′

0
(v′

1
)kv(v1, v

′
1
) and Rh(v1, v

′
1
) is computed recursively with

Rh(v1, v
′
1) = r1(v1, v

′
1) +

∑

vi∈V

∑

v′
j
∈V ′

t(vi, v
′
j, v1, v

′
1)Rh−1(vi, v

′
j),

where







































r1(v1, v
′
1) = q(v1, v

′
1) = R1(v1, v

′
1)

q(vh, v
′
h) = pq(vh)pq(v′h)

t(vi, v
′
i , vi−1, v

′
i−1) = pt(vi|vi−1)p′t(v

′
i |v′i−1)kv(vi, v

′
i)ke(evi−1,vi

, e′v′
i−1
,v′

i
).

By applying this method, the computational complexity of marginalized kernel is the

same as solving a linear system with n2 equations and n2 unknown variables. Thus, the

computational complexity boils down to O(rn4), where r is the number of iterations.

3.1.3. Generalized random walk kernel

The generalized random walk kernel, as a unified framework for random walk ker-

nels, was proposed by Vishwanathan et al. (2010). Based on the idea of performing

random walks on a pair of graphs and then counting the number of matching walks,

both common walk kernels and marginalized kernels are special cases of this kernel.

Besides, it is proven in the same paper that certain rational kernels (Cortes et al., 2004)

also boils down to this kernel when specialized to graphs.

Similar to the marginalized kernel, the generalized random walk kernel introduces

randomness with the construction of graphs’ subpatterns, namely random walks. First,

an initial probability distribution over vertices is given, denoted p0, which determines

the probability that walks start on each vertex, same as initial probability distribu-

tion p0 of marginalized kernels. Then, a random walk generates a sequence of ver-

tices vi1 , vi2 , vi3 , . . . according to a conditional probability p(ik+1 | ik) = Aik+1,ik , where
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A is the normalized adjacency matrix of the graph. This probability plays a similar

role as the transition probability pt of the marginalized kernel, which chooses vik+1
as

the next vertex of vik being proportional to the weight of the edge (vik , vik+1
), namely

pt(ik+1 | ik) = wik+1
/
∑

j w j, j ∈ N(ik), where N(ik) is the set of neighbors of the vertex

ik. The edge weight here is a special label which represents the transition probabil-

ity from one vertex to another rather than a property of the edge itself. Finally, like

termination probability pq of marginalized kernels, a stopping probability distribution

q = (qi1 , qi2 , . . . ), nik ∈ V is associated with a graph G = (V, E) over all its vertices,

which models the phenomenon where a random walk stops at vertex nik . Both the ini-

tial probability and the stopping probability are practically set as uniform distribution.

Like the common walk kernel, defining the generalized random walk kernel takes

advantage of the direct product. However, when performing the transformation, graphs

are considered unlabeled, which is a special case of Definition 12. It is worth not-

ing that the direct product graph of unlabeled graphs often has much more edges than

the labeled one, as illustrated in Figure 5 when taking the graphs in Figure 4 as unla-

beled. The generalized random walk kernel between two graphs G1 and G2 is defined

in (Vishwanathan et al., 2010) as

k(G1,G2) =

∞
∑

h=0

f (h)q⊤×Wh
×p×. (10)

In this expression, f (h) is the weight chosen for random walks of length h a priori;

p× = p01
⊗ p02

and q× = q1 ⊗ q2 are the initial probability distribution and the stopping

probability distribution on G×, respectively, where operator ⊗ denotes the Kronecker

product and W× ∈ Rn×n is the weight matrix.

Assuming the initial and the stopping probability distributions to be uniform and

setting W× as the unnormalized adjacency matrix of G×, (10) can be transformed to the

common walk kernel. Meanwhile, applying f (h) = 1 and W× as a specific form, the

marginalized kernel can be recovered from (10).

The complexity of the direct computation is O(N2n6). Four methods are presented

to accelerate the computation (Vishwanathan et al., 2010):
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Figure 5: Direct product of unlabeled graphs (compared to the labeled ones in Figure 4)

• The Sylvester equation method is based on the generalized Sylvester equation:

M =

d
∑

i=1

S iMTi + M0,

where M is the matrix to be solved, d is the number of different edge labels, and

S i,Ti,M0 are given matrices. For graphs with symbolic edge labels, when f (h) =

λh, the kernel in (10) can be computed by q⊤×vec(M), with vec(·) the column-

stacking operator and M the solution of the generalized Sylvester equation

M =

d
∑

i=1

λ iA2M iA⊤1 + M0,

where vec(M0) = p× and iA is the normalized adjacency matrix of graph G

filtered by the i-th edge label iℓe of G; namely, iA jk = A jk if ℓe(v j, vk) = iℓe, and

zero otherwise.

When d = 1, this equation can be computed in cubic time; while its compu-

tational complexity remains unknown when d > 1. Compared to the direct

computation of the generalized random walk kernel, this method does not di-

rectly compute weight matrices of direct product graphs. Benefiting from the

Kronecker product, only (normalized) adjacency matrices of original graphs are

required, which have size of n2 and can be pre-computed for each graph. Besides,

computing q⊤×vec(M) requires O(N2n2) time. Thus for N unlabeled graphs, the

complexity of computing the corresponding Gram matrix is O(N2n3), which is

reduced compared to the direct computation.
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However, it has a strong drawback: libraries currently available to solve

the generalized Sylvester equation, such as dlyap solver in MATLAB and

control.dlyap function from Python Control Systems Library (Murray et al.,

2018), can only take d as 1, which means the solver is limited to edge-unlabeled

graphs.labels.

• The second one is the conjugate gradient method, which solves the linear system

(I−λW×)x = p× for x, using a conjugate gradient solver, and then computes q⊤× x.

This procedure can be done in O(rn4) for r iterations.

• The third method, fixed-point iterations, rewrites (I − λW×)x = p× as x = p× +

λW×x, and computes x by finding a fixed point of the equation by iterating xt+1 =

p× + λW×xt. The worst-case computational complexity is O(rn4) for r iterations.

