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Abstract This work reports the second part of a review

intending to give the state of the art of major metabolic

phenotyping strategies. It particularly deals with inherent

advantages and limits regarding data analysis issues and

biological information retrieval tools along with transla-

tional challenges. This Part starts with introducing the

main data preprocessing strategies of the different meta-

bolomics data. Then, it describes the main data analysis

techniques including univariate and multivariate aspects.

It also addresses the challenges related to metabolite

annotation and characterization. Finally, functional analysis

including pathway and network strategies are discussed. The

last section of this review is devoted to practical consider-

ations and current challenges and pathways to bring

metabolomics into clinical environments.

Keywords Omics .Metabolomics . Metabolome .Mass

spectrometry . Nuclear magnetic resonance . Chemometrics

Introduction

Addressing biology as an informational science is a key driver to

translate biological data into actionable knowledge. This requires

innovative tools that allow information extraction from high di-

mensional data. Bioinformatics is the field that was born to tackle

this challenge (Hogeweg 2011). Bioinformatics applies informat-

ics techniques such as applied mathematics, computer science,

and statistics to retrieve the organized biological information. In

short, bioinformatics is a management information system for a

biological system (Luscombe et al 2001). The metabolomic data

requires adapted statistical tools to retrieve as much chemical

information as possible to translate it into biological knowledge.

The major challenge is to reduce the dimensionality by selecting

informative signals from the noise. To achieve this goal, chemo-

metric tools are widely used. Chemometrics is the science of

extracting useful information from chemical systems using

data-drivenmeans (Brereton 2014). It is inherently interdisciplin-

ary, borrowing methods from data-analytic disciplines such as

statistics, signal processing, and computer science. Descriptive

and predictive problems could be addressed using chemical data.

This second part of the review intends to give the state of the art

of metabolomics data handling strategies along with their inher-

ent advantages and limits regarding data analysis issues.

Furthermore, biological information retrieval tools and their

translational challenges into actionable results are described.

Finally, practical considerations and current challenges to bring

metabolomics into the clinical environment are discussed. The

general metabolomics workflow is presented in Fig. 1.

Biological information recovery

The analytical performance improvements associated

with metabolomics platforms have led to the generation
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of complex and high-dimensional data sets. Handling

the huge amount of generated data in a smoothly

high-throughput fashion is a very important issue for

transforming the data into clinically actionable

knowledge.

Preprocessing

Targeted metabolomics aims to process data sets retrieved

from a subset of the metabolome. It contains predefined,

chemically characterized and biochemically annotated

Fig. 1 General metabolomics

workflow. Metabolomics is

divided into two main strategies.

A targeted metabolomics is a

quantitative analysis or a

semiquantitative analysis of a set

of metabolites that might be

linked to common chemical

classes or a selected metabolic

pathway. An untargeted

metabolomics approach is

primarily based on the qualitative

or semiquantitative analysis of the

largest possible number of

metabolites from diverse

chemical and biological classes

contained in a biological sample.

The generated data undergo the

data analysis step (univariate and

multivariate) and functional

analysis to get actionable

biological insight
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metabolites. The main advantages of targeted metabolomics

are that no analytical artifacts are carried throughout the

downstream analysis; only a set of selected metabolites are

analyzed. However, in untargeted metabolomics, data analysis

is quite time-consuming. Different automated processes have

been developed (Tsugawa et al 2013, 2014; Cai et al 2015)

along with commercial solutions from instrument vendors. In

contrast, the untargeted approach attempts a comprehensive

analysis of all measurable metabolites in a given sample,

including unknowns. It requires a holistic analysis of

high-dimensional raw data sets, which in turn requires

reducing the data into more computationally manageable

formats without significantly compromising the

contained chemical information. Because of noise, sam-

ple variation, or analytical/instrument factors, NMR and

MS spectra often show differences in width, position,

and peak shape. The goal of preprocessing is to correct

these differences for better quantification of metabolites

and enhanced intersample comparability. Data prepro-

cessing includes some or all of the following steps:

noise filtering, baseline correction, peak detection, peak

alignment, and spectral deconvolution. Several prepro-

cessing considerations and methods can be applied to

both NMR and MS data (Vettukattil 2015; Szymanska

et al 2016; Yi et al 2016). MS data preprocessing in-

cludes some or all of the following steps: noise filter-

ing, baseline correction, peak detection, peak alignment,

and spectral deconvolution. The order of the steps may

differ between algorithms. Noise filtering is often ap-

plied to MS data to improve peak detection. Many dif-

ferent noise filters exist, including Gaussian, Savitzky–

Golay, and wavelet-based filters (Yi et al 2016). The

aim of the peak detection and deconvolution step is to

identify and quantify the signals that correspond to the

analytes (metabolites) in a given sample. Peak detection

algorithms follow two strategies: derivative techniques

or matched filter response (Szymanska et al 2016; Yi

et al 2016). A deconvolution step is used to separate

overlapping peaks in order to improve peak detection

(Johnsen et al 2017). Furthermore, a de-isotoping step

is used to cluster the isotopic peaks corresponding to

the same chemical feature to clean the data matrix.

Alignment of the detected features across different sam-

ples aims to remove intersample shifts, and several

alignment algorithms have been developed (Smith et al

2013; Szymanska et al 2016). The data dimensionality

has to be reduced to make them applicable to instru-

ments paired with MS. Different strategies enable data

compression such as binning and the Bsearch of regions

of interest (ROI)^ methods that are the most adequate

hyphenated MS data sets. A comparison of some peak-

picking algorithms used in untargeted MS-based meta-

bolomics have been reported (Rafiei and Sleno 2015).

XCMS is an open access mass spectrometry data pro-

cessing software. It is widely used in the metabolomics

community. It was developed in response to the grow-

ing need for user-friendly software to process complex

untargeted metabolomic data (Smith et al 2006; Gowda

et al 2014). It has been designed as a solution for the

entire untargeted metabolomic workflow ranging from

the raw data processing to direct metabolite assignment

through integrated and automated METLIN database

queries. The platform has been recently upgraded with

data streaming capabilities to support high-throughput,

cloud-based data processing, and systems biology anal-

yses (Huan et al 2017). NMR data preprocessing typi-

cally includes baseline correction, alignment, and bin-

ning. Baseline correction aims to correct systematic

baseline distortion. Some spectral regions, such as that

of water, are often removed. Peak shifts due to differ-

ences in instrumental factors such as salt concentrations,

temperature, and pH changes can be corrected by alignment

procedures (Smolinska et al 2012). Binning or bucketing is a

dimension reduction method that splits the spectra into seg-

ments or bins and assigns a representative value to each bin.

However, binning can hamper spectral resolution. The typical

output of the preprocessing step is a data matrix that contains

the detected features and the corresponding intensity

(abundance) in each sample.

Normalization

As with other omics, metabolomics data have several intrinsic

characteristics, such as their asymmetric distribution (De

Livera et al 2012) and a substantial proportion of instrumental,

analytical, and biological noise (Grun et al 2014; Mak et al

2015). Thus, the goal of data normalization is to eliminate

experimental biases related to the abundance of detected fea-

tures between samples without compromising biological var-

iations. Most of the methods are inspired by previous omic

strategies (genomics and transcriptomics) that suffer from

similar experimental biases (Tebani et al 2016). Indeed, the

chemical diversity of metabolites and interindividual varia-

tions lead to changes in extraction and MS ionization yields,

making it difficult to distinguish changes of biological interest

from analytical biases (instrumentation, operators, and re-

agents). Strategies for normalization of metabolomics data

can be divided into statistical approaches and chemical ap-

proaches. Statistical approaches are based on statistical

models that define correction factors specific to each sample

from the complete data set (Li et al 2016), such as normaliza-

tion by standard deviation (Scholz et al 2004), mean global

intensity (Wang et al 2003), quantile normalization (Lee et al

2012), probabilistic quotient normalization (Dieterle et al

2006), cyclic loess (Dudoit et al 2002), QC-robust spline batch

correction (Kirwan et al 2013) or support vector regression
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(Shen et al 2016). Chemical approaches are based on one or

more reference compounds (Hermansson et al 2005; Bijlsma

et al 2006; Sysi-Aho et al 2007), internal standards, or endog-

enous or exogenous compounds that are used to normalize the

entire chromatogram (single compound) or certain regions of

the chromatogram by normalizing each zone according to a

standard that is eluted in that region. Other strategies based on

the characteristics of the studied matrix, such as dry mass of

the samples, volume (e.g., 24-h urine), and osmolality. Protein

or creatinine levels can also be used (Wu and Li 2016). A

comprehensive comparison of state-of-the-art normalization

techniques was recently reported (Li et al 2016).

