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Abstract. Our aim is to propose a new robust and manageable technique,

called multi-base harmonic balance method, to detect and characterize the pe-
riodic solutions of a nonlinear dynamical system. Our case test is the Hodgkin-

Huxley model, one of the most realistic neuronal models in literature. This

system, depending on the value of the external stimuli current, exhibits peri-
odic solutions, both stable and unstable.

1. Introduction. Scientists have been always fascinated by the functioning of the
human brain and always attempted to understand its complexity.

Only in 1899 Santiago Ramon y Cajal, exploiting the experimental techniques
developed by Camillo Golgi, was able to discover that the nervous system is made
by individual cells, later called neurons [31]. His studies laid the foundations for
the so-called “Neuron Doctrine” and gave him the Nobel Prize in Physiology and
Medicine in 1906 [11]. Although some scientists suggest to rethink the Neuron
Doctrine [6], it remains the pillar of modern neuroscience.

It is worth observing that in each individual there is not an only type of neuron,
but several ones. Nevertheless, they share many common properties. From the cell
body (called soma) starts a number of ramifying branches called dendrites. These
structures constitute the input pole of a neuron. From the soma originates also
a long fiber called the axon. It is considered as the output line of a neuron since
through the axons terminals, called synapses, the exchange of information with
other neurons takes place [33, 35].

Indeed, the basic elements of the communication among the neurons are pulsed
electric signals called action potentials or spikes. In fact, the neuronal cell is
surrounded by a membrane, across with there is a difference in electrical charge
(called also potential), that depends on the different concentrations of ions, espe-
cially Sodium (Na+), Potassium (K+) and Calcium (Ca++), inside and outside the
neuron. If the membrane potential exceeds a certain threshold, then the neuron gen-
erates a brief electrical pulse, that propagates along the axon. Finally the synapses
transfer this electrical signal to the other surrounding neurons [19, 21, 33].
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Moreover, a neuron can exhibit rich dynamical behaviors, such as resting, ex-
citable, periodic spiking, and bursting activities. In particular, the ability of peri-
odic firing has been recorded in isolated neurons since the 1930s [37] and Hodgkin
[17, 19] was the first to propose a classification of neural excitability, depending on
the frequency of the action potentials generated by applying external currents.

In literature several nonlinear dynamical systems have been proposed to suitably
model the dynamics of the electrical activity observed in a single neuron. However,
the paper by Hodgkin and Huxley [18] on the physiology of the squid giant axon
remains a milestone in the science of nervous system, and the model proposed
therein has been extensively studied, due to its richness.

It is known [13, 15, 32] that, depending on the value of the external current
stimuli I, the Hodgkin-Huxley (HH) model exhibits periodic behaviors. Moreover,
for a certain range of I, it behaves as an hard oscillator [26, 29], that is there is
a coexistence of a stable equilibrium and a stable limit cycle. Thus, this implies
the existence of unstable limit cycles in order to separate the two basins of attrac-
tion. Few authors have been able to characterize these periodic solutions, how they
emerge and disappear depending on the intensity of the external current [13, 15, 32].

In general, it is not an easy task to detect a periodic solution of a nonlinear
dynamical system. Several methods are exploited to predict the existence of limit
cycles and to study their stability, both in time and frequency domain [2, 4, 5, 23,
25, 27, 28, 30]. In particular, for the HH model, this is even more difficult due to
the high nonlinear structure of the system.

Our aim is to propose a technique based on the harmonic balance method [2, 27]
in order to characterize the periodic solutions exhibited by a nonlinear dynamical
system. In particular, for the HH model we will show how this technique is more
efficient than the previous approaches based either on finite differences, collocation
or shooting methods [9, 13, 14, 15, 32]. Indeed, by applying the harmonic balance
method we obtain an approximated but analytical expression of the periodic so-
lutions, therefore we get a good approximation of the monodromy matrix and the
Floquet analysis is straightforward. Moreover, it is worth noting that the harmonic
balance method has an exponential convergence, while the collocation methods ex-
ploited in the previous papers [9, 13, 14, 15, 32], even with a mesh adaptation, have
only a polynomial one. Finally, only from 2 to 50 harmonics are needed to correctly
approximate the periodic solutions, so the linear system to solve is low-dimensional.

In the end, the application of the harmonic balance method to the Hodgkin-
Huxley model displays several advantages: a straightforward implementation with-
out mesh adaptation, exponential convergence rate, an analytical representation of
the stable and unstable periodic solutions. Moreover, this method can be coupled
with a simple continuation method based on a selective parameterization instead of
the exploitation of the Keller arc-length parameterization [7].

