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Summary

Cancer patients frequently
have cognitive impairments
following brain radiation
therapy. To monitor
irradiation-induced micro-
structural tissue damage,
especially in neurogenic
areas, we have investigated
the potential of diffusion
magnetic resonance imaging
and magnetic resonance
spectroscopy. The diffusion
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Purpose: Radiation therapy is widely used for the treatment of brain tumors, but it
may lead to severe cognitive impairments. Previous studies have shown that ionizing
irradiation induces demyelination, blood-brain barrier alterations, and impaired neuro-
genesis in animal models. Hence, noninvasive and sensitive biomarkers of irradiation
injury are needed to investigate these effects in patients and improve radiation therapy
protocols.
Methods and Materials: The heads of 3-month-old male C57BL/6RJ mice (15 control
mice and 15 irradiated mice) were exposed to radiation doses of 3 fractions of 5 Gy
from a 60Co source with a medical irradiator. A longitudinal study was performed
to investigate cranial irradiation-induced (3 fractions of 5 Gy) microstructural tissue
alterations using water diffusion magnetic resonance imaging and magnetic resonance
spectroscopy in different areas of the mouse brain (cortex, thalamus, striatum, olfac-
tory bulbs [OBs], hippocampus, and subventricular zone [SVZ]). In addition to the
quantification of standard non-Gaussian diffusion parameters, apparent diffusion
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S-index calculated from the

diffusion magnetic resonance
imaging signal acquired at 2
optimized values of diffusion
weighting appeared as the
most sensitive biomarker,
revealing subtle brain tissue
alterations induced by
ionizing irradiation.
coefficient (ADC0) and kurtosis (K), we evaluated a new composite diffusion metric,
designated the S-index (ie, “signature index”).
Results: We observed a significant decrease in the S-index in the SVZ from 1 month to
8 months after brain irradiation (P < .05). An interesting finding was that, along with a
decrease in taurine levels (up to e15% at 2 months, P < .01), a delayed S-index drop
was observed in the OBs from 4 months after irradiation and maintained until the end of
our experiment (P < .0001). These observations suggest that S-index variations revealed
the irradiation-induced decline of neurogenesis that was further confirmed by a decrease
in neural stem cells in the SVZ and in newborn neurons in the OBs of irradiated animals.
Conclusions: This study demonstrates that diffusion magnetic resonance imaging,
especially through the S-index approach, is a relevant imaging modality to monitor
brain irradiation injury and probe microstructural changes underlying irradiation-
induced cognitive deficits. � 2018 The Authors. Published by Elsevier Inc. This is
an open access article under the CC BY-NC-ND license (http://creativecommons
.org/licenses/by-nc-nd/4.0/).
Introduction

Radiation therapy (RT) is a common treatment of primary
brain tumors and metastases, but it may cause severe
cognitive impairments affecting the patient’s quality of life.
Cognitive deficits have been reported in adult brain tumor
survivors (who survived >6 months) with an incidence rate
of 50% to 90% after partial- or whole-brain irradiation (1-3).
The cognitive impairments induced by RT are marked by
reduced verbal memory, spatial memory, attention, and novel
problem-solving abilities (4-6). Clinically, irradiation-
induced brain injury is classified as acute (days to weeks),
early delayed (1-6 months), and late delayed (>6 months)
(7). The brain injury is characterized by long-lasting
vascular abnormalities, demyelination, and, ultimately,
white matter necrosis (8-12). Several preclinical studies
have shown that irradiation-induced memory and attention
deficits are related to neuroinflammation, blood-brain bar-
rier alterations, and demyelination, as well as neurogenesis
decline (13-21).

Neurogenesisdthe formation of functional, mature neu-
rons from neural stem cells (NSCs) and progenitorsdpersists
throughout life in discrete regions of the adult brain, such as
the subgranular zone (SGZ) of the hippocampal dentate gyrus
and the subventricular zone (SVZ) lining the lateral ventricles
(22). The hippocampus is involved in cognitive processes such
as declarative memory and spatial information processing
(23), which can be affected by RT and may play a role in
irradiation-induced cognitive deficits. Decreased hippocam-
pal neurogenesis and hippocampus-dependent memory
dysfunctionwere reported in adult mice 3months after cranial
irradiation (24, 25). Similarly, whole-brain irradiation
decreased the numbers of NSCs and progenitor cells from the
SVZ, up to several months after treatment, in a dose-
dependent manner (17, 26). Focal irradiation (3 fractions of
5 Gy) of the SVZ induced a long-term neurogenesis decline,
leading to a decrease in integration of newborn neurons in the
olfactory bulbs (OBs), which ultimately resulted in significant
alteration of the olfactory memory in mice (15). Noninvasive
and sensitive biomarkers of irradiation-induced injury are still
needed to monitor brain damage.