Transformation, centering, and scaling

Statistical methods assume that the data under analysis have a

specific type of probability distribution. Thus, the inferences

made from the data depend on the chosen distribution. If the

data under examination do not exhibit that distribution, then

the inferences could be false or misleading. Most parametric

methods in metabolomics assume that the data have a

Gaussian distribution. However, in metabolomics, MS and

NMR data are hampered by noise from different sources.

Furthermore, the feature distributions can be skewed. So,

transformations aim to correct for heteroscedasticity and

skewness before statistical analysis. This allows building of

statistically meaningful and interpretable models in metabolo-

mics. Different mathematical transformations can be used,

such as log transformation and power transformation (van

den Berg et al 2006). Multivariate analytical methods are

based on latent variable projections that extract information

from the data by projecting observations onto the direction of

the maximum variance. Hence, NMR andMS data analysis by

these methods mainly focuses on the average spectrum. This

approach may mask underlying biological variation because

more abundant metabolites will exhibit high values in the data

matrix and subsequently show large differences among sam-

ples compared to less abundant metabolites. Data scaling

methods divide each data point for a given feature by a scaling

factor that is a measure of data dispersion for that feature.

Therefore, scaling the data aims to remove the offset from

the data and focus on the biological variation regarding simi-

larities and dissimilarities of samples. There are several scal-

ing methods such as auto-scaling (unit variance scaling), in

which the mean and the standard deviation of the feature are

calculated. The aim of auto-scaling is to give equal weights to

all features, but this method is very sensitive to large devia-

tions from the sample mean. Thus, pareto scaling is the most

popular alternative in metabolomics. In pareto-scaling, each

observation in the mean-centered feature is divided by the

square root of the standard deviation. Pareto scaling is a

compromise between mean-centering and auto-scaling

(van den Berg et al 2006).

Data analysis

Univariate data analysis

Univariate statistical methods can be used in metabolomics.

Their main limitation is that they consider only one variable at

a time, which may not be convenient for high-dimensional

data. Parametric tests such as Student’s t-test and ANOVA

are commonly applied to assess the differences between two

or more groups, respectively, provided that the normality as-

sumption is verified (Broadhurst and Kell 2006). Otherwise, if

normality is not assumed, a nonparametric test such as Mann–

Whitney U test or Kruskal–Wallis one-way ANOVA can be

used. Another important issue is that applying multiple uni-

variate tests in parallel with a high-dimensional data set raises

the multiple testing problem. Since a large number of features

are simultaneously analyzed in metabolomics, the probability

of accidentally finding a statistically significant difference

(i.e., true positive) is high. Different correction methods can

be used to handle this multiple testing issue. In the Bonferroni

correction, the significance level for a hypothesis is divided by

the number of hypotheses simultaneously being tested

(Broadhurst and Kell 2006). Hence, the Bonferroni correction

is considered a conservative correction method. Less conser-

vative methods are available and are based on lowering the

false-discovery rate (FDR). Less restrictive approaches FDR-

based methods minimize the expected proportion of false pos-

itives among the total number of positives (Benjamini and

Hochberg 1995). It should be noted that potential confounding

factors such as sex, age, or diet may lead to spurious results if

not properly addressed. Furthermore, the main disadvantage

of univariate methods is their lack of feature correlations and

insights about interactions. Hence, advanced multivariate ap-

proaches are more suitable for in-depth inferences.

Multivariate data analysis

Bioinformatics a field that permits data collection, analysis,

parsing, and contextual interpretation, and it supports

decision-making on those bases. Bioinformatics can be de-

fined as conceptualizing biology in terms of molecular com-

ponents and by applying Binformatics techniques^ borrowed

from disciplines such as applied mathematics, computer sci-

ence, and statistics to understand and organize information on

a large scale (Luscombe et al 2001). The major challenge is to

reduce the dimensionality by selecting informative metabolic

signals from the highly noisy raw data. Chemometric tools are

widely used to achieve this goal. Chemometrics is defined as

the science of extracting useful information from chemical

systems by data-driven means (Brereton 2014). It may be

applied to solve both descriptive and predictive problems,

using biochemical data. In multivariate methods, representa-

tive samples are presented as points in the space of the initial

396 J Inherit Metab Dis (2018) 41:393–406



variables. The samples can then be projected into a lower

dimensionality space based on components or latent variables,

such as a line, a plane, or a hyperplane, which can be seen as

the shadow of the initial data set viewed from its best perspec-

tive. The sample coordinates of the newly defined latent var-

iables are the scores, while the directions of variance to which

they are projected are the loadings. The loadings vector for

each latent variable contains the weights of each of the initial

variables (metabolites) for that latent variable. Unsupervised

methods attempt to reveal patterns or clustering trends in the

data that underpin relationships between the samples. These

methods also highlight the variables that are responsible for

these relationships, using visualization means. Chemometrics

methods are mainly divided into unsupervised and supervised

methods. In unsupervised methods, no assumptions are made

about the samples and the aim is mainly exploratory. In meta-

bolomics data, metabolic similarity shapes the observed clus-

tering. Principal component analysis (Hotelling 1933) is a

widely used pattern recognition method; it is a projection-

based method that reduces the dimensionality of the data by

creating components. Principal component analysis allows a

two- or three-dimensional visualization of the data. Because it

contains no assumptions on the data, it is used as an initial

visualization and exploratory tool to detect trends, groups, and

outliers. It allows simpler global visualization by representing

the variance in a small number of uncorrelated latent variables.

Independent component analysis (ICA) is another unsuper-

vised method that is a blind source separation method that

separates multivariate signals into additive subcomponents

(Bouveresse and Rutledge 2016). Its interpretation is similar

to PCA, but instead of orthogonal components, it calculates

non-Gaussian and mutually independent components (Wang

et al 2008; Al-Saegh 2015). Compared to PCA, ICA as a

linear method could provide potential benefits for untargeted

metabolomics. ICA has been successfully used in metabolo-

mics (Li et al 2012; Monakhova et al 2015; Liu et al 2016).

Other unsupervised methods, such as clustering, aim to iden-

tify naturally occurring clusters in the data set by using simi-

larity measures defined by distance and linkage metrics

(Wiwie et al 2015). A dendrogram or a heat map can be cre-

ated to visualize the similarities between samples. Commonly

used clustering methods include correlation matrix, k-means

clustering (Hartigan and Wong 1979), hierarchical cluster

analysis (Johnson 1967), and self-organizing maps

(Kohonen 1990; Goodwin et al 2014). In supervised methods,

samples are assigned to classes or each sample is associated

with a specific outcome value, and the aim is mainly explan-

atory and predictive. When the variables are discrete (e.g.,

control group versus diseased group), the task is called classi-

fication. When the variables are continuous (e.g., metabolite

concentration) the task is called regression. The main pur-

poses of supervised techniques are (i) to determine the asso-

ciation between the response variable and the predictors

(metabolites) and (ii) to make accurate predictions based on

the predictors. In metabolomics biomarker discovery, within

the modeling process, it is important to find the simplest com-

bination of metabolites that can produce a suitably effective

predictive outcome. The biomarker discovery process in-

volves two parameters, the biomarker utility and the number

of metabolites used in the predictive model. The main chal-

lenges are therefore predictor selection and the evaluation of

the fitness and predictive power of the built model. Predictor

selection aims to identify important metabolites from among

the detected ones that best explain and predict the biological or

clinical outcome. Different predictor selection techniques

have been described. Some of these suggested strategies are

based on univariate or multivariate statistical proprieties of

variables used as filters (loading weights, variable importance

on projection scores, or regression coefficients), while others

are based on optimization algorithms (Saeys et al 2007; Yi

et al 2016). Recently, another elegant method has been report-

ed that essentially combines estimation of Mahalanobis dis-

tances with principal component analysis and variable selec-

tion using a penalty metric instead of dimension reduction

(Engel et al 2017). This method was successfully applied for

inherited metabolic diseases (IMD) screening purposes.