The paper is structured as follows: in Section 2 the basics of collocation and
harmonic balance methods are briefly recalled and our technique, that we call multi-
base harmonic balance method is introduced. In Section 3 firstly we present the
structure of the HH model and its main characteristics. We show how it is possible
to obtain the bifurcation diagram of the HH model by mainly exploiting the multi-
base harmonic balance method. Furthermore, all the bifurcations are analyzed via
the harmonic balance method and Floquet analysis. Finally, concluding remarks
are offered in Section 4.
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2. Computation of periodic solutions. There are several methods that are
exploited to predict the existence of limit cycles in nonlinear systems and to study
their stability. Classical methods, based on integration schemes, such as the simple
shooting method, are generally sensitive to the stability properties of solutions, so
they cannot be exploited to detect unstable periodic solutions. In this section, first
of all, we review two methods that overcome this problem and belong to a class of
spectral methods. Indeed, we present collocation and harmonic balance methods,
whose main idea is the approximation of the exact solution by the projection on a
finite-dimensional subspace. It has been shown that the harmonic balance method
is more efficient than the collocation method [20], but is computationally onerous
when the periodic solution contains high harmonics. Therefore, in this paper we
propose a new technique, a multi-base harmonic balance method, that permits to
obtain a good approximation of a periodic function even if the nonlinear dynamical
system under study is highly nonlinear.

2.1. Collocation methods. Let us consider an autonomous dynamical system

ẋ = f(x) (1)

where f is a vector field defined on Rn, n ≥ 1, and x ∈ Rn. A solution x = X
of a continuous-time system is periodic if X(t + T ) = X(t) ∀ t, for some T > 0.
The minimal T for which this equality holds is called the period of the solution.
This periodic solution X of least finite period T > 0 of the system corresponds to
a closed orbit Γ in Rn. On this orbit each initial time corresponds to a location
x = x0.

It is interesting to notice that searching a periodic solution of an ODE is equiv-
alent to the resolution of a boundary value problem (BVP). In fact, if x = X is a
T -periodic solution of (1), then it is solution of the following BVP:

dx

dt
= f(x)

x(0) = X(0) = X(T ).
(2)

System (2) belongs to the general class of nonlinear boundary value problems and
several methods have been proposed in literature to solve it [2]. The more intuitive
one is probably the simple shooting method [24]. The idea is to find an initial
condition X0 and a period T such that X(0) = X0 = X(T ), where the unknown
is the couple (X0, T ), with X0 = (x1, ..., xn) ∈ Rn and T ∈ R+. If we define the
functional G as

G(X0, T ) = ϕ(X0, T )−X0, (3)

where ϕ(X0, T ) is the solution of the Cauchy problem ẋ = f(x) with the initial
condition x(0) = X0, then it is straightforward to see that a periodic solution of (2)
is a zero of G. The nonlinear system

G(X0, T ) = ϕ(X0, T )−X0 = 0, (4)

has n equations for n+1 unknowns X0 = (x1, ..., xn) and T . Therefore, one fixes the
first component x1 of vector X0 to be on the trajectory (see [32]) and consequently,
solves (4) by Newton’s method for the unknowns x2, ..., xn, T . Unfortunately, this
method is sensitive to the initial conditions. Thus, it fails to detect unstable limit
cycles. In order to avoid this flaw, the multiple shooting method has been proposed
[2].
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On the contrary, the collocation method is independent on the stability of the
periodic solutions under consideration. We briefly recall the main properties of this
method [34].

First of all, since T is usually unknown, with a simple normalization of the time
scale, it is possible to write (2) on the interval [0, 1]:

du

dτ
= Tf(u)

u(0) = u(1),
(5)

where τ = t
T is the new time variable. Clearly, a solution u(τ) of (5) corresponds to

a T -periodic solution of (2). However, the boundary condition in (5) does not define
a unique periodic solution. Indeed, any time shift of a solution to the periodic BVP
(5) is still a solution. Thus, an additional condition has to be appended to problem
(5) in order to select a solution among all those corresponding to the cycle.

The idea of the collocation methods for BVPs is to approximate the analytical
solution by a piecewise polynomial vectorial function P (t) belonging to Rn that
satisfies the boundary conditions and the original problem on selected points, called
collocation points.