Diffusion magnetic resonance imaging (dMRI) probes
tissue at amicroscopic scale, well below image resolution, by
assessing the random motion of water molecules and their
interaction with cell membranes and the cytoskeleton.
Consequently, dMRI reveals useful information about tissue
microarchitecture (27). Diffusion magnetic resonance im-
aging (MRI) and its variant, diffusion tensor imaging, which
have beenwidely used inmedicine, allowwhitematter injury
in both pediatric and adult patients treated with whole-brain
irradiation to be assessed at an early stage (28, 29).

In addition to dMRI, magnetic resonance spectroscopy
(MRS) can be used to monitor metabolic alterations
induced by irradiation. MRS is a noninvasive technique that
can detect and quantify up to 20 brain metabolites (30). In
previous studies, MRS has been successfully applied to
differentiate irradiation necrosis from brain tumor pro-
gression (31, 32), as well as to define an indicator of
neurotoxicity induced by brain irradiation (33, 34).

Contrary to most previous preclinical studies using
diffusion tensor imaging (35-39) or MRS (40-43), which
have focused on investigating early brain injuries in white
matter after whole-brain irradiation, our study aimed to
establish the time course of structural and metabolic changes
occurring in the mouse brain and especially in neurogenesis
areas from 3 days to 8 months after whole-brain irradiation.
Besides the estimation of non-Gaussian diffusion parameters
(apparent diffusion coefficient [ADC0] and kurtosis param-
eters) from diffusion-weighted MRI (dMRI) (44), the sensi-
tivity of a novel diffusionmetric, designated the S-index,was
evaluated. The S-index stands for “signature index” and is a
relative distance marker designed directly to identify tissue
types (eg, healthy or injured brain) or changes in tissue
microstructure. This distance is calculated between the dMRI
signal profiles acquired at key b values (chosen to account for
both Gaussian and non-Gaussian diffusion properties) using
a library of generic signal profiles (signatures) for both tissue
types considered (45).
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Methods and Materials

Animals

In vivo experiments were performed on 3-month-old
C57BL/6 male mice (Janvier, Le Genest-Saint-Isle,
France). Animals were maintained with access to food
and water ad libitum at a constant temperature (19�C-22�C)
and humidity (40%-50%) on a 12-hour lighte12-hour dark
cycle. Experiments were approved by the regional ethics
committee and were performed in accordance with the
European Communities Council Directive of September 22,
2010 (EC/2010/63).
Irradiation

Fifteen adult mice were irradiated with an Alcyon medical
irradiator (gamma rays, 60Co) as previously described
(15, 17). In brief, they were anesthetized with ketamine
(Imalgen, 75 mg/kg; Merial, Lyon, France) and medeto-
midine (Domitor, 1 mg/kg; Pfizer, Paris, France) by the
intraperitoneal route. Whole-brain irradiation was achieved
using a 10-cm-thick lead shield, with a 12-mm-diameter
circular hole positioned right above the mouse’s head,
protecting the rest of the body. A total dose of 15 Gy was
delivered at a dose rate of 1 Gy/min in 3 equal fractions of
5 Gy that were separated by 48-hour intervals. This irra-
diation protocol to the head alone is not lethal for the
mouse and does not induce an irradiation burn to the skin or
epilation; only depigmentation of the hair of the head is
observed from 4 months after irradiation. After exposure,
the mice were woken up via an intraperitoneal injection of
atipamezole (Antisedan, 1 mg/kg; Pfizer). The mice were
followed longitudinally for up to 8 months using MRI. To
ensure that our measures were not reflecting normal brain
aging, a control group of nonirradiated animals (15 control
mice) was studied in parallel to our irradiated mice.
Magnetic resonance acquisitions