Finally, we need goodness-of-fit metrics to assess the model

predictive power. Commonly used statistics may include root

mean square error (RMSE) for regression problems and sen-

sitivity, specificity, and the area under the receiver-operating

characteristic (ROC) curve for classification models. To have

independent test data sets, sometimes, data collection may be

expensive or hampered by limited samples such as in rare

diseases which is the case in IMD. In this case, various resam-

pling methods are used to efficiently use the available data set,

such as cross-validation, bootstrapping, and jackknifing

(Westad and Marini 2015). Regarding the supervised

methods, various techniques can be used in metabolomics.

Some of the most used techniques include linear discriminant

analysis (LDA) (Balog et al 2013; Ouyang et al 2014) and

partial least squares (PLS) methods such as PLS-

discriminant analysis (PLS-DA) (Wold et al 2001) and

orthogonal-PLS-DA (OPLS-DA) (Trygg and Wold 2002;

Manwaring et al 2013), as well as support vector machines

(Cortes and Vapnik 1995; Lin et al 2011) and random forest

(Breiman 2001; Huang et al 2015). Recently, Habchi et al

proposed an innovative supervised method based on ICA

called IC-DA. This method has been successfully applied to

analyze DIMS metabolomics data that could be useful for

high throughput screening (Habchi et al 2017). Furthermore,

new methods based on topology data analysis are drawing

interest and seem promising for data analysis because of their

intrinsic flexibility and exploratory and predictive abilities

(Liu et al 2015; Offroy and Duponchel 2016). Recently, a

new method, called statistical health monitoring (SHM), has

been adapted from industrial statistical process control; an
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individual metabolic profile is compared to a healthy one in a

multivariate fashion. Abnormal metabolite patterns are thus

detected, and more intelligible interpretation is enabled

(Engel et al 2014). This approach has been successfully ap-

plied in IMD investigations (Engel et al 2017). The aim of

metabolomics studies and the data analysis strategy are highly

interdependent. Moreover, multivariate and univariate data

analysis pipelines are not mutually exclusive, and they are

often used together to enhance the quality of the information

recovery. For further details on data analysis techniques and

tools used in metabolomics, the reader may refer to recent

reviews on this issue (Gromski et al 2015; Ren et al 2015;

Misra and van der Hooft 2016).

Metabolite annotation and characterization

The identification of the discriminant metabolites is an impor-

tant step in metabolomics. The introduction of high-resolution

mass spectrometers and accurate mass measurements that fa-

cilitate access to the chemical formula of the detected peaks

has considerably accelerated this step. The combined use of

quadrupole ion traps for sequential fragmentation experiments

provides additional structural information needed to identify

metabolites of interest. However, MS using soft ionization

techniques such as electrospray methods, exhibits high vari-

ability in the fragmentation profiles generated on different

devices due to the lack of standardized ionization conditions,

thus limiting the construction of universal spectral data banks

such as those obtained by electron ionization or NMR (Cui

et al 2008). This issue could be addressed using standardized

ionization conditions such as electron based ionization tech-

niques that are highly reproducible across MS systems world-

wide and across different vendors. Indeed, inMS, one or more

chemical formulas can be generated if high-resolution instru-

ments are used, which provides a first element for carrying out

an interrogation of the existing databases. The acquisition of

fragmentation spectra at this stage enables us to discriminate

the responses obtained previously on the basis of the produced

ions or neutral losses, characteristic of chemical groups. Given

the importance of the identification step, standardization ele-

ments have been proposed to harmonize metabolite identifi-

cation data. Thus, identification standards have been defined

within the framework of the Metabolomics Standards

Initiative according to the available information on the metab-

olite to be characterized (Sumner et al 2007). Computational

tools such as CAMERA (Kuhl et al 2012), ProbMetab (Silva

et al 2014), AStream (Alonso et al 2011), and MetAssign

(Daly et al 2014) have been developed for metabolite annota-

tion. These methods mainly use m/z, retention time, adduct

patterns, isotope patterns, and correlation methods for metab-

olite annotation. However, inMS the detectedm/z ion andMS

database matching is insufficient for unambiguous

charcterization. Although retention time prediction are still

used to improve identification confidence, complementary or-

thogonal information is required for reliable assignment of

chemical identity, such as retention time matching and molec-

ular dissociation patterns compared to authentic standards

(Sumner et al 2007). For reliable characterization, a solution

may be in a multidimensionnal framework based on orthogo-

nal information integration, which may include accurate mass

m/z, chromatographic retention time, MS/MS spectra patterns,

CCS, chiral form, and peak intensity. Furthermore, hybrid

strategies, including pathway network and analysis methods,

could enhance metabolite characterization through different

metrics integration, including data-driven network topology,

chemical features correlation, omics data, and biological da-

tabases. Such a multidimensional approach may permit the

chemical characterization by merging both extended chemical

information and biological context. The Human Metabolome

Database (HMDB) was first introduced in 2007 and is cur-

rently the most comprehensive, organism-specific

metabolomic database. It contains NMR and MS spectra,

quantitative, analytical, and physiological information about

human metabolites. It also contains associated enzymes or

transporters and disease-related properties. The HMDB is a

fully searchable database with many built-in tools for viewing,

sorting and extracting metabolites information features. In ad-

dition, the HMDB also supports the direct identification of

potential diagnostic biomarkers based on their accurate mass,

mass spectra or NMR spectra. Hence, the HMDB is a valuable

support for translational metabolomics to support biomarker

discovery. Perhaps, the HMDB (Wishart et al 2013) is one of

the most valuable databases for IMD investigations. Other

databases are presented in Table 1.

Functional analysis: translating information

into knowledge

One of the fundamental difficulties in pathophysiological

studies is that diseases might be caused by various genetic

and environmental factors and their combinations. In addition,

if a disease is caused by a combinatorial effect of many fac-

tors, the individual effects of each component might be low

and thus hard to unveil. So, considering systems approaches to

get deeper and informative biological insights is appealing.

Any biological network can be pictured as a collection of

linked nodes. The nodes may be genes, proteins, metabolites,

diseases, or even individuals. The links or edges represent the

interactions between the nodes: metabolic reactions, protein–

protein interactions, gene–protein interactions, or interactions

between individuals. The distribution of nodes ranges from

random to highly clustered. However, biological networks

are not random. They are collections of nodes and links that

evolve as clusters; therefore, biological networks are referred
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to as scale-free, which means that they contain few highly-

connected nodes called hubs. The core idea of the biological

network theory is the modularity structure. Three distinct

modules can be defined: topological, functional, and disease

modules (Barabasi et al 2011). A topological module repre-

sents a local subset of nodes and links in the network; in this

module, nodes have a higher tendency to link to nodes within

the same local neighborhood. A functional module is a collec-

tion of nodes with similar or correlated function in the same

network zone. Finally, a disease module represents a group of

network components that together contribute to a cellular

function whose disruption results in a disease phenotype. Of

note, these three modules are correlated and overlap.