Let us consider the partition 0 = t0 < t1 < · · · < tN = 1, then the approximated
solution P (t) has the following form:

P (t)/[ti,ti+1] = Pi(t), i = 0, . . . , N − 1,

where Pi is a polynomial of degree m for all i = 0, . . . , N − 1, and Pi(ti+1) =
Pi+1(ti+1), in order to have a continuous polynomial on the whole interval [0, 1].
On each sub-interval [ti, ti+1] we introduce the collocation points

tij = ti + ρj(ti+1 − ti), i = 0, . . . , N − 1, j = 1, . . . , m,

where 0 ≤ ρ1 < · · · < ρm ≤ 1.
Then, the request that P (t) satisfies the BVP (5) on the collocations points leads

to the following non-linear algebraic system of equations:

1

T
Ṗ (tij) = f(P (tij)), i = 0, . . . , N − 1, j = 1, . . . ,m, (6)

with the boundary conditions

P (0) = P (1). (7)

Thus, the state vector is given by

U = (P (0), P (tij)0≤i≤N−1,1≤j≤m, P (1), T ) ∈ Rq,

where n is the dimension of X in (5), m ·N is the number of unknowns in (6), and
q = m ·N · n+ 2n+ 1.

Moreover, a further condition is necessary to determine the unknown parameter
T . This is the so-called phase condition. For example, a condition based on the
Poincaré section has been used in [32], while an integral condition can be found in
[8]. In this work, since over one period the derivative of a periodic function is null
in at least one point, we use the condition

u̇1(0) = 0,

where u1 is the first component of u ∈ Rn.
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Several solvers using collocation methods have been proposed in the literature.
For example, COLSYS/COLNEW [1, 3] and AUTO [8] which use collocation meth-
ods with Gaussian points, or bvp4c, bvp5c and bvp6c [22, 34] that are routines with
Lobatto points.

In particular, the bvp4c method exploits 3 Lobatto points on each subinterval. In
this case P (t) is a piecewise vectorial cubic polynomial, P (t) ∈ C1([0, 1]n) [22, 34].

The bvp4c methods controls the error ||u(t) − P (t)|| indirectly, by minimizing

the norm of the residue r(t) = ||Ṗ (t) − F (P (t))||. Thus, P (t) is considered as the
exact solution of the following perturbed problem

Ṗ (t) = F (P (t)) + r(t), H(P (0), P (1)) = δ,

where H is a function of P (0) and P (1) that describes the boundary conditions,
and δ is the associated residue (in our case, δ = (P (1)− P (0))).

The basic idea of this technique is to minimize the residue over each sub-interval
[xi, xi+1], to adjust the mesh as one goes along, such that the norm of the residue
r and δ tend to zero. This assures that the approximated solution P (t) converges
to the exact solution of the problem. It is worth noting that this mesh adaptation
method is able to obtain the convergence even in case of bad initial conditions and
with an approximation of order 4, i.e. ||u(t)− P (t)|| < Ch4, where C is a constant
and h is the maximum mesh step. For further details, see [34].

2.2. Harmonic balance (HB) method. It is worth noting that any periodic
smooth function of period T can be represented as an infinite Fourier series

X(t) = A0 +

∞∑
k=1

(
Ak cos

(
k

2π

T
t

)
+Bk sin

(
k

2π

T
t

))
, (8)

where

A0 =
1

T

∫ T

0

X(t)dt,

Ak =
2

T

∫ T

0

X(t) cos

(
k

2π

T
t

)
dt, k = 1, ...,∞. (9)

Bk =
2

T

∫ T

0

X(t) sin

(
k

2π

T
t

)
dt,

The idea of the harmonic balance method [27] is to search for an approximation
of the solution of (1) as a truncated series

XK(t) = A0 +

K∑
k=1

(
Ak cos

(
k

2π

T
t

)
+Bk sin

(
k

2π

T
t

))
, (10)

where K is the number of harmonics taken into account. If the periodic solution
X(t) is smooth, then the truncated series XK(t) converges to X(t) rapidly, without
exhibiting the Gibbs phenomenon [36]. In fact, if the unknown periodic solution
is smooth, then it is possible to show that its Fourier series converges rapidly and
uniformly. If X has continuous derivatives up to order n ≥ 1, and X(n)(t) is
integrable, we can integrate n times by parts the coefficients Ak and Bk in (9) and
obtain

Ak =
(−1)(n−1)

rn
2

T

∫ T

0

X(n)(t) sin(rt)dt
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and

Bk =
(−1)(n)

rn
2

T

∫ T

0

X(n)(t) cos(rt)dt,

with r = k
2π

T
. Therefore, it is clear, by applying the Riemann-Lebesgue lemma,

that Ak and Bk are O( 1
kn ), and when n increases to infinity, the convergence is

uniform and exponential. For more details, see [12].
Analogously, the function f(XK(t)) will be still periodic of period T , therefore

also this term can be expanded in a truncated Fourier series as

f(XK(t)) = N0 +

K∑
k=1

(
Mk cos

(
k

2π

T
t

)
+Nk sin

(
k

2π

T
t

))
, (11)

wherein each coefficient Mk, Nk will be function of all the coefficients Ak, Bk of
XK(t). This dependence can be expressed by the relations:

N0 =
1

T

∫ T

0

f(XK(t)) dt,

Mk =
2

T

∫ T

0

f(XK(t)) cos

(
k

2π

T
t

)
dt, (12)

Nk =
2

T

∫ T

0

f(XK(t)) sin

(
k

2π

T
t

)
dt.