Acquisitions were performed on an 11.7-T MRI scanner
equipped with a CryoProbe dedicated for mouse brain im-
aging (Biospec; Bruker BioSpin, Rheinstetten, Germany).
After acquisition of an anatomic T2-weighted MRI scan
(Turbo Spin-Echo sequence, echo time [TE], 30 ms; repeti-
tion time [TR], 2500 ms; turbo factor, 8; resolution,
50 � 50 � 450 mm), diffusion-weighted images were ac-
quired with the following parameters: Pulsed Gradient Spin-
Echo-Echo-Planar Imaging (EPI) sequence; TE, 24 ms; TR,
2500 ms; resolution, 125 � 125 � 450 mm; d, 4 ms; D,
11.5 ms; and 34 b values from 10 to 3500 s/mm2 (10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170,
180, 190, 200, 250, 500, 750, 1000, 1250, 1500, 1750, 2000,
2250, 2500, 2750, 3000, 3250, and 3500 s/mm2). Tomitigate
gradient hardware asymmetries and residual anisotropic
diffusion in gray matter areas while increasing our signal-to-
noise ratio (after averaging), dMRI scans were acquired
along 3 orthogonal directions of diffusion. No white matter
areas was considered for this study.

Localized magnetic resonance spectra were acquired
[localization by adiabatic selective refocusing sequence
(46); TE, 25 ms; TR, 3500 ms; 128 averages] from a voxel
(2 � 2 � 1.5 mm3) positioned across both OBs. B0 shim-
ming was performed using the MAPSHIM Bruker routine
leading to typical water line widths of 13 � 3 Hz. Water
suppression was achieved using variable pulse power and
optimized relaxation delays (47). The chemical shift
displacement artifact was a spatial shift of 18% between
water and lipids.

The total duration of each MRI examination was
approximately 90 minutes. During this time, animals were
anesthetized with 1.5% to 2% isoflurane in pure
dioxygen. Their respiration rate was monitored (50-60
breaths/min), and their body temperature was maintained at
37�C � 0.5�C using a heated water circuit incorporated into
the cradle. The head was placed prone and was restrained in
a stereotactic manner by a bite bar and ear pins.

Immunohistologic studies

At 8 months after irradiation, mice underwent perfusion
with saline solution and, after complete blood removal,
with 4% paraformaldehyde. Tissue slices of 20 mm thick-
ness were sectioned using a cryostat (Microm HM 560;
Thermo Scientific).

Immunohistochemical staining for Sox-2 (ab97959, 1:200;
Abcam), Doublecortin (DCX) (ab18723, 1:100; Abcam), and
NeuN (MAB377X, Alexa Fluor 488 conjugated, 1:500; Mil-
lipore) was used to characterize neurogenesis by detection of
NSCs, immature neurons, and mature neurons,
respectively. The revelation was achieved by Alexa Fluor
488econjugated secondary antibody (ab96919, 1:200;
Abcam), and staining was achieved by incubation with 40,6-
diamidino-2-phenylindole dihydrochloride. Brain slices were
examinedunder a fluorescencemicroscope (AxioObserverZ1
microscope; Carl ZeissMicroImaging, Jena, Germany) with a
20� objective. Sox-2,DCX, andNeuN immunostainingswere
quantifiedby the ratios of the numbers of positive pixels versus
40,6-diamidino-2-phenylindole dihydrochloride staining.

Data processing

Anatomic MRI
T2-weighted MRI scans were used to measure whole-brain
volume by manual segmentation on all acquired slices (from
the OBs to upstream of the cerebellum) by using ImageJ
software (W. S. Rasband and National Institutes of Health).

Diffusion MRI
Diffusion-sensitized EPI images acquired over 3 independent
directions and 3 repetitions were averaged before processing
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Fig. 1. Whole-brain radiotherapy induces significant long-
lasting cerebral atrophy. A, Representative T2-weighted
magnetic resonance imaging scans obtained from control
(CTL) and irradiated (IR) animals at 3 days, 2 months, and
6 months after brain irradiation (3 fractions of 5 Gy). B,
Average whole-brain volume before irradiation (Pre-IR) and
at different times after irradiation for IR and CTL mice. Data
are presented as mean � standard deviation, with n Z 15 for
both groups. One asterisk indicates P < .05 versus CTL group
(Student t test); 2 asterisks, P < .01 versus CTL group (Stu-
dent t test); and 3 daggers, P < .0001 for comparison between
CTL and IR curves (Bonferroni post hoc test after significant
2-way analysis of variance [group and time effects]).
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to improve the signal-to-noise ratio. Diffusion MRI data
were processed using homemade software implemented with
MATLAB (The MathWorks, Natick, MA). The non-
Gaussian diffusion parametersdapparent diffusion coeffi-
cient (ADC0) and kurtosis (K)dwere estimated by fitting the
signal obtained at all b values according to the intravoxel
incoherent motion (IVIM)enon-Gaussian diffusion model
(44). The overall measured signal for each region of interest
(ROI) can be modeled as follows, assuming signal levels
remain high compared with background noise (44):