• The spectral decomposition method applies the decomposition W× = P×D×P−1
× ,

where the columns of P× are its eigenvectors, and D× is a diagonal matrix of

corresponding eigenvalues. This method can be performed in O(N2n2 +Nn3) for

an N × N Gram matrix.

The generalized random walk kernel provides a quite flexible framework for walk

based kernels (see (10)). However, the problems lie in the methods to compute the

kernel as introduced above. Despite of the improvement on computational complex-

ity, the shortcomings of these methods are obvious. First, some methods can only be

applied for special types of graphs. By definition, the Sylvester equation method can

only be applied for graphs unlabeled or with symbolic edge labels (through possibly

edge-weighted). The symbolic vertex labels of two vertices on an edge can be added

to the edge label of that edge. However, due to the lack of solvers, no label can be

dealt with in practice. The spectral decomposition method, on the other hand, can only

tackle unlabeled graphs. Secondly, each method is designated for a special case of the

generalized random walk kernel. The Sylvester equation method, the conjugate gradi-

ent method and the fixed-point iterations are specified for the geometric kernel only,

namely, f (h) set to λh in (10). The spectral decomposition method works on any f (h)

that makes (10) converge, but is only efficient for unlabeled graphs.
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Figure 6: A tottering example: walk (v1, v2, v5, v2) has tottering between vertices v2 and v5, i.e., (v2, v5, v2).

For conciseness in this paper, the generalized random walk kernel computed by the

Sylvester equation, the conjugate gradient, the fixed-point iterations and the spectral

decomposition are denoted as the Sylvester equation kernel, the conjugate gradient

kernel, the fixed-point kernel and the spectral decomposition kernel, respectively. In

our implementation, uniform distributions are applied by default for both starting and

stopping probabilities (i.e., p0 and q), as recommended in (Vishwanathan et al., 2010).

Users are able to introduce prior knowledge with edge weights.

3.1.4. Problems raised by walks

There are two problems that may lead to worse performance of kernels based on

walks: tottering and halting. We discuss these problems in this section.

Tottering. Graph kernels based on walks often suffer from tottering. When construct-

ing a walk in a graph, two connected vertices on this walk may appear multiple times

as the transition scheme allows transiting back. This phenomenon, called tottering,

brings tottering artifacts into the walk. As Figure 6 shows, a tottering brings unneces-

sary structure to the pattern and may influence the performance of graph kernels.

Mahé et al. (2004) propose a technique to avoid this problem for the marginalized

kernel. It first transforms each graph G = (V, E) to G′ = (V ′, E′), with























V ′ =V ∪ E

E′ =
{

(v, (v, t))
∣

∣

∣

∣

v ∈ V, (v, t) ∈ E
}

∪
{

((u, v), (v, t))
∣

∣

∣

∣

(u, v), (v, t) ∈ E, u , t
}

(11)

and labels its vertices and edges as follows: For a vertex v′ ∈ V ′, if v′ ∈ V , the

label ℓ′v(v′) = ℓv(v′); if v′ = (u, v) ∈ E, then the label ℓ′v(v′) = ℓv(v). For an edge

e′ = (v′
1
, v′

2
) ∈ E′, where v′

1
∈ V ∪ E and v′

2
∈ E, the label ℓ′e(e′) = ℓe(v′

2
). Then

it computes the marginalized kernel between transformed graphs. This extension is

able to remove tottering from walks for the marginalized kernel, hence enhances the
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performance of the kernel. However, this improvement is only minor according to the

experiments (Mahé et al., 2004). Meanwhile, it may significantly enlarge the size of

graphs, bringing computational complexity problems. For a graph with n vertices, m

edges and average vertex degree d, the transformed graph may at most have n + m

vertices and nd + m2 edges, hence the worse case computational complexity of the

kernel is O((n+m)2), which is not practical for graphs with high average vertex degree.

For all these reasons, experiments conducted in Section 4 evaluate the conventional

marginalized kernel with tottering.

Halting. Besides tottering, a problem called halting may occur for common walk ker-

nels (Sugiyama and Borgwardt, 2015), where walks with longer lengths tend to become

statistically trivial to kernels. It is as if the common kernel halts after several steps of

computation. For example, as shown in Section 3.1.1, the geometric common walk

kernel applies geometric series as weights for walks with different lengths, namely

λh = γ
h, for γ < 1. When γ is small and h is big, λh becomes significantly small. When

γ is small enough, walks of length 1 dominates the other walks in the final results, thus

the kernel is degenerated to the comparison of single vertices and edges, and most of

the structure information is lost.

Graph kernels based on paths avoid these two problems.

3.2. Graph kernels based on paths

Several graph kernels based on paths have been proposed to overcome walk issues.

3.2.1. Shortest path kernel

The shortest path kernel is built on the comparison of shortest paths between any

pair of vertices in the two graphs (Borgwardt and Kriegel, 2005). The first step to

compute this kernel is to transform the original graphs into shortest-paths graphs by

Floyd-Warshall’s algorithm (Floyd, 1962). A shortest-paths graph contains the same

set of vertices as the original graph, while there is an edge between all vertices which

is labeled by the shortest distance between these two vertices. Then the shortest path

kernel is defined on the Floyd-transformed graphs as following:
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Definition 14 (shortest path kernel). Let S 1 = (V1, E1) and S 2 = (V2, E2) be the

Floyd-transformed graphs of two graphs G1 and G2, respectively. The shortest path

graph kernel between graphs G1 and G2 is defined as

ksp(G1,G2) =
∑

e1∈E1

∑

e2∈E2

kw(e1, e2), (12)

where kw is a positive semi-definite kernel on walks of length 1.

The basic definition of kw(e1, e2) is the product of kernels on vertices and edges

encountered along the walk. The kernel for symbolic vertex labels is usually the delta

function of labels of two compared vertices, namely δℓv1
ℓv2

for vertices v1 and v2; while

the kernel for non-symbolic vertex attributes is not given for general cases.

In this paper, we only consider the basic definition where the labels of the com-

pared edges are defined by the weighted lengths of their corresponding shortest paths.