Computational biology is gaining increasingly more space in

modern biology to embrace this new network perspective. It

can be divided into two main fields: knowledge discovery (or

data-mining) and simulation-based analysis. The former gen-

erates hypotheses by extracting hidden patterns from high-

dimensional experimental data. However, the latter tests hy-

potheses with in silico experiments, yielding predictions to be

confirmed by in vitro and in vivo studies (Kitano 2002). Thus,

pathway and network analysis strategies rely on the informa-

tion generated by metabolomics studies for biological infer-

ence (Thiele et al 2013; Cazzaniga et al 2014). Both ap-

proaches exploit the interrelationships contained in the

metabolomic data. Network modeling and pathway-mapping

tools help to decipher the roles of metabolite interactions in a

biological disturbance (Cazzaniga et al 2014). Biological da-

tabases are important for mapping different metabolic path-

ways (Table 1). Conceptual framework of pathway analysis is

illustrated in Fig. 2. Indeed, pathway analysis or metabolite set

enrichment analysis (MSEA) are methodologically based on

Table 1 Biological databases and functional analysis tools

Tools Websites References

Biological databases

KEGG (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.jp/kegg (Kanehisa et al 2016)

HumanCyc (Encylopedia of Human Metabolic Pathways) http://humancyc.org (Romero et al 2005)

MetaCyc (Encyclopedia of Metabolic Pathways) http://metacyc.org (Caspi et al 2008)

Reactome (A Curated Knowledgebase of Pathways) http://www.reactome.org (Vastrik et al 2007)

SMPDB (Small Molecule Pathway Database) http://www.smpdb.ca (Jewison et al 2014)

Virtual Metabolic Human Database https://vmh.uni.lu (Thiele et al 2013)

Wikipathways http://www.wikipathways.org (Kelder et al 2012)

Pathway and networks analysis and visualization

BioCyc—Omics Viewer http://biocyc.org (Caspi et al 2016)

iPath http://pathways.embl.de (Yamada et al 2011)

MetScape http://metscape.ncibi.org (Karnovsky et al 2012)

Paintomics http://www.paintomics.org (Garcia-Alcalde et al 2011)

Pathos http://motif.gla.ac.uk/Pathos (Leader et al 2011)

Pathvisio http://www.pathvisio.org (Kutmon et al 2015)

VANTED http://vanted.ipk-gatersleben.de (Rohn et al 2012)

IMPaLA http://impala.molgen.mpg.de (Kamburov et al 2011)

MBROLE 2.0 http://csbg.cnb.csic.es/mbrole2 (Lopez-Ibanez et al 2016)

MPEA http://ekhidna.biocenter.helsinki.fi/poxo/mpea (Kankainen et al 2011)

Mummichog http://clinicalmetabolomics.org/init/default/software (Li et al 2013)

PIUMet http://fraenkel-nsf.csbi.mit.edu/PIUMet/ (Pirhaji et al 2016)

3Omics http://3omics.cmdm.tw/ (Kuo et al 2013)

InCroMAP http://www.ra.cs.uni-tuebingen.de/software/InCroMAP/ (Wrzodek et al 2013)

Multifunctional tools

MetaboAnlayst http://www.metaboanalyst.com (Xia et al 2015)

XCMS online https://xcmsonline.scripps.edu (Tautenhahn et al 2012)

MASSyPup http://www.bioprocess.org/massypup (Winkler 2015)

Workflow4Metabolomics http://workflow4metabolomics.org (Giacomoni et al 2015)

Metabox https://github.com/kwanjeeraw/metabox (Wanichthanarak et al 2017)
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the gene set enrichment analysis approach, previously devel-

oped for pathway analysis of gene-expression data (Khatri

et al 2012; Garcia-Campos et al 2015). There are three distinct

methods for performing MSEA: overrepresentation analysis

(ORA), quantitative enrichment analysis (QEA), and single-

sample profiling (SSP) (Xia and Wishart 2010; Garcia-

Campos et al 2015; Xia et al 2015). An important advantage

of computational metabolomics lies in the use of correlations

among feature signals to map chemical identity. Since metab-

olites are interconnected by a series of biochemical reactions

to build the network of metabolites, they can be interrogated

using network-based analytical tools. In metabolomics, net-

work analysis uses the high degree of correlation in metabo-

lomics data to build metabolic networks based on the complex

relationships of the measured metabolites. Based on the ob-

served relationship patterns in the experimental data,

correlation-based methods allow building metabolic networks

in which each metabolite represents a node. However, unlike

the pathway analysis, the links between nodes denote the level

of mathematical correlation between each metabolite pair and

are called edge (Krumsiek et al 2011; Valcarcel et al 2011; Do

et al 2015). These data-driven strategies have been success-

fully applied for the reconstruction of metabolic networks

from metabolomics data (Krumsiek et al 2011; Shin et al

2014; Bartel et al 2015). Biological inference often needs prior

identification of metabolites. Since this step is challenging, a

novel approach, named Mummichog, has been proposed by

Li et al to reboot the conventional metabolomic workflow (Li

et al 2013). This method predicts biological activity directly

fromMS-based untargeted metabolomics data without a priori

identification of metabolites. The idea behind this strategy is

combining network analysis and metabolite prediction under

the same computational framework, which significantly re-

duces the metabolomics workflow time. Based on spectral

peaks, the computational prediction of metabolites yields sev-

eral hits; thus, a Bnull^ distribution can be estimated by how

these predicted metabolites, retrieved from a metabolomics

experiment, map to all known metabolite reactions through

interrogating databases. Despite most annotations being false,

the biological meaning underpinning the data drives enrich-

ment of the metabolites. The metabolite enrichment pattern of

real metabolites compared to the null distribution is then sta-

tistically assessed. This method has been elegantly illustrated

in an exploration of innate immune cell activation, which re-

vealed that glutathione metabolism is modified by viral infec-

tion driven by constitutive nitric oxide synthases (Li et al

2013). Recently, Mummichog has been used for metabolic

pathway analysis in a population by untargeted metabolomics.

Hoffman et al identified metabolic pathways linked to age,

sex, and genotype, including glycerophospholipid, neuro-

transmitters, metabolism carnitine shuttle, and amino acid me-

tabolism (Hoffman et al 2016). Tyrosine metabolism was

found to be associated with nonalcoholic fatty liver (Jin et al

2016). Pirhaji et al described a new network-based approach

using a prize-winning Steiner forest algorithm for integrative

analysis of untargeted metabolomics (PIUMet). This method

infers molecular pathways via integrative analysis of metabo-

lites without prior identification. Furthermore, PIUMet en-

abled elucidating putative identities of altered metabolites

and inferring experimentally undetected, disease-associated

metabolites and dysregulated proteins (Pirhaji et al 2016).

Compared to Mummichog, PIUMet also allows system-level

inference by integrating other omics data. Contextualization

of metabolomics information is also important in pathophys-

iological investigations. From a metabolic network stand

point, flux is defined as the rate (i.e., quantity per unit time)

at which metabolites are converted or transported between

different compartments (Aon and Cortassa 2015). Thus, met-

abolic fluxes, or the fluxome, represent a unique and function-

al readout of the phenotype (Cascante and Marin 2008; Aon

and Cortassa 2015). Thus, from a network view of metabo-

lism, one or more metabolic fluxes could be altered in a given

metabolic disorder depending on the complexity of the disease

(Lanpher et al 2006). To interrogate these fluxes, fluxome

network modeling can be achieved using constraints of mass

and charge conservation along with stoichiometric and ther-

modynamic limitations (Cortassa and Aon 2012; Winter and

Kromer 2013; Kell and Goodacre 2014; Aurich and Thiele

2016). Based on the stoichiometry of the reactants and prod-

ucts of biochemical reactions, flux balance analysis can esti-

mate metabolic fluxes without knowledge about the kinetics

of the participating enzymes (Cascante and Marin 2008; Aon

Fig. 2 An illustration of pathway analysis strategies. Metabolome

pathway analysis is designed to uncover significant pathway–phenotype

relationships within a large data set. On one hand, it unveils hidden data

structure in experimental data through differential expression using

statistical metrics. On the other hand, it uses prior knowledge retrieved

through biological databases and literature. Pathway analysis combines

these two pillars to interpret the experimental findings
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and Cortassa 2015). Recently, Cortassa et al suggested a new

approach, distinct from flux balance analysis or metabolic flux

analysis, that takes into account kinetic mechanisms and reg-

ulatory interactions (Cortassa et al 2015).

Since metabolites are often involved in multiple pathways,

biologically-mediated labeling is particularly informative in

such cases. Given the dynamics and compartmentation that

characterize the metabolism, isotopic labeling is poised as an

appealing approach to unambiguously track metabolic events.

Advances in atom-tracking technologies and related informat-

ics are disruptive for metabolomics-based investigations

thanks to their contextual high throughput information retriev-

al. Among these technologies, stable isotope resolved meta-

bolomics (SIRM) is a method that allows tracking individual

atoms through compartmentalized metabolic networks which

allowed highly resolved investigations of disease-related

metabolomes (Higashi et al 2014; Fan et al 2016; Kim et al

2016). Awide variety of software tools are available for ana-

lyzing metabolomic data at the pathway and network levels.

Table 1 presents different functional analysis tools for both

pathway analysis and visualization.