SðbÞZ S0
�
fIVIM exp ð�bD)Þ þ ð1� fIVIMÞ exp

��bADC0

þ ðbADC0Þ2 k=6
��

where S0 is the signal acquired at b Z 0, fIVIM is the vascular
volume fraction in the tissue, D* is the pseudo-diffusion
coefficient associated with the incoherent microcirculation
of blood, and ADC0 is the virtual apparent diffusion coeffi-
cient for low b values. K characterizes the deviation from
monoexponential decay and is null when water Brownian
motion obeys a Gaussian law. As such, K increases with the
heterogeneity of the cellular environment. Even though IVIM
was accounted for in our model to increase its accuracy, fIVIM
and D* parametric maps were not considered for this study.

Brain microstructural alterations were investigated in the
cortex, thalamus, striatum, and neurogenic areas (hippo-
campus, SVZ, and OBs). ROIs were delimited manually
over several consecutive slices with objective and similar
criteria between animals and study times based on the
nonediffusion-weighted EPI images (bZ 0 s/mm2): cortex
(7 slices), hippocampus (2 slices), thalamus (3 slices),
striatum (2 slices), SVZ (2 slices), and OBs (3 slices).

Moreover, a new diffusion composite metric, designated the
S-index (an abbreviation for signature index), was evaluated in
this study. The general basic concept for the S-index (45) is to
directly compare (using a simple distance calculation) the dMRI
signals of the tissue under investigationwith those of a library of
typical signals, without using any diffusion model to obtain
direct tissue pattern recognition. Furthermore, to increase
sensitivity, only signals acquired at “key” b values (diffusion
weighting) known to be the most sensitive to changes in tissue
structure are used. In this study, a library of 2 generic dMRI
signalsdone representing normal mouse brain tissue and the
other mimicking the same tissue undergoing amoderate degree
of cell proliferationdwas built in advance. The S-index corre-
sponds to the proximity of the signal of the tissue under inves-
tigation with those 2 signals, in such a way that 45 corresponds
to the generic normal tissue and 75 to the generic proliferating
tissue. An index>75 means that the tissue is undergoing more
structural changes than the generic proliferating tissue, while an
S-index between 45 and 75 corresponds to a milder change in
tissue structure. For this study, the 2 key b values considered
were b Z 200 s/mm2 and b Z 1500 s/mm2. The library of
diffusion signals for both b values was built using the
IVIMediffusion kurtosis model (44) with the following pa-
rameters corresponding to each reference tissue: ADC0Z 0.75
10�4 mm2/s, KZ 0.6, fIVIM Z 1%, and D*Z 0.01 mm2/s for
generic young neural tissue and ADC0 Z 0.65 10�4 mm2/s,
KZ 0.8, fIVIM Z 3%, and D*Z 0.03 mm2/s for neural tissue
undergoing moderate cell growth.

Magnetic resonance spectroscopy
Spectra were analyzed using LCModel (48) and a simulated
basis set. Twenty metabolites were considered, and the
macromolecule baseline was parameterized as described else-
where (49). Metabolite concentrations were derived using total
creatine (ie, 8mmol/L)asan internal referenceof concentration.

Statistical analyses

All data are presented as means � standard deviations. The
statistical analyseswere performedwith StatView SE software
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(SAS Institute). For comparisons between groups (control and
irradiatedmice) at any time after irradiation, significance levels
were assessed using the Student t test. The statistical signifi-
cance between time courses (all times combined) for irradiated
or control animals was obtained by 2-way analysis of variance
(group and time effects) corrected for multiple comparisons
using Bonferroni post hoc. To evaluate correlations between 2
parameters, the Pearson correlation coefficient (R) and z test (P
value) were determined.
Results

Mouse brain atrophy induced by high-dose
irradiation

T2-weighted MRI scans did not show any noticeable
anatomic lesions, such as edema or necrosis, at any time
after brain irradiation (Fig. 1A). However, whole-brain
volume assessment from anatomic MRI revealed signifi-
cant long-lasting irradiation-induced brain atrophy of 5%
(Fig. 1B, P < 10�4).
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highlight irradiation-induced injury in OBs but not
in other brain regions