Nevertheless, more information can be added for more thorough studies. For instance,

label enrichment, such as the number of edges, can be applied to speed up kernel com-

putation. Considering k shortest paths between each pair of vertices rather than only

one, where k is an integer determined a priori, can introduce more information but with

higher computational complexity (Borgwardt and Kriegel, 2005).

The Floyd-Warshall’s algorithm, required in the shortest-path kernel to perform the

Floyd-transformation, can be done in O(n3). For a connected graph G with n vertices,

its shortest-paths graph S contains n2 edges. Assuming that vertex kernels and edge

kernels are computed in O(1), then pairwise comparison of all edges in two shortest-

paths graphs requires a computational complexity of O(n4), which is then also the

computational complexity to compute the shortest path kernel.

Comparing to walks based kernels, the shortest path kernel have some advantages:

It avoids tottering while remains simple both conceptually and practically. However,

this comes with a cost. Its main shortcomings in theory and practice are:

• It simplifies the graph structure by Floyd transformation and only considers in-

formation concerning shortest distances. Only attributes of start and end vertices

of shortest paths are considered, while information about intermediate vertices

and edges is missing.
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• It cannot deal with graphs whose edges bear attributes other than distances. Sym-

bolic edge labels are omitted as well. The loss of structure information may

crucially decrease the performance accuracy (Borgwardt and Kriegel, 2005).

• Although non-symbolic vertex attributes are implied, the kernel for them is not

given explicitly for general cases, and it is not clear how to bind it with the kernel

for symbolic vertex labels.

To tackle the last issue, our implementation provides a flexible scheme, where the

vertex kernel can be customized by users. In experiments, we introduce a kernel for

vertices which is a product of two kernels: the delta function for symbolic vertex labels

and the Gaussian kernel for non-symbolic vertex attributes.

3.2.2. Structural shortest path kernel

The structural shortest path kernel is an extension of the shortest path kernel, as

well as a special case of the kernel on bags of paths (Suard et al., 2007). This kernel

takes into consideration vertices and edges on shortest paths, instead of the shortest

distance between two vertices.

To construct this kernel, the first step is to obtain all shortest paths between all

vertices in each graph, where the Dijkstra’s algorithm is used (Dijkstra, 1959). Then,

the kernel function on any two shortest paths p and p′ of two graphs is defined as:

kp(p, p′) = kv(ℓv(v1), ℓv(v′1))

n
∏

i=2

ke(ℓe(vi−1, vi), ℓe(v′i−1, v
′
i))kv(ℓv(vi), ℓv(v′i)), (13)

where vi and v′
i
, for i = 1, 2, . . . , n, are respectively the vertices on paths p and p′,

ℓv(·) and ℓe(·) are label functions of vertices and edges, respectively. The functions kv

and ke are kernels on labels of vertices and edges, respectively. In general, these two

kernel functions are simply defined as the delta function for symbolic labels and as the

Gaussian kernel for non-symbolic labels. These two kernel functions are multiplied if

both symbolic and non-symbolic labels exist.

The structural shortest path kernel can then be derived from the shortest-paths ker-

nel kp given in (13). Here we use the simple and straightforward mean average kernel:

kssp(G1,G2) =
1

n1

1

n2

∑

pi∈P1

∑

p j∈P2

kp(pi, p j), (14)
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where P1 and P2 are respectively the shortest path sets of graphs G1 and G2. Other

approaches can also be applied, such as the max matching kernel and the path level-set

based kernel (Suard et al., 2007).

Given graphs with n vertices and m edges, the computational complexity of re-

peated Dijkstra’s algorithm using Fibonacci heaps is O(n2 log n + nm) (Bajema and

Merlin, 1987). The computational complexity to match all paths in two graphs is

O(hn4), where h is the average length of shortest paths. Hence the complexity of the

kernel computation is O(hn4 + nm).

Compared to the shortest path kernel, the structural shortest path kernel involves

more structural information. However, since both kernels adopt the shortest path, the

structure of real paths is still hidden. The path kernel allows to overcome this issue.

3.2.3. Path kernel up to length h

The path kernel compares all possible paths rather than the shortest ones (Ralaivola

et al., 2005). The simple path kernel between graphs G1 and G2 is defined as

kpath(G1,G2) =
∑

p∈P(G1)∪P(G2)

φp(G1)φp(G2), (15)

where P(G) is the set of all possible paths in graph G, and φp(G) denotes the fea-

ture map of path p for graph G. Two definitions of φp(G) are provided, the bi-

nary feature map, where φp(G) = 1P(G)(p), and the counting feature map, defined as

φp(G) = |{p | p ∈ P(G)}|.
Based on the definitions of φp(G), different types of path kernels can be constructed.

The Tanimoto kernel, based on the binary feature map, is defined as follows:

kt
path(G1,G2) =

kpath(G1,G2)

kpath(G1,G1) + kpath(G2,G2) − kpath(G1,G2)
,

where kpath(G1,G2) is the kernel defined as (15) corresponding to the binary feature

map. When φp(G) takes the form of the counting feature map, then the MiniMax

kernel can be constructed as

km
path(G1,G2) =

∑

p∈P(G1)∪P(G2) min(φp(G1), φp(G2))
∑

p∈P(G1)∪P(G2) max(φp(G1), φp(G2))
.

These two kernels are related to the Tanimoto similarity measure in the chemistry

literature, and provide normalization for the path kernel. While the MiniMax kernel
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considers the frequency of each path rather than just its appearance, it measures more

precisely the similarity between graphs of different sizes. These two kernels are imple-

mented in our library, and their performance is discussed in this paper.

Similar to walks in the common walk kernel, the number of paths in a graph can be

infinite. However, unlike the common walk kernel, no closed-form solution has been

raised up to solve this problem in the path kernel. The Depth-first search scheme is

then applied to find all paths, which limits the maximum length of paths to the depth

h. Our implementation applies a trie data structure to store paths in graphs, which

saves tremendous memory compared to direct saving, especially when label set is small

(Fredkin, 1960). Thus, the path kernel between two graphs is computed in O(h2n2d2h).