Metabolomics and other omics cross-talk

Since IMD are associated with a genetic defect, their current

characterization addresses both the mutated gene and its prod-

ucts. Currently, understanding of genetic variation effects on

phenotypes is limited in most IMDwhich leads to consider the

influence of genetic or environmental modifying factors and

the impact of an altered pathway onmetabolic flux as a whole.

These diseases are related to the disruption of specific inter-

actions in a highly organized metabolic network (Sahoo et al

2012; Argmann et al 2016). Thus, the impact of a given dis-

ruption is not easily predictable (Lanpher et al 2006; Cho et al

2012). Therefore, functional overview, integrating both space

and time dimensions, is needed to assess the actors of the

altered pathway and the potential interactions of each actor

(Aon 2014). Thus, metabolomics combined with genome-

wide association studies (mGWAS) track genetic influences

on metabotypes which underpin the human’s metabolic indi-

viduality (Suhre et al 2016). Unveiling the genetically influ-

enced metabolic variations could raise huge potential patho-

physiological studies (Shin et al 2014). This includes func-

tional understanding of clinical outcomes and genetic varia-

tion associations, designing targeted therapies for metabolic

disorders and also identification of genetic modifiers underly-

ing metabolic disease biomarkers. Different studies have re-

ported genetic influences of metabotypes, disease-risk bio-

markers or drug response variations (Suhre et al 2016). In a

recent study, Rhee et al analyzed the association between ex-

ome variants and 217 plasma metabolites in 2076 participants

in the Framingham Heart Study, with replication in 1528

individuals of the Atherosclerosis Risk in Communities

Study. They identified an association between guanosine

monophosphate synthase and xanthosine using single variant

analysis and associations between histidine amonia lyase

(HAL) and histidine, phenylalanine hydoxylase (PAH)

and phenylalanine, and ureidopropionase (UPB1) and

ureidopropionate using gene-based tests, which high-

lights novel coding variants that may unveil inborn errors of

metabolism (Rhee et al 2016). Shin et al reported a compre-

hensive study exploring genetic loci influences on human

metabotypes in 7824 individuals from two European cohorts,

KORA (Germany) and Twins (UK), using MS-based metabo-

lomics. They mapped significant associations at 145 loci and

their metabotype connectivity through more than 400 blood

metabolites. The built model unveiled information on herita-

bility, gene expression and overlap with known complex dis-

orders and inborn errors of metabolism loci. The data were

used to build an online database for data mining and visuali-

zation (Shin et al 2014). The effectiveness of multi-omic ap-

proaches has been recently illustrated by van Karnebeek et al.

The authors reported a disruption of the N-acetylneuraminic

acid pathway in patients with severe developmental delay and

skeletal dysplasia using both genomics and metabolomics ap-

proaches. Variations in the NANS gene encoding the synthase

for N-acetylneuraminic acid were identified (van Karnebeek

et al 2016). This elegantly highlights how systemic ap-

proaches may address IMD complexity and allow their diag-

nosis (Argmann et al 2016). For more details on mGWAS

studies, the reader may refer to recent reviews (Kastenmuller

et al 2015; Suhre et al 2016). Figure 3 shows how laboratory

workflow using high-throughput analytical technologies, in-

tegrative bioinformatics, and computational frameworks will

reshape IMD investigations. This integrative approach will

allow intelligible molecular and clinical information recovery

for a more effective medical decision-making in IMD.

Perspectives in clinical metabolomics translation

Despite spectral information becoming available in the litera-

ture or in spectral databases, metabolite identification is still a

challenging task (Goodacre et al 2007). However, metabolite

identification remains a central issue in metabolomics prior to

embracing complete clinical translation. No software is cur-

rently available to automate the identification step.

Furthermore, metabolite identification is mandatory for abso-

lute quantitation especially in MS-based methods requiring

the use of stable isotope-labeled internal standards. Some

data-driven alternatives have been developed to elucidate me-

tabolite structure associations such as correlation-based net-

work and modularity analysis. The association structure can

be used to identify MS ions derived from the same metabolite

(Broeckling et al 2014) or to identify biotransformations
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(Kind and Fiehn 2010). However, these knowledge-based ap-

proaches may be hampered by their limits for addressing the

entire chemical space and limited coverage of metabolome

databases. Another limitation lies in the cost for targeted anal-

yses, which cannot reasonably be expected to support mea-

surement of tens of thousands of chemicals in large popula-

tions. Thus, more efforts are needed to overcome this issue.

However, in IMD a few hundred key metabolites may be

defined for large-scale screening. Standardized and validated

protocols are a prerequisite for metabolic phenotyping tech-

nologies. Harmonization of the sample preparation, process-

ing, analysis, and reporting, using validated and standardized

protocols, is mandatory (Chitayat and Rudan 2016; Kohler

et al 2016). Standardized protocols are particularly helpful

for untargeted metabolomics. In targeted methods, since each

analyte is known and quantified, technology versatility is less

important. Despite substantial efforts to standardize

untargeted metabolomics methods, there are still no universal-

ly adopted protocols, particularly for MS-based strategies.

This situation is due to the diverse and ever-changing analyt-

ical platform. The community and journals may take a lead in

standardization by aligning it to community-published stan-

dards, such as the Metabolomics Standards Initiative (Sumner

et al 2007), and data repisotories to encourage open

metabolomic data, such as MetaboLights database at the

EBI. All these endeavors aim to develop infrastructures and

frameworks standardize terminology, data structure, and

analytical workflows (Levin et al 2016). Finally, addressing

these standardization issues is essential for regulatory compli-

ance, which is a prerequisite for any clinical implementation.

Automation at different stages, at instrument and pre- and

post-analytic levels, is an important issue for broader use of

metabolomics technologies. Automation enhances through-

put, reproducibility, and reliability. Direct infusion MS-based

methods are currently used for newborn screening in routine

clinical practice (Therrell et al 2015; Ombrone et al 2016).

Moreover, they are also taking the lead from a translational

perspective, such as the iKnife, which would allow real-time

cancer diagnosis (Balog et al 2013), and breathomics strate-

gies for lung and respiratory diseases based on breath signa-

tures (Hauschild et al 2015). Furthermore, metabolomics gen-

erates a huge amount of data that require comprehensive anal-

ysis and integration with other omics and metadata to infer the

topology and dynamics of the underlying biological networks.

Advanced statistical and computational tools along with

effective data visualization are required to smoothly

handle the diversity and quantity of the data and metab-

olite mapping (Alyass et al 2015; Ritchie et al 2015). In

this regard, combining genomic and metabolic information

may enhance biological inference and even clinical diagnos-

tics (Tarailo-Graovac et al 2016; van Karnebeek et al 2016).

Despite these promising steps, further advances in computa-

tional tools are needed for more efficient storage and

integration (Perez-Riverol et al 2017).

Conclusion

Translating metabolomic data into actionable knowledge is

the ultimate goal. Particular attention should be paid to com-

putational tools for multidimensional data processing. There is

an urgent need for more databases with validated and curated

MRM transitions for targeted metabolites. Furthermore, for

untargeted metabolomics, larger libraries and curated MS/

MS spectra for metabolite identification are needed. Hybrid

strategies including pathway and network analysis methods

could enhance metabolite characterization through integration

of different metrics, including data-driven network topology,

chemical features correlation, omics data, and biological da-

tabases. Such multidimensional approaches may improve the

chemical characterization by combining both extended chem-

ical information and biological context. With all the high-

dimensional data management issues, like other omics, meta-

bolomics clinical implementation should be tackled using big

data handling strategies for efficient storage, integration, visu-

alization, and sharing of metabolomics data. To achieve the

promise of the Precision Medicine era, it is crucial to combine

expertise from multiple disciplines, including clinicians, med-

ical laboratory professionals, data scientists, computational

biologists, and biostatisticians. This raises the urgent need to

Fig. 3 Paradigm shift in inherited metabolic diseases investigation.

High-throughput analytical technologies, integrative bioinformatics, and

medical computational frameworks will allow intelligible molecular and

clinical information recovery and effective medical decision-making
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think about new teams with new skill sets and overlapping

expertise for more effective medical interactions across all

healthcare partners for the management of IMD. Training

the next generation medical workforce to manage and inter-

pret omics data is a way to go and inception of such thinking

has already started (Henricks et al 2016).