We note XK = (A0, A1, B1, ..., AK , BK) the vector of Fourier coefficients, and

ej(t) =


1 if j = 0,

cos

(
j

2π

T
t

)
if j = 2k, k = 1, ...K.

sin

(
j

2π

T
t

)
if j = 2k + 1,

the Fourier base. Introducing (10) and (12) in (1), and taking into account the
orthogonality of the elements of the Fourier base, we obtain a nonlinear algebraic
system in the unknowns X̄K and T .

Unfortunately, if the function f is highly nonlinear and when the harmonic bal-
ance is applied with an high number of harmonics, it is not easy to find an analytical
expression of coefficients (12) and the numerical resolution of the nonlinear algebraic
system could be computationally too expensive [23].

Remark 1. It is worth recalling the drawbacks of the methods presented before:

• The simple shooting method fails when one wants to detect an unstable limit
cycle.

• The harmonic balance method is more efficient and has a higher rate of con-
vergence than the collocation methods [20], but it is not exploitable when a
high number of harmonics is needed or the system is highly nonlinear.

In the following we present a technique mixing Fourier series and trigonometric
Lagrange interpolation in the harmonic balance method that permits to avoid such
inconveniences.
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2.3. A multi-base harmonic balance method. If X(t) is a T -periodic continue
function, then the nth trigonometric Lagrange interpolation polynomial of X(t)
with equally spaced nodes is the following [38]

Ln(X(t), t) =

n∑
j=0

X(tj)lj(t),

where

lj(t) =

sin

((
n+

1

2

)(
t
T

2π
− tj

))
sin

(
1

2

(
t
T

2π
− tj

)) , tj =
jT

2n+ 1
, j = 0, 1, ..., 2n.

Then, the functions (lj)j=0,...,2n constitute an Hermitian base of the periodic func-
tions space.

Let us suppose f in (2) to be a polynomial of degree d, and let us consider n =
d×K. Let YF (XK) be the coefficients of f(XK(t)) in the Fourier base (ej)j=0,...,2K

and YL(XK) the components of f(XK(t)) in the Lagrange base (lj)j=0,...,2n. It is
easy to see that

(YL(XK))j = f(XK(tj)).

Moreover, it is possible to deduce YF (XK):

YF (XK) = PΓ−1YL(XK),

where P is the projection matrix

P =
(
I2K+1 0 . . . 0

)
∈ R2K+1,2n+1,

I2K+1 is the identity matrix of rank 2K + 1, and Γ−1 is the transition matrix
between the two bases (lj)j=0,...,2n and (ej)j=0,...,2n. It is easy to notice that the
elements of Γ−1 can be determined as the values of the functions (ej(t))j=0,...,2n in
the nodes tj :

Γ−1 =


1 cos(1× t0) sin(1× t0) · · · · · · · · · cos(n× t0) sin(n× t0)
...

...
... · · · · · · · · ·

...
...

...
...

... · · · · · · · · ·
...

...
1 cos(1× t2n) sin(1× t2n) · · · · · · · · · cos(n× t2n) sin(n× t2n)


It is worth observing that the choice of n = dK and the utilization of the pro-

jection matrix P permit to avoid a sort of aliasing phenomenon [16], that could
take place if n = K. Moreover, this technique can be generalized to the case of
a non-polynomial nonlinearity and, in this case, n can be determined by looking
at the convergence rate of the Fourier coefficients with respect to the number of
considered harmonics.

As far as we know, this joint exploitation of Fourier and Lagrange basis in the
harmonic balance method is an original approach. It is worth noting that the change
of basis between the Fourier and the Lagrange ones permits to avoid to find directly
the Fourier coefficients of f(XK(t)) by using (12). In particular, this is extremely
useful in the case of highly nonlinear systems, such as the HH model, since formulas
(12) would require huge calculations, while our technique permits to obtain the
Fourier coefficients in a more efficient way.
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Finally, from (10) we obtain

D̃XK = YF (XK), (13)

where
D̃ = D ⊗ In, D is the matrix of differential time operator in the base (ej):

D =



0 · · · · · · · · · · · · 0
... D1

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . Dk
. . .

...
...

. . .
. . .

. . .
. . .