Path kernel up to length h encodes information of all paths no longer than h in a

graph, which is more expressive than other kernels based on paths. Yet the limitation

of paths’ maximum length is a significant drawback of this kernel, especially for the

computational complexity in large-scale graphs.

4. Experiments

In this section, we first introduce several benchmark datasets corresponding to dif-

ferent types of graphs. These types include labeled and unlabeled graphs, with sym-

bolic and non-symbolic attributes, different average vertex numbers, different average

vertex degrees, linear, non-linear and cyclic patterns. Then we introduce methods to

accelerate computation of kernels, and propose an analysis on applying these methods

by choosing proper parameters. Finally, we perform each graph kernel on each dataset

and analyze the performance and computational complexity according to the types of

graphs, offer advice to choose graph kernels based on the type of datasets and discuss

which ones work on particular graphs.

4.1. Real-world datasets

We examine 7 well-known benchmark datasets, where the first two are for the re-

gression task of estimating the boiling points of molecules and the others are classifi-

cation tasks.
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Table 2: Structures and properties of real-world graph datasets.

Datasets

Substructures Numbers of Labels

Directed N n̄ m̄ d
Class

Numbers
Tasks

linear non-linear cyclic
symbolic non-symbolic

vertices edges vertices edges

Acyclic ✓ ✓ ✗ 3 ✗ ✗ ✗ ✗ 183 8.15 7.15 1.47 - R

Alkane ✓ ✓ ✗ 2 ✗ ✗ ✗ ✗ 150 8.87 7.87 1.75 - R

MAO ✓ ✓ ✓ 3 4 ✗ ✗ ✗ 68 18.38 19.63 2.13 2 C

PAH ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 94 20.70 24.43 2.36 2 C

Mutag ✓ ✓ ✓ 7 11 ✗ ✗ ✗ 188 17.93 19.79 2.19 2 C

Letter-med ✓ ✓ ✓ ✗ ✗ 2 ✗ ✗ 2250 4.67 3.21 1.35 15 C

Enzymes ✓ ✓ ✓ 3 ✗ 18 ✗ ✗ 600 32.63 62.14 3.86 6 C

“Substructures” are the sub-patterns that graphs contain; “Numbers of labels” include numbers of symbolic and non-symbolic vertex and edge labels, with ✗ for no label;

“Directed” exhibits whether directed graphs are included; N is the number of graphs; n̄ is the average number of graph vertices; m̄ is the average number of edges;

d is the average vertex degree; Tasks are either regression (“R”) or classification (“C”).

Alkane is a dataset of 150 alkanes with only carbon atoms, which are represented

by acyclic unlabeled graphs (Cherqaoui and Villemin, 1994).

Acyclic has 183 acyclic molecules with hetero atoms (Cherqaoui et al., 1994).

MAO is a Monoamine Oxidase dataset of 68 cycle-included molecules labeled by

two classes: 38 of them act as antidepressant drugs by inhibiting the monoamine oxi-

dase and 30 do not (Brun, 2018).

PAH is a polycyclic aromatic hydrocarbon dataset composed of 94 cyclic unlabeled

graphs (Brun, 2018). Atoms are all carbons and chemical bounds are all aromatics. The

associated target is to determine whether each molecule is cancerous or not.

Mutag is composed of 188 mutagenic aromatic and heteroaromatic nitro com-

pounds (Debnath et al., 1991). The classification task associated is to correctly de-

termine whether each compound has a mutagenic effect.

Letter-med involves graphs of 2250 distorted letter drawings of 15 capital letters

of the Roman alphabet (Riesen and Bunke, 2008). The “med” suffix indicates that the

distortion is of medium strength. The task is to classify each graph to the proper letter.

Enzymes has 600 enzymes from the Brenda enzyme database (Schomburg et al.,

2004), which represents tertiary structures of protein (Borgwardt et al., 2005). The

task is to predict the correct Enzyme Commission top-level class from all six classes.

These datasets are chosen as they come from different fields, such as bioinformatics

and handwriting recognition, and have different properties that allow to provide an

extensive analysis of graph kernels. Table 2 outlines the properties of these datasets.
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4.2. Computational settings

The criteria used for prediction are SVM for classification and kernel ridge re-

gression for regression. A two-layer nested cross validation (CV) method is applied

to select and evaluate models, as follows. In the outer CV, the whole dataset is first

randomly split into 10 folds, nine of which serve for model validation and one for an

unbiased estimate of the accuracy. Then, in the inner CV, the validation set is split into

10 folds, nine of which are used for training, and the remaining split is used for eval-

uating the tuning of the hyper-parameters. This procedure is repeated 30 times, a.k.a.

30 trials, and the final results correspond to the average over these trials.

Two machines are used to execute the experiments. The first one is a cluster with

28 CPUs of Intel(R) Xeon(R) E5-2680 v4 @ 2.40GHz, 252GB memory, and 64-bit

operating system CentOS Linux release 7.3.1611, referred as CRIANN. Another ma-

chine, referred as laptop, is a laptop with 8 CPUs of Intel(R) Core(TM) i7-7920HQ

@ 3.10GHz, 32GB memory, and 64-bit operating system Ubuntu 16.04.3 LTS. When

comparisons on different machines are required, both CRIANN and laptop are used;

otherwise only CRIANN is used. All results were run with Python 3.5.2.

4.3. Methods to accelerate computation

4.3.1. Fast computation of shortest path kernel implementation

To compute the shortest path kernel between two graphs, G1 and G2, shortest paths

between all pairs of vertices in both graphs are compared. Each time we compare two

shortest paths, both their corresponding pairs of vertices are compared once, which

causes significant redundancy during the vertex comparison procedure. If G1 has n1

vertices and G2 has n2 vertices, then there are at most n2
1

shortest paths in G1 and n2
2

shortest paths in G2, thus n2
1
n2

2
comparisons between shortest paths and 2n2

1
n2

2
com-

parisons between vertices are required to compute the kernel. Each pair of vertices is

compared 2n1n2 times in average.