We first selected 3 readily identifiable brain structures to
study irradiation-induced damage: the cortex, the thalamus,
and the striatum. Both diffusion parameters (ADC0 and kur-
tosis) evolved similarly in the cortex (Fig. E1, available online
at https://doi.org/10.1016/j.ijrobp.2018.01.070), thalamus
(Fig. E2, available online at https://doi.org/10.1016/j.ijrobp.
2018.01.070), and striatum (Fig. E3, available online at
https://doi.org/10.1016/j.ijrobp.2018.01.070) of controls and
irradiated mice. These results show that high-dose irradiation
did not significantly alter the microstructural organization in
these nonneurogenic areas.

We have previously reported that irradiation with 3
fractions of 5 Gy induced a long-term decrease in the
number of NSCs and progenitors in neurogenic areas
without inducing chronic neuroinflammation (15, 17).
Thus, we tested whether dMRI could detect irradiation-
induced alterations in the SVZ and hippocampus. Because
of the small size of the SVZ in the adult mouse (50), special
care was given to its delimitation. As illustrated in
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Figure E4A (available online at https://doi.org/10.1016/j.
ijrobp.2018.01.070), consistent and robust ROI sizes were
achieved in irradiated and control animals. Noticeably,
ADC0 (P < 10�4) and kurtosis (P < 10�4) values were
significantly different between the SVZ and the striatum, the
adjacent brain structure, highlighting microstructural dif-
ferences between these regions (Figs. E4B and E4C, avail-
able online at https://doi.org/10.1016/j.ijrobp.2018.01.070).

For the hippocampus, our dMRI data analysis showed a
transient increase in ADC0 3 days after irradiation (Fig. E5C,
available online at https://doi.org/10.1016/j.ijrobp.2018.01.
070; P < .01) but no changes in kurtosis (Fig. E5D, available
online at https://doi.org/10.1016/j.ijrobp.2018.01.070). Con-
cerning the SVZ, no significant changes were observed be-
tween control and irradiated mice, although higher kurtosis
values were found in irradiated animals for >2 months after
treatment (Figs. 2A and 2B).

As irradiation of the SVZ with 3 fractions of 5 Gy has
been shown to induce a long-term decrease in the number
of newborn neurons reaching the OBs (15), we next
investigated the dMRI signals in this brain structure. As
illustrated in Figure 2C, ADC0 values were greater in the
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parallel, a large reduction in kurtosis was observed
4 months after irradiation and maintained until the end of
the study (P < 10�4, Fig. 2D).

Diffusion S-index reveals microstructural changes
in neurogenic areas and OBs of irradiated animals

By use of the S-index approach (45), no significant irradi-
ation effect was detected in the nonneurogenic areas (cor-
tex, thalamus, and striatum), as shown in Figures E1B,
E2B, and E3B (available online at https://doi.org/10.1016/
j.ijrobp.2018.01.070). Only a transient decrease in the S-
index was observed in the hippocampus of irradiated ani-
mals as compared with the control group on day 3 after
irradiation (Fig. E5B, available online at https://doi.org/10.
1016/j.ijrobp.2018.01.070; P < .05). These results are
supported by the MRS data obtained in the hippocampus.
The metabolite concentrations in the hippocampus were
relatively similar between the groups, apart from a decrease
in neuronal metabolites N-acetylaspartate and gamma-
aminobutyric acid (GABA) only at 1 month after irradiation
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(Figs. E6A and E6B, available online at https://doi.org/10.
1016/j.ijrobp.2018.01.070). These changes could reflect a
temporary neuronal (apparently GABAergic) deficit. It is
tempting to link those metabolic changes to the earlier (at
3 days after cranial irradiation) and similarly transient
decrease in the S-index observed in the same right hippo-
campus (Fig. E5, available online at https://doi.org/10.
1016/j.ijrobp.2018.01.070).