...
0 · · · · · · · · · · · · DK


and Dk is the 2×2 matrix of differential time operator in the sub-base (e2k, e2k+1) :

Dk =

(
0 k
−k 0

)
.

Remark 2. Generally, the choice of K depends on the degree of nonlinearity. In
order to detect when an accurate solution has been found, the following criterion is
used:

||XK −XK+1|| ≤ ε, (14)

for a given ε > 0. It is important to remark that, if we introduce the slightly
different notation with respect to (10) ,

XK = XK(t) = AK
0 +

K∑
k=1

(
AK

k cos

(
k

2π

T
t

)
+BK

k sin

(
k

2π

T
t

))

XK+1(t) = AK+1
0 +

K+1∑
k=1

(
AK+1

k cos

(
k

2π

T
t

)
+BK+1

k sin

(
k

2π

T
t

))
,

then, in general, we have AK
k 6= AK+1

k and BK
k 6= BK+1

k for all k, and therefore (14)
is not trivial.

2.4. Floquet multipliers. In this section we will show how the computation of
the Floquet multipliers, and thus the stability analysis of the limit cycles under
consideration, is straightforward when the limit cycles have been detected via the
harmonic balance method [10].

Let x(t) be a periodic solution of equation (1) with period T . The stability
analysis of a periodic solution x(t) can be carried out by computing the eigenvalues
of the monodromy matrix M = Z(T ), where Z(t) is the solution of the matrix
differential equation

Ż = Dxf(x(t))Z, Z(0) = I, (15)

Dxf(x(t)) is the Jacobian matrix evaluated in x(t) and I is the identity matrix
[10, 24]. These eigenvalues are also called Floquet multipliers. It is easy to see that
the monodromy matrix M always has an eigenvalue equal to 1. The other n − 1
eigenvalues of M determine the stability and bifurcation behavior of the periodic
orbits. In fact, x(t) is stable if all the eigenvalues are inside the unit circle in the
complex plane, unstable if there is at least an eigenvalue outside, and a bifurcation
occurs when one eigenvalue crosses the unit circle.



A MULTI-BASE HARMONIC BALANCE METHOD 815

Since, in general, it is not easy to solve (15), the monodromy matrix M can be
approximated as proposed in [10]. Let us define A(t) = Dxf(x(t)) and for sake of
simplicity let us assume that A(t) is real. Let us divide the interval [0, T ] into n
equal parts by 0 = t0 < t1 < · · · < tn = T , i.e. h = tk+1− tk = T/n. Notice that for
periodicity the nodes t0 = 0 and tn = T are equivalent. Let us replace the matrix
A(t) with the piece-wise constant matrix Ah(t) defined

Ah(t) = Ah,k, t ∈ [tk, tk+1), (k = 0, . . . , n− 1),

where Ah,k is a constant matrix, satisfying minA(t) ≤ Ahk ≤ maxA(t), t ∈
[tk, tk+1). Usually, the constant value assumed in the left extreme of the subinter-
val, namely Ahk = A(tk), is chosen.

Thus, it is easy to see that the solution Zh(t) of the approximated system

Żh = Ah(t)Zh, Zh(0) = I

is given by

Zh(t) = exp((t− tk)Ahk)exp(hAh,k−1) · · · exp(hAh0), t ∈ [tk, tk+1],

so, the following approximation of the monodromy matrix M is obtained:

Mh = Zh(T ) =
∏

k∈{0,..N−1}

exp(hAh,k).

For more details, see [10].
We remark that when the periodic solution is found via the harmonic balance

method, we have an approximated but analytical solution in the form (10). There-
fore, the matrix Ah(t) can be computed for any interval subdivision 0 = t0 < ... <
tk < ...tn−1 < tn = T and the Floquet multipliers can be easily calculated. On the
contrary, if other numerical methods, such as the collocation method, are exploited,
the calculation of the Floquet multipliers is less simple, since first of all a numerical
interpolation of the periodic solution is needed.

3. Numerical results. In this section we show how our technique based on the
HB method permits to efficiently characterize the periodic solutions of the Hodgkin-
Huxley (HH) model. First of all, the structure of the HH model and its main
characteristics are briefly presented.