Xu et al. (2014) propose the Fast Computation of Shortest Path Kernel (FCSP) to

reduce this redundancy. Instead of comparing vertices directly during the procedure

of comparing shortest paths, FCSP compares all pairs of vertices between two graphs

at the beginning, and then stores the comparison results in an n1 × n2 matrix named
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shortest path adjacency matrix. Finally when comparing shortest paths, it retrieves

comparison results of corresponding vertices from the matrix. This method reduces

vertex comparison to at most n1n2 times, which is only 1/(2n1n2) of the direct imple-

mentation. FCSP can reduce the time complexity up to several orders of magnitudes,

with an additional memory usage of only size O(n1n2).

In our implementation, we apply this vertex comparing method to the shortest path

kernel, as recommended in Xu et al. (2014). Moreover, we also extend this strategy

and apply it to the structural shortest path kernel, which allows more redundancy to be

reduced since this kernel requires comparisons between all vertices on a pair of shortest

paths. If average length of shortest paths in G1 and G2 is h, the new method is at most

n1n2h times faster than direct comparison.

Furthermore, we extend this strategy to edge comparison, when computing the

structural shortest kernel. If G1 has m1 edges and G2 has m2 edges, then it re-

quires m1m2 times for edge label comparison, compared to n2
1
n2

2
h times by the original

method.

4.3.2. Parallelization

Parallelization may significantly reduce the computational complexity. The basic

concept of parallelization is to split a set of computation tasks into several pieces, and

then carry them out separately on multiple computation units such as CPUs or GPUs.

We implement parallelization with Python’s multiprocessing.Pool module on all

the graph kernels in two ways: To compute Gram matrices of graph kernels, paralleliza-

tion is performed on pairs of graphs; during cross validation procedure, parallelization

is carried out on the set of trials.

Many factors may influence the efficiency of parallelization, such as the number of

computing cores, the transmission bandwidth between these cores, the method to split

the data, the computational complexity to tackle one piece of data, etc.

Figure 7 reveals the influence of parallelization and CPU numbers on computa-

tional time. For each machine, CRIANN and laptop, we give the computational time

of the Gram matrix and of model selection for the shortest path kernel on each dataset.

Moreover, we also give the ratio between runtimes to compute the Gram matrix on
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Figure 7: Left y-axis: Time (in seconds) to compute Gram matrices (bottom of each pillar) and perform

model selection (top of each pillar) of the shortest path kernel on each dataset on CRIANN (left pillar) and

laptop (right pillar) with parallelization. Right y-axis: The blue dots are the ratios between time to compute

Gram matrices of each dataset on laptop and on CRIANN.

laptop and on CRIANN. The values of this ratio for large-scale datasets are around 3.5,

which turns out to be the inverse ratio of number of CPUs of the two machines (8 ver-

sus 28). It is worth noting that the Letter-med dataset has the largest number of graphs

(but with the relatively “small” graphs), and Enzymes has the “average-largest” graphs

(the second one being the PAH dataset).

Ideally, parallelization is more efficient when more computing cores are applied.

However this efficiency can be suppressed by the parallel procedure required to dis-

tribute data to computing cores and collect returned results. Paralleling relatively small

graphs to a large number of computing cores can be more time consuming than non-

parallel computation. For instance, Figure 7 shows that it takes almost the same time to

compute the Gram matrix of the small dataset Acyclic on both machines, indicating that

the time efficiency raised by applying more CPU cores on machine CRIANN is nearly

neutralized by the cost to allocate these cores. Choosing appropriate chunksize is an

essential way to tackle this problem. Chunksize describes how many data are grouped

together as one piece to be distributed to a single computing core.

In Figure 8, runtimes to compute Gram matrices of the shortest path kernel with dif-

ferent chunksize settings are compared, on 28 and 14 CPU cores. With both CPU core

numbers, for almost all datasets, when chunksizes are too small, the computing time

becomes slightly high, as the parallel procedure costs too much time; as chunksizes
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Figure 8: Time to compute the Gram matrices of the shortest path kernel on all datasets on machine CRIANN

with parallelization and different chunksize settings.

become bigger, the computing time gets smaller, and then reaches the minimum; after

that, the computing time can become much bigger as chunksizes continue growing,

due to the waste of computational resources. The vertical dot line shows the chunk-

size corresponding to the minimum time of each dataset, which varies due to the time

and memory consumed to compute Gram matrices. Computation with wise chunksize

choices could be more than 20 times faster than the worst case. In our experiments, for

convenience of implementations and comparisons, the chunksize to compute an N × N

Gram matrix on a n♥-core CPU is set to 100 if N2 > 100n♥; and N2/n♥ otherwise. The

value 100 is chosen since the runtime is close enough to the minima on all the dataset.

4.4. Performance analysis

In this section, we compare and analyse performance of the kernels for all datasets.

Table 3 gathers performance of all these kernels on all datasets. The column tgm is the

time to compute Gram matrix/matrices in seconds. Note for kernels which need to tune

hyper-parameters that are required to compute Gram matrices, multiple Gram matrices

will be computed, and average time consumption and its confidence are obtained over

the hyper-parameters grids, which are shown after the label “/”. The time shown be-

fore “/” is the one spent on building the Gram matrix corresponding to the best test

performance. Once hyper-parameters are fixed, learning is only performed on a single

Gram matrix. The column tall exhibits the total time consumed to compute Gram ma-
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Figure 9: Comparison of accuracy and runtime of all kernels on unlabeled (PAH) and labeled datasets (MAO,

Mutag). Accuracy is the mean value on 30 trials (pillars), with confidence interval around it (error bars).

trix/matrices as well as to perform model selection for each kernel. For regression tasks

(Acyclic and Alkane), the performances are given in terms of boiling points errors; for

other datasets, the performances exhibit the classification accuracy in percentage.

4.4.1. Labeled and unlabeled graphs

To study the influence of labeling on performance of graph kernels, we examine 3

datasets that have similar properties (e.g. n̄, m̄ and d in Table 2), except for labeling:

PAH is unlabeled, MAO has 3 symbolic vertex labels and 4 symbolic edge labels, and

Mutag has 7 symbolic vertex labels and 11 symbolic edge labels.