References

Alonso A, Julia A, Beltran A et al (2011) AStream: an R package for

annotating LC/MS metabolomic data. Bioinformatics 27:1339

Al-Saegh A (2015) Independent component analysis for separation of

speech mixtures: a comparison among thirty algorithms. Iraqi J

Electr Electron Eng 11(1):1–9

Alyass A, Turcotte M, Meyre D (2015) From big data analysis to person-

alized medicine for all: challenges and opportunities. BMC Med

Genet 8:1–12

AonMA (2014) Complex systems biology of networks: the riddle and the

challenge. In: Systems biology of metabolic and signaling networks.

Springer, Berlin, p 19–35

Aon MA, Cortassa S (2015) Systems biology of the Fluxome. PRO 3:

607–618

Argmann CA, Houten SM, Zhu J, Schadt EE (2016) A next generation

multiscale view of inborn errors of metabolism. Cell Metab 23:13–26

Aurich MK, Thiele I (2016) Computational Modeling of human metab-

olism and its application to systems biomedicine. MethodsMol Biol

1386:253–281

Balog J, Sasi-Szabo L, Kinross J et al (2013) Intraoperative tissue iden-

tification using rapid evaporative ionization mass spectrometry. Sci

Transl Med 5:11

Barabasi A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a

network-based approach to human disease. Nat Rev Genet 12:56–68

Bartel J, Krumsiek J, Schramm K et al (2015) The human blood

Metabolome-Transcriptome Interface. PLoS Genet 11:e1005274

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J R Stat Soc Ser

B Methodol 57:289–300

Bijlsma S, Bobeldijk I, Verheij ER et al (2006) Large-scale human meta-

bolomics studies: a strategy for data (pre-) processing and validation.

Anal Chem 78:567–574

Bouveresse DJ-R, Rutledge D (2016) Independent components analysis:

theory and applications. Resolving spectral mixtures: with applica-

tions from ultrafast time-resolved spectroscopy to super-resolution

imaging, vol 30. Elsevier, Amsterdamn, p 7225

Breiman L (2001) Random Forests. Mach Learn 45:5–32

Brereton RG (2014) A short history of chemometrics: a personal view. J

Chemom 28:749–760

Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false

discoveries in metabolomics and related experiments.

Metabolomics 2:171–196

Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014)

RAMClust: a novel feature clustering method enables spectral-

matching-based annotation for Metabolomics data. Anal Chem 86:

6812–6817

Cai Y, Weng K, Guo Y, Peng J, Zhu Z-J (2015) An integrated targeted

metabolomic platform for high-throughput metabolite profiling and

automated data processing. Metabolomics 11:1575–1586

Cascante M, Marin S (2008) Metabolomics and fluxomics approaches.

Essays Biochem 45:67–82

Caspi R, Foerster H, Fulcher CA et al (2008) The MetaCyc database of

metabolic pathways and enzymes and the BioCyc collection of

pathway/genome databases. Nucleic Acids Res 36:D623–D631

Caspi R, Billington R, Ferrer L et al (2016) The MetaCyc database of

metabolic pathways and enzymes and the BioCyc collection of

pathway/genome databases. Nucleic Acids Res 44:D471–D480

Cazzaniga P, Damiani C, Besozzi D et al (2014) Computational strategies

for a system-level understanding of metabolism. Meta 4:1034–1087

Chitayat S, Rudan JF (2016) Phenome centers and global harmonization,

chap. 10. In: Metabolic phenotyping in personalized and public

healthcare. Academic, Boston, p 291–315

Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: network biology

approach to complex diseases. PLoS Comput Biol 8:e1002820

Cortassa S, Aon MA (2012) Computational modeling of mitochondrial

function. Methods Mol Biol 810:311–326

Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon MA

(2015) Frommetabolomics to fluxomics: a computational procedure

to translate metabolite profiles into metabolic fluxes. Biophys J 108:

163–172

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:

273–297

Cui Q, Lewis IA, Hegeman AD et al (2008) Metabolite identification via

the Madison Metabolomics consortium database. Nat Biotechnol

26:162–164

Daly R, Rogers S, Wandy J, Jankevics A, Burgess KE, Breitling R (2014)

MetAssign: probabilistic annotation of metabolites from LC-MS

data using a Bayesian clustering approach. Bioinformatics 30:2764

De Livera AM, Dias DA, De Souza D et al (2012) Normalizing and

integrating Metabolomics data. Anal Chem 84:10768–10776

Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient

normalization as robust method to account for dilution of complex

biological mixtures. Application in 1H NMR metabonomics. Anal

Chem 78:4281–4290

Do KT, Kastenmüller G, Mook-Kanamori DO et al (2015) Network-

based approach for analyzing intra- and Interfluid metabolite

associations in human blood, urine, and saliva. J Proteome

Res 14:1183–1194

Dudoit S, Yang YH, CallowMJ, Speed TP (2002) Statistical methods for

identifying differentially expressed genes in replicated cDNA mi-

croarray experiments. Stat Sin 12:111–139

Engel J, Blanchet L, Engelke UF, Wevers RA, Buydens LM (2014)

Towards the disease biomarker in an individual patient using statis-

tical health monitoring. PLoS One 9:e92452

J Inherit Metab Dis (2018) 41:393–406 403

Acknowledgments This work was supported by the Normandy

University, the Institut National de la Santé et de la Recherche Médicale

(INSERM), the Conseil Régional de Normandie, Labex SynOrg

(ANR-11-LABX-0029), and the European Regional Development

Fund (ERDF 31708).

Compliance with ethical standards

Conflict of interest A. Tebani, C. Afonso, and S. Bekri declare that

they have no conflict of interest.

Animal rights This article does not contain any studies with human or

animal subjects performed by the any of the authors.

Open Access This article is distributed under the terms of the Creative

Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.



Engel J, Blanchet L, Engelke UFH,Wevers RA, & Buydens LMC (2017)

Sparse statistical health monitoring: A novel variable selection ap-

proach to diagnosis and follow-up of individual patients. Chemom

Intell Lab Syst 164:83–93

Fan TW, Lane AN, Higashi RM (2016) Stable isotope resolved metabo-

lomics studies in ex vivo tissue slices. Bio Protoc 6(3). pii:e1730

Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A (2011)

Paintomics: a web based tool for the joint visualization of tran-

scriptomics and metabolomics data. Bioinformatics 27:137–139

Garcia-Campos MA, Espinal-Enriquez J, Hernandez-Lemus E (2015)

Pathway analysis: state of the art. Front Physiol 6:383

Giacomoni F, Le Corgui l le G, Monsoor M et a l (2015)

Workflow4Metabolomics: a collaborative research infrastructure

for computational metabolomics. Bioinformatics 31:1493–1495

Goodacre R, Broadhurst D, Smilde AK et al (2007) Proposed minimum

reporting standards for data analysis in metabolomics.

Metabolomics 3:231–241

Goodwin CR, Sherrod SD,Marasco CC et al (2014) Phenotypic mapping

of metabolic profiles using self-organizing maps of high-

dimensional mass spectrometry data. Anal Chem 86:6563–6571

Gowda H, Ivanisevic J, Johnson CH et al (2014) Interactive XCMS

online: simplifying advanced metabolomic data processing and sub-

sequent statistical analyses. Anal Chem 86:6931–6939

Gromski PS, Muhamadali H, Ellis DI et al (2015) A tutorial review:

Metabolomics and partial least squares-discriminant analysis – a

marriage of convenience or a shotgun wedding. Anal Chim Acta

879:10–23

Grun D, Kester L, van Oudenaarden A (2014) Validation of noise models

for single-cell transcriptomics. Nat Meth 11:637–640

Habchi B, Alves S, Jouan-Rimbaud Bouveresse D et al (2017) An inno-

vative chemometric method for processing direct introduction high

resolution mass spectrometry metabolomic data: independent com-

ponent–discriminant analysis (IC–DA). Metabolomics 13:45

Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering

algorithm. J R Stat Soc: Ser C: Appl Stat 28:100–108

Hauschild AC, Frisch T, Baumbach JI, Baumbach J (2015) Carotta: re-

vealing hidden confounder markers in metabolic breath profiles.