3.1. The Hodgkin-Huxley model. The Hodgkin-Huxley model for a neuron con-
sists in a set of four nonlinear ordinary differential equations in the four variables
X = (V,m, h, n), where V is the membrane potential, m and h are the activation
and inactivation variables of the sodium channel and n is the activation variable of
the potassium current. The corresponding equations are the following [15, 18]:



C
dV

dt
= −I − [(V − ENa)gNam

3h+ (V − EK)gKn
4 + (V − EL)gL],

dn

dt
= αn(V )(1− n)− βn(V )n,

dh

dt
= αh(V )(1− h)− βh(V )h,

dm

dt
= αm(V )(1−m)− βm(V )m,

(16)
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where I is the external current stimulus, C is the membrane conductance, gi are
the shifted Nernst equilibrium potentials, Ei are the maximal conductances, α(V )
and β(V ) are functions of V , as follows:

αn(V ) = 0.1expc(0.1(10 + V )), βn(V ) = exp(V/80)/8,
αh(V ) = 0.07exp(V/20), βh(V ) = 1/(1 + exp(0.1(30 + V ))),
αm(V ) = expc(0.1(25 + V )), βm(V ) = 4exp(V/18),

and expc(x) is given by [15]

expc(x) =


x

exp(x)− 1
if x 6= 0

1 if x = 0.

Finally, the typical values for the other parameters are [13, 15]:

EK = 12 mV, ENa = −115 mV, EL = −10.599 mV

gK = 36 mS/cm2, gNa = 120 mS/cm2, gL = 0.3 mS/cm2.

For small values of the current stimulus I the system exhibits a stable equilibrium
point. If I is increased, then a stable periodic solution with large amplitude appears,
while the equilibrium point remains stable. This means that necessarily unstable
solutions are present, in order to separate the two basins of attraction. In [15],
the author shows that, depending on the value of I the HH model presents from
one to three unstable limit cycles. Moreover, in a certain range of values of I
the equilibrium point becomes unstable, but finally the stable periodic solution
disappears through a Hopf bifurcation and the equilibrium point regains its stability.

At present, few works about the detection of the periodic solutions of the HH
model and their related bifurcations exist in literature, for example [9, 13, 14, 15, 32],
because of the high dimension of the system and its high nonlinearity. Furthermore,
the existing works approach the problem by exploiting different methods (finite
differences, collocation or shooting methods), that are not so simple to handle with.

We show that through our technique based on the harmonic balance method
[2, 27] it is possible to efficiently characterize and numerically approximate the
periodic solutions exhibited by the HH model (16) and the related bifurcations,
depending on the intensity of the external current stimuli I.

In particular, we point out how the harmonic balance method can be efficiently
exploited in the route-to-chaos region found by [13], that is in the region of the
Hodgkin-Huxley bifurcation diagram where the dynamics is more awkward and
thus more interesting. This method permits to obtain analytically the stable and
unstable periodic solutions of the Hodgkin-Huxley model, therefore we get a better
characterization of the unstable chaos and of the Hopf bifurcations. In fact, the
Floquet multipliers can be easily computed and the flip bifurcation effortlessly de-
tected. In particular, we show that in the regions close to the Hopf bifurcations we
are able to obtain the unstable periodic solution with just two harmonics (thus 12
unknowns variables).

3.2. Continuation technique and Newton’s algorithm. In this work, we are
interested in detecting periodic solutions of HH system, depending on the values of
the external current I. We will use a continuation method where at each iteration
we fix the parameter I and determine the unknown periodic solution X(I) and its
period T (I), starting from the solution found at the previous step.
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Figure 1. Bifurcation diagram of the HH model, showing the sta-
ble (solid line) and unstable (dotted line) branches of the periodic
solutions of HH model. For each periodic solution the minimum
and the maximum values of the potential V over one period are rep-
resented. Depending on the values of I, two regions with different
dynamical behaviors can be identified.

Therefore, the numerical computation of a periodic solution is based on the
resolution of the nonlinear algebraic system

F (X,T, I) = 0, (17)

issue of one of the methods presented above (mainly HB method), where X is the
state vector, T is the period approximation, and I is the parameter.

The continuation method implementation exhibits two main difficulties: on the
one hand, the construction of a right initial solution, and on the other hand the
progression of the algorithm for critical values of parameter I, that is the turning
points. It is possible to ride out the first one by starting from a stable limit cycle
branch, that can be suitably numerically approximated with a fourth-order Runge-
Kutta method. For the second one, Chan and Keller [7] proposed the arc-length
continuation method. In our case, since in a neighborhood of the turning points
the function T (I) is monotone [32], we can use T as parameter in order to follow
the branch continuation.

Let us remark that, in our case, the branches are locally linear, so, for suitable
choices of T and I in our algorithm, the next point is obtained via a correction and
by using Newton method [7].

Our codes are available at: http://lmah.univ-lehavre.fr/codes/codes.html

3.3. Bifurcation diagram and branches of periodic solutions. Both colloca-
tion and harmonic balance methods are appropriate for detecting all the periodic
solutions, both the stable and unstable ones. The multi-base harmonic balance
method uses Fourier series, therefore we have an analytical expression of the solu-
tion and the convergence rate is of exponential order. In our case, in general 50
harmonics are enough to get the desired accuracy (see Remark 2), so we have at
most only 405 unknowns variables.