Figure 9 exhibits the accuracy of each kernel and the average time to compute each

kernel between a pair of graphs. We can see that, for all kernels, the classification

accuracy on dataset PAH are significantly lower and the confidence intervals around

them are wider than the other two datasets, as PAH contains no labeling information.

However, there is no significant relationship between the datasets and the runtime of the

kernels, which implies that the influence of the graph labeling on runtime is minor on

these datasets compared to other factors, such as the average number of graph vertices.

4.4.2. Graphs with symbolic and non-symbolic labels

Non-symbolic labels are able to introduce continuous attributes to graphs. From all

graph kernels, the shortest path kernel is able to tackle symbolic and non-symbolic ver-

tex labels, whereas the conjugate gradient kernel, the fixed-point kernel and the struc-
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Table 3: Results of all graph kernels based on linear patterns on all datasets.

Datasets Kernels Train Perf Valid Perf Test Perf Parameters tgm tall

Alkane

Common walk 6.48±0.48 11.13±1.79 12.97±14.17 method: geo, γ: 0.08, α: 1e-10 1.93"/2.62"±0.71" 149.00"

Marginalized 41.48±1.93 40.73±2.04 48.05±15.72 iter: 16, pq: 0.7, α: 1e-3 3.77"/2.75"±1.23" 264.94"

Sylvester equation 6.89±0.35 12.60±1.28 8.97±8.84 λ: 0.01, α: 3.16e-9 0.37"/0.38"±0.02" 20.11"

Conjugate gradient 9.21±1.00 12.30±1.92 13.54±11.22 λ: 0.01, α: 3.16e-9 0.61"/0.64"±0.04" 20.91"

Fixed-point iterations 13.54±0.72 16.44±1.46 13.28±7.27 λ: 1e-3, α: 3.16e-8 0.76"/0.63"±0.07" 18.32"

Spectral decomposition 10.62±0.36 13.33±1.13 12.95±6.74 λ: 0.1, α: 1e-10 0.59"/0.65"±0.08" 43.84"

Shortest path 7.80±0.18 8.72±0.22 8.45±1.64 α: 3.16e-4 0.73" 2.68"

Structural SP 5.89±0.17 10.33±0.28 7.21±1.68 α: 0.01 1.49" 3.26"

Path up to length h 0.85±0.03 8.23±1.39 8.61±12.84 h: 9, k_func: MinMax, α: 0.01 0.48"/0.50"±0.04" 42.47"

Acyclic

Common walk 7.22±0.26 12.16±0.92 14.15±5.30 method: geo, γ: 0.02, α: 1.00e-10 1.53"/1.94"±0.38" 142.26"

Marginalized 11.27±0.40 17.85±1.59 17.75±3.77 iter: 19, pq: 0.3, α: 1e-5 5.48"/3.47"±1.59" 321.16"

Sylvester equation 30.75±0.50 31.83±0.49 32.50±4.30 λ: 0.01, α: 3.16e-10 0.41"/0.66"±0.83" 24.71"

Conjugate gradient 9.04±0.46 12.78±1.06 13.98±5.55 λ: 0.01, α: 3.16e-9 0.83"/0.79"±0.10" 25.82"

Fixed-point iterations 11.77±0.23 13.54±0.44 11.41±2.46 λ: 1e-3, α: 1e-8 0.77"/0.70"±0.05" 19.40"

Spectral decomposition 30.97±0.48 31.90±0.60 33.05±4.34 λ: 0.1, α: 1e-9 0.96"/0.79"±0.11" 50.60"

Shortest path 6.22±0.25 9.61±0.56 9.09±2.64 α: 3.16e-9 0.88" 3.41"

Structural SP 3.76±0.15 13.02±1.16 13.60±4.80 α: 1e-3 1.52" 3.85"

Path up to length h 1.90±0.14 6.93±0.43 6.44±1.65 h: 2, k_func: MinMax, α: 3.16e-3 0.52"/0.50"±0.04" 45.70"

MAO

Common walk 97.66±1.04 90.80±3.18 88.43±9.55 method: geo, γ: 0.1, C: 3.16e+5 2.14"/6.11"±3.98" 965.02"

Marginalized 97.34±0.66 90.55±3.14 87.00±14.51 iter: 7, pq: 0.6, C: 3.16e+6 3.47"/3.93"±1.78" 3836.35"

Sylvester equation 90.72±1.40 87.09±2.67 84.52±13.23 λ: 0.1, C: 1e+7 0.37"/0.34"±0.03" 21.07"

Conjugate gradient 96.93±1.34 87.89±2.96 86.24±11.93 λ: 0.1, C: 3.16e+5 0.85"/0.76"±0.10" 68.57"

Fixed-point iterations 80.78±1.71 77.68±3.24 74.71±11.87 λ: 1e-3, C: 3.16e+8 0.96"/0.85"±0.10" 18.58"

Spectral decomposition 79.50±1.78 79.33±1.92 77.67±15.93 λ: 1e-7, C: 3.16e+9 0.34"/1.38"±1.06" 55.28"

Shortest path 97.30±0.77 88.10±2.47 87.58±8.35 C: 3.16e+3 1.65" 3.36"

Structural SP 98.04±0.62 88.64±2.85 92.10±8.41 C: 3.16e+2 7.27" 9.06"

Path up to length h 98.12±0.63 91.02±2.66 93.38±10.07 h: 9, k_func: MinMax, C: 10 0.94"/0.65"±0.19" 40.01"

PAH

Common walk 76.51±1.86 73.07±3.07 66.20±12.68 method: geo, γ: 0.1, C: 3.16e+4 9.87"/32.19"±21.25" 1340.08"

Marginalized 63.53±1.58 63.61±1.63 56.33±13.26 iter: 13, pq: 0.1, C: 3.16e-8 11.67"/9.40"±4.46" 673.91"

Sylvester equation 74.47±1.30 71.88±2.51 71.50±12.36 λ: 0.1, C: 1e+4 0.37"/0.38"±0.05" 43.13"