Meta 5:344–363

Henricks WH, Karcher DS, Harrison JH et al (2016) Pathology informat-

ics essentials for residents: a flexible informatics curriculum linked

to accreditation Council for Graduate Medical Education mile-

stones. J Pathol Inform 7:27

Hermansson M, Uphoff A, Kakela R, Somerharju P (2005) Automated

quanti tat ive analysis of complex lipidomes by liquid

chromatography/mass spectrometry. Anal Chem 77:2166–2175

Higashi RM, Fan TW, Lorkiewicz PK, Moseley HN, Lane AN (2014)

Stable isotope Labeled tracers for metabolic pathway elucidation by

GC-MS and FT-MS. Methods Mol Biol 1198:147–167

Hoffman JM, Tran V, Wachtman LM, Green CL, Jones DP, Promislow

DE (2016) A longitudinal analysis of the effects of age on the blood

plasma metabolome in the common marmoset, Callithrix Jacchus.

Exp Gerontol 76:17–24

Hogeweg P (2011) The roots of bioinformatics in theoretical biology.

PLoS Comput Biol 7:e1002021

Hotelling H (1933) Analysis of a complex of statistical variables into

principal components. Warwick & York, Baltimore

Huan T, Forsberg EM, Rinehart D et al (2017) Systems biology guided by

XCMS online metabolomics. Nat Methods 14:461–462

Huang J-H, Fu L, Li B et al (2015) Distinguishing the serum metabolite

profiles differences in breast cancer by gas chromatography mass

spectrometry and random forest method. RSC Adv 5:58952–58958

Jewison T, SuY, Disfany FM et al (2014) SMPDB 2.0: big improvements

to the small molecule pathway database. Nucleic Acids Res 42:

D478–D484

Jin R, Banton S, Tran VTet al (2016) Amino acid metabolism is altered in

adolescents with nonalcoholic fatty liver disease-an untargeted, high

resolution Metabolomics study. J Pediatr 172:14–19.e15

Johnsen LG, Skou PB, Khakimov B, Bro R (2017) Gas chromatography

mass spectrometry data processing made easy. J Chromatogr A

1503:57–64

Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:

241–254

Kamburov A, Cavill R, Ebbels TMD, Herwig R, Keun HC (2011)

Integrated pathway-level analysis of transcriptomics and metabolo-

mics data with IMPaLA. Bioinformatics 27:2917–2918

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016)

KEGG as a reference resource for gene and protein annotation.

Nucleic Acids Res 44:D457–D462

Kankainen M, Gopalacharyulu P, Holm L, Oresic M (2011) MPEA–

metabolite pathway enrichment analysis. Bioinformatics 27:

1878–1879

Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformat-

ics tool for the analysis and visualization of metabolomics and gene

expression data. Bioinformatics 28:373–380

Kastenmuller G, Raffler J, Gieger C, Suhre K (2015) Genetics of human

metabolism: an update. Hum Mol Genet 24:R93–r101

Kelder T, van Iersel MP, Hanspers K et al (2012)WikiPathways: building

research communities on biological pathways. Nucleic Acids Res

40:D1301–D1307

Kell DB, Goodacre R (2014) Metabolomics and systems pharmacology:

why and how to model the human metabolic network for drug dis-

covery. Drug Discov Today 19:171–182

Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: cur-

rent approaches and outstanding challenges. PLoS Comput Biol 8:

e1002375

Kim IY, Suh SH, Lee IK, Wolfe RR (2016) Applications of stable, non-

radioactive isotope tracers in in vivo human metabolic research. Exp

Mol Med 48:e203

Kind T, Fiehn O (2010) Advances in structure elucidation of small mol-

ecules using mass spectrometry. Bioanal Rev 2:23–60

Kirwan J, Broadhurst D, Davidson R, Viant M (2013) Characterising and

correcting batch variation in an automated direct infusionmass spec-

trometry (DIMS) metabolomics workflow. Anal Bioanal Chem 405:

5147–5157

Kitano H (2002) Computational systems biology. Nature 420:206–210

Kohler I, Verhoeven A, Derks RJ, Giera M (2016) Analytical pitfalls and

challenges in clinical metabolomics. Bioanalysis 8:1509–1532

Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480

Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ (2011) Gaussian

graphical modeling reconstructs pathway reactions from high-

throughput metabolomics data. BMC Syst Biol 5:21

Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S (2012)

CAMERA: an integrated strategy for compound spectra extraction

and annotation of liquid chromatography/mass spectrometry data

sets. Anal Chem 84:283

Kuo T-C, Tian T-F, Tseng YJ (2013) 3Omics: a web-based systems biol-

ogy tool for analysis, integration and visualization of human

transcriptomic, proteomic and metabolomic data. BMC Syst

Biol 7:64

Kutmon M, van Iersel MP, Bohler A et al (2015) PathVisio 3: an extend-

able pathway analysis toolbox. PLoS Comput Biol 11:e1004085

Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of metabo-

lism: the flux from Mendelian to complex diseases. Nat Rev

Genet 7:449–460

Leader DP, Burgess K, Creek D, Barrett MP (2011) Pathos: a web facility

that uses metabolic maps to display experimental changes in metab-

olites identified by mass spectrometry. Rapid Commun Mass

Spectrom 25:3422–3426

404 J Inherit Metab Dis (2018) 41:393–406



Lee J, Park J, Lim MS et al (2012) Quantile normalization approach for

liquid chromatography-mass spectrometry-based metabolomic data

from healthy human volunteers. Anal Sci 28:801–805

Levin N, Salek RM, Steinbeck C (2016) From databases to big data, chap.

11. In:Metabolic phenotyping in personalized and public healthcare.

Academic, Boston, p 317–331

Li X, Hansen J, Zhao X et al (2012) Independent component analysis in

non-hypothesis driven metabolomics: improvement of pattern dis-

covery and simplification of biological data interpretation demon-

strated with plasma samples of exercising humans. J Chromatogr B

910:156–162

Li S, Park Y, Duraisingham S et al (2013) Predicting network activity

from high throughput Metabolomics. PLoS Comput Biol 9:

e1003123

Li B, Tang J, Yang Q et al (2016) Performance evaluation and online

realization of data-driven normalization methods used in LC/MS

based untargeted Metabolomics analysis. Sci Rep 6:38881

Lin X, Wang Q, Yin P et al (2011) A method for handling metabonomics

data from liquid chromatography/mass spectrometry: combinational

use of support vector machine recursive feature elimination, genetic

algorithm and random forest for feature selection. Metabolomics 7:

549–558

Liu W, Bai X, Liu Yet al (2015) Topologically inferring pathway activity

toward precise cancer classification via integrating genomic and

metabolomic data: prostate cancer as a case. Sci Rep 5:13192

Liu Y, Smirnov K, Lucio M, Gougeon RD, Alexandre H, Schmitt-

Kopplin P (2016) MetICA: independent component analysis for

high-resolution mass-spectrometry based non-targeted metabolo-

mics. BMC Bioinf 17:1–14

Lopez-Ibanez J, Pazos F, ChagoyenM (2016)MBROLE 2.0-functional

enrichment of chemical compounds. Nucleic Acids Res 44:

W201–W204

Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformat-

ics? A proposed definition and overview of the field. Methods Inf

Med 40:346–358

Mak TD, Laiakis EC, Goudarzi M, Fornace AJ (2015) Selective paired

ion contrast analysis: a novel algorithm for analyzing Postprocessed

LC-MS Metabolomics data possessing high experimental noise.

Anal Chem 87:3177–3186

Manwaring V, Boutin M, Auray-Blais C (2013) A metabolomic study to

identify new globotriaosylceramide-related biomarkers in the plas-

ma of Fabry disease patients. Anal Chem 85:9039–9048

Misra BB, van der Hooft JJ (2016) Updates in metabolomics tools and

resources: 2014-2015. Electrophoresis 37:86–110

Monakhova YB, Godelmann R, Kuballa T, Mushtakova SP, Rutledge

DN (2015) Independent components analysis to increase efficiency

of discriminant analysis methods (FDA and LDA): application to

NMR fingerprinting of wine. Talanta 141:60–65

Offroy M, Duponchel L (2016) Topological data analysis: a promising

big data exploration tool in biology, analytical chemistry and phys-

ical chemistry. Anal Chim Acta 910:1–11

Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G (2016)

Expanded newborn screening by mass spectrometry: new tests, fu-

ture perspectives. Mass Spectrom Rev 35:71–84

Ouyang M, Zhang Z, Chen C, Liu X, Liang Y (2014) Application of

sparse linear discriminant analysis for metabolomics data. Anal

Methods 6:9037–9044

Perez-Riverol Y, Bai M, da Veiga Leprevost F et al (2017) Discovering

and linking public omics data sets using the Omics discovery index.