In Fig. 1 the bifurcation diagram for the HH model has been obtained by jointly
and optimally exploiting the three methods presented above, that is shooting, col-
location and multi-base HB methods. The stability analysis of the detected limit

http://lmah.univ-lehavre.fr/codes/codes.html


818 AYMEN BALTI, VALENTINA LANZA AND MOULAY AZIZ-ALAOUI

6 7.5 9 10
−100

−80

−60

−40

−20

0

20

I2I4 I3I5 I

V

Figure 2. Zoom for I ∈ [0, I2] of Fig 1. HH model exhibits one
equilibrium point, one stable limit cycle (solid line) and up to 3
unstable ones (dotted lines).
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Figure 3. (a) The stable periodic solution detected by the HB
method for I = 6.25 exhibits a sort of Gibbs phenomenon. (b)
Zoom showing the small oscillations, sign of a non accurate approx-
imation of the limit cycle, despite the exploitation of 50 harmonics.

cycles has been carried out by the calculation of the Floquet multipliers, by applying
the numerical algorithm proposed in [10] to the approximated solution.

It is possible to see that the dynamical behavior of HH system can be decomposed
in two main regions, depending on the value of the external current I. For I > I2 =
9.73749234, there is one equilibrium point and one stable periodic solution, that
disappears through a Hopf bifurcation for I = I1 = 154.500. Moreover, there is a
second region of the bifurcation diagram, for I ∈ [0, I2], that is more interesting,
since its dynamical behavior is more complex and rather less understood. A zoom
of the diagram for I ∈ [0, I2] can be found in Fig. 2. It is possible to see
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Figure 4. (a) Stable and (b) unstable periodic solutions for dif-
ferent values of I, in a neighborhood of (a) I1 and (b) I2, respec-
tively.
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Figure 5. Time series of (a) the stable periodic solution for I =
152.2500 and (b) the unstable periodic solution for I = 9.71889.

that in this second part of the diagram the system undergoes three saddle-node
of cycles bifurcations at I3 = 7.92198549, I4 = 7.84654752 and I5 = 6.26490316.
They correspond to the knees of the bifurcation diagram and they consist in the
collision and disappearance of two periodic solutions. Moreover, the system exhibits
a period-doubling bifurcation [32] at I6 = 7.92197768 that can be detected by the
joint application of the harmonic balance method and the Floquet analysis.

For I close to I5, the periodic solutions detected by the multi-base HB method
exhibit a sort of Gibbs phenomenon [36], as it can be seen in Fig. 3, and this does
not permit to accurately detect the saddle-node of cycles bifurcation. Therefore
only in this region shooting and collocation methods have been used in order to
find the stable and unstable periodic solutions, respectively. The remaining of the
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Figure 6. Stable (solid line) and unstable (dashed line) limit
cycles near the first saddle-node of cycles bifurcation, for (a)
I = 6.2649 both solutions are almost coincident, and for (b) I =
6.2716.
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Figure 7. Projection of two unstable limit cycles on the (V, n)
plane for (a) I = 7.92198548 . I3 and (b) I = I3 = 7.92198549.

diagram has been found via the multi-base HB method, by choosing and control-
ling the minimal number of required harmonics (see Remark 2). In particular, for
I ∈ [0, I2], 50 harmonics have been considered for the approximation of the stable
limit cycle with higher amplitude, while for I > 7 the unstable limit cycles required
only 30 harmonics, and for I > 8 the number of harmonics can be gradually reduced
since the unstable limit cycle becomes more and more regular. Finally, close to the
Hopf bifurcation at I2 only one harmonics is sufficient to get the best approximation
of the unstable periodic solution.

Therefore, we can conclude that multi-base HB method works very well in the
region between I4 and I2, that is in the richest and most interesting part of the
bifurcation diagram. Indeed, it permits to carry out bifurcation analysis in a more
straightforward way.
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Figure 8. Projection of two unstable limit cycles on the (V, n)
plane for (a) I = I4 = 7.84654752 and (b) I = 7.84654876 . I4.

In the following, we analyze more accurately the various limit cycles bifurcations
that take place.

3.4. Analysis of the limit cycles bifurcations. Hopf bifurcations. In this
paragraph, we are interested in Hopf bifurcations, that take place at I = I1 =
154.500 and I2 = 9.73749234. A view into (V, n, I) space projection of stable and
unstable periodic solutions, in a neighborhood of the two Hopf bifurcations, are
shown in Fig. 4. These results suitably match with the theoretical results proved
in [13, 15].