Conjugate gradient 75.81±1.45 71.94±2.48 73.10±12.77 λ: 0.1, C: 3.16e+4 1.50"/1.24"±0.10" 50.35"

Fixed-point iterations 63.49±2.04 63.58±2.17 56.67±17.09 λ: 1e-4, C: 3.16e+1 2.03"/1.60"±0.38" 23.50"

Spectral decomposition 73.54±1.61 71.09±3.29 70.73±12.70 λ: 0.1, C: 3.16e+5 0.45"/2.33"±1.91" 78.05"

Shortest path 78.77±1.39 75.77±2.19 76.67±11.45 C: 3.16e+2 1.97" 237.00"

Structural SP 77.52±1.52 75.00±2.30 72.50±12.68 C: 3.16e+2 17.91" 617.92"

Path up to length h 76.98±1.15 73.61±2.48 70.20±10.66 h: 1, k_func: MinMax, C: 10 0.53"/0.55"±0.04" 39.43"

Mutag

Common walk 91.88±0.98 88.09±1.31 85.96±7.92 method: geo, γ: 0.02, C: 1e+4 9.86"/19.02"±8.71" 2945.88"

Marginalized 86.07±0.91 78.84±1.52 76.11±7.90 iter: 7, pq: 0.8, C: 1e+6 19.72"/23.04"±11.57" 72207.27"

Sylvester equation 84.89±1.24 83.58±1.90 82.77±7.23 λ: 0.1, C: 3.16e+3 0.51"/0.50"±0.03" 56.55"

Conjugate gradient 92.19±0.76 87.14±1.60 86.18±5.83 λ: 1e-3 C: 3.16e+6 2.84"/2.73"±0.09" 74.39"

Fixed-point iterations 92.31±0.73 87.34±1.51 86.58±6.66 λ: 1e-3, C: 1e+6 4.25"/3.35"±0.62" 45.36"

Spectral decomposition 83.71±0.90 83.41±1.14 84.05±7.85 λ: 1e-7, C: 3.16e+8 0.92"/5.94"±5.14" 159.06"

Shortest path 98.23±0.40 84.39±2.35 81.84±6.63 C: 1e+3 4.89" 7.58"

Structural SP 100.00±0.00 84.66±1.57 86.26±5.14 C: 3.16e+9 68.85" 71.18"

Path up to length h 96.06±0.55 89.89±1.29 88.47±5.84 h: 2, k_func: MinMax, C: 1e+8 0.52"/0.86"±0.35" 51.17"

Letter-med

Common walk 39.40±0.34 36.53±0.72 36.16±2.94 method: geo, γ: 0.11, C: 3.16e+6 95.77"/102.20"±6.58" 377412.73"

Marginalized 7.70±0.10 5.59±0.60 5.20±0.82 iter: 4, pq: 0.8, C: 1e+10 75.03"/120.94"±60.63" 216051.89"

Sylvester equation 39.14±0.31 36.26±0.65 37.27±1.93 λ: 0.1, C: 1e+6 13.76"/13.63"±0.50" 29832.59"

Conjugate gradient 98.32±0.11 92.73±0.32 93.12±1.28 λ: 0.1, C: 1e+2 100.80"/92.35"±4.09" 3281.90"

Fixed-point iterations 97.02±0.14 91.45±0.37 91.30±1.56 λ: 1e-4, C: 1e+5 78.45"/70.97"±7.07" 2481.78"

Spectral decomposition 38.44±0.41 36.10±1.10 36.38±2.61 λ: 0.1, C: 3.16e+6 56.87"/60.19"±3.24" 27308.51"

Shortest path 98.96±0.07 93.87±0.29 93.72±1.12 C: 10 36.98" 255.48"

Structural SP 99.10±0.08 94.84±0.23 94.88±1.24 C: 10 41.92" 257.96"

Path up to length h 49.62±0.29 45.73±0.71 43.83±2.31 h: 9, k_func: MinMax, C: 1e+7 11.98"/12.08"±0.20" 4707.17"

Enzymes

Common walk 71.86±0.94 42.01±1.44 42.81±4.66 method: geo, γ: 0.03, C: 1e+5 907.43"/7960.34"±3246.14" 510920.78"

Marginalized 68.52±0.78 45.72±1.51 45.92±4.79 iter: 19, pq: 0.1, C: 1e+4 2426.77"/1513.51"±743.16" 96652.44"

Sylvester equation 27.53±0.61 22.83±1.19 23.24±4.42 λ: 0.01, C: 3.16e+6 5.19"/5.20"±0.05" 1019.81"

Conjugate gradient 100.00±0.00 61.97±1.33 60.89±5.62 λ: 1e-5, C: 1e+6 416.47"/418.57"±4.48" 4309.13"

Fixed-point iterations 100.00±0.00 61.35±0.98 63.11±3.83 λ: 1e-4, C: 1e+5 741.70"/610.72"±102.94" 4978.36"

Spectral decomposition 27.09±0.72 23.15±1.59 23.68±3.87 λ: 0.1, C: 1e+8 4939.35"/2493.84"±2486.74" 57494.36"

Shortest path 100.00±0.00 68.86±1.91 70.09±4.20 C: 1e+6 704.54" 717.35"

Structural SP - - - - - > 12d

Path up to length h 100.00±0.00 57.53±1.53 57.49±5.19 h: 10, k_func: MinMax, C: 3.16e+2 911.77"/142.91"±279.98" 3123.30"
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Figure 10: Comparison of accuracy and runtime of graph kernels on datasets with and without non-symbolic

labels. The last pillar was removed due to its high computational time.

tural shortest path kernel can deal with both non-symbolic labels of vertices and edges.

From available datasets, Letter-med and Enzymes contain non-symbolic vertex labels.

We compute accuracy and time complexity of each kernel on these 2 datasets, then we

remove the non-symbolic labels from the datasets and compute the performance.