Nat Biotechnol 35:406–409

Pirhaji L, Milani P, Leidl M et al (2016) Revealing disease-associated

pathways by network integration of untargeted metabolomics. Nat

Methods 13:770–776

Rafiei A, Sleno L (2015) Comparison of peak-picking workflows for

untargeted liquid chromatography/high-resolution mass

spectrometry metabolomics data analysis. Rapid Commun Mass

Spectrom 29:119–127

Ren S, Hinzman A, Kang E, Szczesniak R, Lu L (2015) Computational

and statistical analysis of metabolomics data. Metabolomics 11:

1492–1513

Rhee EP, Yang Q, Yu B et al (2016) An exome array study of the plasma

metabolome. Nat Commun 7:12360

Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015)

Methods of integrating data to uncover genotype-phenotype inter-

actions. Nat Rev Genet 16:85–97

Rohn H, Junker A, Hartmann A et al (2012) VANTED v2: a framework

for systems biology applications. BMC Syst Biol 6:1–13

Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD

(2005) Computational prediction of human metabolic pathways

from the complete human genome. Genome Biol 6:R2–R2

Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection tech-

niques in bioinformatics. Bioinformatics 23:2507–2517

Sahoo S, Franzson L, Jonsson JJ, Thiele I (2012) A compendium of

inborn errors of metabolism mapped onto the human metabolic net-

work. Mol BioSyst 8:2545–2558

Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite

fingerprinting: detecting biological features by independent compo-

nent analysis. Bioinformatics 20:2447–2454

Shen X, Gong X, Cai Y et al (2016) Normalization and integration of

large-scale metabolomics data using support vector regression.

Metabolomics 12:89

Shin SY, Fauman EB, Petersen AK et al (2014) An atlas of genetic

influences on human blood metabolites. Nat Genet 46:543–550

Silva RR, Jourdan F, Salvanha DM et al (2014) ProbMetab: an R package

for Bayesian probabilistic annotation of LC-MS-based metabolo-

mics. Bioinformatics 30:1336

Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS:

processing mass spectrometry data for metabolite profiling using

nonlinear peak alignment, matching, and identification. Anal

Chem 78:779

Smith R, Ventura D, Prince JT (2013) LC-MS alignment in theory and

practice: a comprehensive algorithmic review. Brief Bioinform 16:

104–117

Smolinska A, Blanchet L, Buydens LM, Wijmenga SS (2012) NMR and

pattern recognition methods in metabolomics: from data acquisition

to biomarker discovery: a review. Anal Chim Acta 750:82–97

Suhre K, Raffler J, Kastenmüller G (2016) Biochemical insights from

population studies with genetics and metabolomics. Arch Biochem

Biophys 589:168–176

Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum

reporting standards for chemical analysis. Metabolomics 3:211–221

Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M (2007) Normalization

method for metabolomics data using optimal selection of multiple

internal standards. BMC Bioinf 8:93

Szymanska E, Davies A, Buydens L (2016) Chemometrics for ion mo-

bility spectrometry data: recent advances and future prospects.

Analyst 141(20):5689–5708

Tarailo-Graovac M, Shyr C, Ross CJ et al (2016) Exome sequencing and

the Management of Neurometabolic Disorders. N Engl J Med 374:

2246–2255

Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a

web-based platform to process untargeted metabolomic data. Anal

Chem 84:5035–5039

Tebani A, Afonso C, Marret S, Bekri S (2016) Omics-based strategies in

precision medicine: toward a paradigm shift in inborn errors of me-

tabolism investigations. Int J Mol Sci 17(9):1555

Therrell BL, Padilla CD, Loeber JG et al (2015) Current status of new-

born screening worldwide: 2015. Semin Perinatol 39:171–187

Thiele I, Swainston N, Fleming RM et al (2013) A community-driven

global reconstruction of human metabolism. Nat Biotechnol 31:

419–425

J Inherit Metab Dis (2018) 41:393–406 405



Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-

PLS). J Chemom 16:119–128

Tsugawa H, Arita M, Kanazawa M, Ogiwara A, Bamba T, Fukusaki E

(2013) MRMPROBS: a data assessment and metabolite identifica-

tion tool for large-scale multiple reaction monitoring based widely

targeted metabolomics. Anal Chem 85:5191–5199

Tsugawa H, Ohta E, Izumi Y et al (2014) MRM-DIFF: data processing

strategy for differential analysis in large scale MRM-based

lipidomics studies. Front Genet 5:471

Valcarcel B, Wurtz P, Seichalbasatena NK et al (2011) A differential

network approach to exploring differences between biological

states: an application to prediabetes. PLoS One 6:e24702

van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der

Werf MJ (2006) Centering, scaling, and transformations: improving

the biological information content of metabolomics data. BMC

Genomics 7:142

van Karnebeek CD, Bonafé L, Wen X-Y et al (2016) NANS-mediated

synthesis of sialic acid is required for brain and skeletal develop-

ment. Nat Genet 48(7):777–784

Vastrik I, D’Eustachio P, Schmidt E et al (2007) Reactome: a knowledge

base of biologic pathways and processes. Genome Biol 8:R39

Vettukattil R (2015) Preprocessing of rawMetabonomic data. In: Bjerrum

JT (ed)Metabonomics: methods and protocols. Springer, NewYork,

pp 123–136

Wang WX, Zhou HH, Lin H et al (2003) Quantification of proteins and

metabolites by mass spectrometry without isotopic labeling or

spiked standards. Anal Chem 75:4818–4826

Wang G, Ding Q, Hou Z (2008) Independent component analysis and its

applications in signal processing for analytical chemistry. TrAC

Trends Anal Chem 27:368–376

Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O (2017)

Metabox: a toolbox for Metabolomic data analysis, interpretation

and integrative exploration. PLoS One 12:e0171046

Westad F, Marini F (2015) Validation of chemometric models – a tutorial.

Anal Chim Acta 893:14–24

Winkler R (2015) An evolving computational platform for biological

mass spectrometry: workflows, statistics and data mining with

MASSyPup64. PeerJ 3:e1401

Winter G, Kromer JO (2013) Fluxomics — connecting ‘omics analysis

and phenotypes. Environ Microbiol 15:1901–1916

Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0–the human

Metabolome database in 2013. Nucleic Acids Res 41:D801–D807

Wiwie C, Baumbach J, Rottger R (2015) Comparing the performance of

biomedical clustering methods. Nat Methods 12:1033–1038

Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of

chemometrics. Chemom Intell Lab Syst 58:109–130

Wrzodek C, Eichner J, Büchel F, Zell A (2013) InCroMAP: integrated

analysis of cross-platform microarray and pathway data.

Bioinformatics 29:506–508

Wu Y, Li L (2016) Sample normalization methods in quantitative meta-

bolomics. J Chromatogr A 1430:80–95

Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologi-

cally meaningful patterns in quantitative metabolomic data. Nucleic

Acids Res 38:W71–W77

Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0–

making metabolomics more meaningful. Nucleic Acids Res 43:

W251–W257

Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P (2011) iPath2.0:

interactive pathway explorer. Nucleic Acids Res 39:W412–W415

Yi L, Dong N, Yun Yet al (2016) Chemometric methods in data process-

ing of mass spectrometry-based metabolomics: a review. Anal Chim

Acta 914:17–34

406 J Inherit Metab Dis (2018) 41:393–406


	Advances in metabolome information retrieval: turning chemistry into biology. Part II: biological information recovery
	Abstract
	Introduction
	Biological information recovery
	Preprocessing
	Normalization
	Transformation, centering, and scaling

	Data analysis
	Univariate data analysis
	Multivariate data analysis

	Metabolite annotation and characterization
	Functional analysis: translating information into knowledge
	Metabolomics and other omics cross-talk
	Perspectives in clinical metabolomics translation
	Conclusion
	References