It is worth noting that in both cases over a large interval of I close to the Hopf
bifurcations, the periodic solutions are almost sinusoidal (see Fig. 5). Therefore,
only one or two harmonics are needed to conveniently approximate this solution via
the harmonic balance method.
Saddle node of cycles bifurcations. In our case, there are two types of sad-
dle node of cycles bifurcation: for I = I5 = 6.26490316 we have a simultane-
ous appearance of two limit cycles (one stable and the other unstable), while at
I = I3 = 7.92198549 and I = I4 = 7.84654752 we have the collision of two unstable
periodic solutions (see Figs. 6, 7 and 8). For detecting such bifurcations, we use
the Floquet analysis, by searching when an additional Floquet multiplier crosses
the unit circle in +1.

The Floquet multipliers for these three cases are represented in Fig. 9. It is
possible to see that a multiplier leaves or enters in the unit circle through +1.

Period doubling bifurcation. Finally, in this section, we consider the period-
doubling bifurcation. By exploiting the Floquet analysis, we can easily detect this
bifurcation since in this case a Floquet multiplier crosses the unit circle through
−1, as it is shown in Fig. 10. Table 1 shows the values of the Floquet multipliers
for different values of I. As I tends to I6 = 7.92197768, the second most negative
Floquet multiplier tends to −1.

4. Conclusion. In 1952 Hodgkin and Huxley developed the pioneer and still up-
to-date mathematical model for describing the activity of the squid giant axon.
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Figure 9. (a)-(b) Floquet multipliers for the stable limit cycles
and unstable limit cycles, respectively, associated to the first saddle
node of cycles bifurcation for I ∈ [6.2792, 6.7872]. As I increases,
in (a) the multiplier µ4 starts from the value +1 and then enters
in the unit circle, while in (b) the multiplier µ4 starts to the value
+1 and becomes bigger and bigger. (c)-(d) Floquet multipliers
for the two unstable limit cycles associated to the second saddle
node of cycles bifurcation for I ∈ [7.921985465, 7.921985491]. Here,
in both cases, the third multiplier is outside the unit circle (this
makes the limit cycle unstable) and is not shown, since it takes
very high values with respect to the others. As in the previous
case, as I decreases, the multiplier µ4 starts from the value +1
and either (c) enters in the unit circle, or (d) takes higher and
higher values. (e)-(f) Floquet multipliers for the two unstable limit
cycles associated to the third saddle node of cycles bifurcation for
I ∈ [7.846557778, 7.846616827]. Also in this case, for both limit
cycles, the third multiplier is not represented. As I increases, the
multiplier µ4 starts from the value +1 and either (e) escapes from,
or (f) enters in the unit circle.

Depending on the value of the external current stimuli, this fourth-order nonlin-
ear dynamical system exhibits many complex behaviors, such as multiple periodic
solutions (both stable and unstable) and chaos.
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Figure 10. Floquet multipliers near the period-doubling bifurca-
tion for different values of I ∈ [7.92197743, 7.92197799]. By de-
creasing I, the multiplier µ4 crosses the unit cycle through −1.

Table 1. By decreasing the value of I, the multipliers µ4 decreases,
crosses the value -1 for I = 7.92197768 and enters into the unit
circle.

I µ1 µ2 µ3 µ4

7.92197799 1.000 0.000 -2940.687 -1.041
7.92197793 1.000 -0.000 -2964.042 -1.033
7.92197787 1.000 0.000 -2987.386 -1.025
7.92197781 1.000 0.000 -3010.719 -1.017
7.92197775 1.000 -0.000 -3034.042 -1.009
7.92197768 1.000 0.000 -3057.354 -1.001
7.92197762 1.000 -0.000 -3080.655 -0.993
7.92197756 1.000 0.000 -3103.946 -0.986
7.92197750 1.000 0.000 -3127.225 -0.978
7.92197743 1.000 0.000 -3150.494 -0.9713

Previous works have treated this problem by using several numerical methods,
such as shooting and finite difference methods, that are not so simple to handle
with. In this paper, we propose a multi-base HB method, a technique based on the
harmonic balance method, permitting to detect the stable and unstable periodic
solutions and the associated bifurcations of a nonlinear dynamical system. In par-
ticular, we have shown how our multi-base harmonic balance method is extremely
handy, permits to obtain the bifurcation diagram of the HH model, and works very
well in the most complex part of such diagram. Furthermore, harmonic balance and
Floquet analysis have permitted to suitably detect the period-doubling bifurcation
that entails a route-to-chaos in the HH model.
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