Figure 10 shows that, with non-symbolic labels, classification accuracy of all ker-

nels exceeds 90% on dataset Letter-med, and more than 60% on dataset Enzymes; these

accuracies drop to about 35% when non-symbolic labels are removed, which are still

better than random assignments because of the large numbers of competing classes

(15 and 6, respectively). It reveals how these graph kernels can take advantage of

non-symbolic labels, which carry out essential information of dataset structures. This

consequence is corroborated by the results revealed in Table 3 where graph kernels that

cannot tackle non-symbolic labels work poorly on Letter-med and Enzymes, such as

the common walk kernel and the marginalized kernel.

As a result, non-symbolic labels should always be well examined before designing

graph kernels. When only linear patterns are included, the shortest path kernel, the

conjugate gradient kernel, the fixed-point kernel and the structural shortest path kernel

would be the first to consider.

4.4.3. Graphs with different average vertex numbers

The average vertex number of a graph dataset largely influences the time complex-

ity of computing graph kernels. To examine it, we choose 3 datasets with relatively
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Figure 11: Comparison of runtime of each kernel on datasets with different average vertex numbers.

wide range of vertex numbers, namely PAH, Mutag and Enzymes, corresponding to

unlabeled, symbolic labeled and non-symbolic labeled graphs, respectively. For each

dataset, we order the graphs according to the vertex number, and then split them into

5 subsets with different average vertex numbers. Runtime to compute graph kernels of

these subsets is compared

Figure 11(a)(b)(c) shows the evolution in the runtime to compute Gram matrices

with the growth of average vertex numbers. The runtimes for the common walk kernel

and the structural shortest path kernel growths the fastest, the runtime for the Sylvester

equation kernel and the path kernel up to length h remain relatively stable, while the

increase rate of runtime for other kernels are in the middle. This result is consistent

with the time complexity of computing the Gram matrix of each kernel, where aver-

age vertex numbers to different powers are involved (see Table 1). However, the time

complexity is affected by other factors, such as average vertex degrees, which causes

fluctuations and decreases to the runtime as the average vertex numbers growth. This
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phenomenon is more observable for small datasets with a more narrow range of vertex

numbers, such as PAH shown in Figure 11(a).

4.4.4. Graphs with different average vertex degrees

As vertex numbers, the vertex degrees play an important role in time complexity

of computing graph kernels. Large vertex degrees indicate “dense” graphs where more

edges and connections exist, leading to a much larger number of linear patterns in-

side graphs, such as walks and paths, and more time to explore them. Applying the

same method as in Section 4.4.3, we choose a dataset with relatively wide range of

vertex degrees, Enzymes, order it based on the vertex degree, split it into 5 subsets.

Figure 11(d) reveals the relationship between the runtime to compute the graph kernel

and the average vertex degree of each subset.

Table 1 displays that the time complexity of only two kernels is directly affected by

the average vertex degrees m, namely the structural shortest path kernel and the path

kernel up to length h. As a result, Figure 11(d) shows that the runtime for the path

kernel up to length h increases as the growth of the average vertex degree. Runtime

for most of the other kernels, however, is high for the first subset (when m = 3.2), and

stays stable after. Other than the average vertex degree of each subset, this runtime

is mainly influenced by the average vertex number, which is much bigger for the first

subset than the others.

4.4.5. Linear and non-linear graphs

Graph kernels based on linear patterns are specific to linear structures in graphs-

datasets. In this section, we examine the performance of these graph kernels on non-

linear structures. Datasets MAO and Mutag are employed, since the former contains

more linear structures and less cycles, while the latter, composed of aromatic and het-

eroaromatic compounds, contains more cycles and less linear structures. Besides of

that, they share comparable properties (e.g. vertex labels, n̄, m̄ and d in Table 2). From

Figure 12, we can see that graph kernels based on linear patterns allow to explore non-

linear structures, without a significant impact on the accuracy.

Figure 13 compares the runtime to compute Gram matrices and classification errors
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Figure 12: Comparison of accuracy and runtime of all kernels on datasets with different amounts of non-

linear substructures. Each pair of pillars represents the result of a kernel in Table 1.
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Figure 13: Comparison of runtime versus accuracy error of all graph kernels based on linear patterns. Colors

correspond to different kernels, tri-dot markers depict the results on different datasets. The ellipses represent

80% confidence intervals of each kernel, with their centers marked by “+”.

of all kernels on all classification datasets. Note that for datasets Letter-med and En-

zymes, kernels that cannot tackle non-symbolic labels are omitted. By portraying the

confidence ellipses and their centers, we provide general conclusions on these graph

kernel. From a global viewpoint, all kernels provide a good accuracy on all datasets.

Examining the center of the ellipse of each kernel, we can see that the marginalized

kernel has the worse runtime-accuracy, with some regular computational time. The

structural shortest path kernel provides the best accuracy in general, the price to pay

being its computational complexity. The Sylvester equation kernel, the spectral decom-
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position kernel and the path kernel up to length h have the good compromise between

time complexity and accuracy. Based on this analysis, before choosing a graph kernel,

one can have a rough expectation of its performances.

5. Conclusion

In this paper, an extensive analysis of the graph kernels based on linear patterns

was performed. Although graph kernels based on linear patterns are designed for linear

structures, they were applied with success on datasets containing non-linear structures.

We examined the influence of several factors, such as labeling, average vertex numbers

and average vertex degrees, on the performance of graph kernels.

The computational complexity – a major issue in designing and working with graph

kernels – was extensively addressed in this paper. The average vertex numbers and av-

erage vertex degrees restrict kernels’ scale abilities. Time complexity of all kernels

are polynomial to the average vertex numbers, with the common walk kernel being the

worst one, and thus it should be avoided for large-scale datasets. Average vertex de-

grees had trivial influence on the time complexity, which remained low on all datasets.

The application and generalization of some implementation tricks were rather help-

ful to reduce real-time computational complexity. Fast computation of the shortest path

kernel was extended to any graph kernel that requires comparing vertices and/or edges

explicitly. Parallelization was implemented for all kernels. Both strategies significantly

reduced the computational time when dealing with real-world datasets, especially large

ones. We implemented all graph kernels and applied these tricks to them. The code is

available on GitHub as an open-source Python library named py-graph1.
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