An interesting finding was that the longitudinal follow-
up of animals highlighted a persistent decrease in S-index
values in the irradiated mice compared with controls from
1 month to 8 months after brain irradiation (Figs. 3A and
A

B
4 3,5 3 2,5 2 1,5 1 0,5

10

Pre-IR 3d 1m 2m

Time post-irradiation

Taurine

CTL

IR

CTL

[T
au

] 
(i

n 
m

m
ol

/L
)

IR

-15%

(2 months post-irradiation)
Olfactory Bulb

4m 6m

13

16

19
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after whole-brain irradiation. A, 1H magnetic resonance
spectra and corresponding taurine contributions from con-
trol (CTL) and irradiated (IR) mice (spectra averaged from
all animals for each group) obtained at 2 months after
irradiation. B, Time courses of taurine concentrations in
olfactory bulbs for both CTL and IR groups. Data are
presented as mean � standard deviation, with 15 nonirra-
diated mice (CTL group) and 15 IR mice. Two asterisks
indicate P < .01 versus CTL group (Student t test); and 3
daggers, P < .0001 for comparison between CTL and IR
curves (Bonferroni post hoc test after significant 2-way
analysis of variance [group and time effects]). Pre-
IR Z before irradiation.
3B, P < .05). Moreover, the 3-dimensional S-index maps
revealed important microstructural changes in the OBs after
brain irradiation (Fig. 3C). Indeed, a significant S-index
drop was noticed in irradiated mice compared with control
animals (Fig. 3D, P < 10�4). This S-index decrease was
observed from 4 months after irradiation, and this effect
was maintained until the end of the study and therefore
mirrored the increase in ADC0 and the reduction in kurtosis
(Figs. 2C and 2D, respectively).

To further explore the irradiation-induced alterations in
the OBs, we conducted a longitudinal follow-up of brain
metabolite concentrations using localized MRS (from a 6-mL
voxel encompassing both OBs). As presented in Figure 4A,
1H spectra exhibited significantly lowered levels of taurine in
irradiated mice compared with those in the control group
(Fig. 4B, P < 10�4). This decrease was accompanied by
similarly reduced levels of GABA (Fig. E7, available online
at https://doi.org/10.1016/j.ijrobp.2018.01.070).

Finally, to confirm the long-term effects of irradiation on
the SVZ and OBs at the histologic level, we performed
immunohistologic studies using antibodies directed against
Sox-2, a marker of neural progenitors; DCX, a marker of
immature neurons; and NeuN, a marker of mature neurons,
at the end of the experiment (ie, 8 months after irradiation).
We found a significant decrease in Sox-2epositive cells in
the SVZ (P < .05) (Figs. 5A and 5C) and a major decline in
DCX in the OBs (P < .0001) (Figs. 5B and 5C) of irradi-
ated animals, in accordance with previous reports showing
a decreased number of proliferating neural progenitors in
the irradiated SVZ and its direct consequence, the
decreased arrival of newborn neurons in the OBs (15, 17).
In parallel, a decrease in NeuN-positive cells was observed
in the OBs of irradiated mice compared with control mice
(P < .05, Figs. 5B and 5C). Correlations between S-index
values and immunostaining against progenitors and
immature neurons in the SVZ and OBs reflect the sensi-
tivity of the S-index for irradiation-induced injury in the
neurogenic areas, especially the correlation between the S-
index and DCX immunostaining performed in the OBs at
the end of the experiment (R2 Z 0.39, P Z .09; Fig. E8,
available online at https://doi.org/10.1016/j.ijrobp.2018.01.
070). These histologic data are consistent with our MRS
and MRI findings evidencing the metabolic and structural
alterations progressively induced in the SVZ and/or OBs of
irradiated animals.
Discussion

Neurocognitive disorders are a frequent long-term effect of
brain RT. Development of specific noninvasive biomarkers
is still required for diagnosing and monitoring disease
progression. In this longitudinal study, we show that a new
composite dMRI biomarker, the S-index, is more sensitive
than the conventional diffusion parameters, ADC0 and
kurtosis, as demonstrated by its greater statistical signifi-
cance, revealing tissue microstructure changes associated
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with neurogenesis decline in the irradiated mouse SVZ and
OBs. In parallel, decreased levels of taurine are observed in
the OBs from 2 months after irradiation and maintained
until the end of the experiment.

In our preclinical model of RT, only late irradiation-
induced damage in the OBs after whole-brain irradiation
resulted in changes in individual dMRI parameters.
Roughly, ADC0 reflects the mobility of water in tissues,
mainly in extracellular space, and is influenced by its vis-
cosity and its tortuosity (cell filling depending on the den-
sity, shape, and size of the brain cells). Kurtosis
characterizes the deviation of this Brownian motion from a
Gaussian (free) diffusion pattern, reflecting hindrance or
restriction of diffusion-driven water molecular displace-
ments by obstacles, such as cell membranes or fibers. The
observation of increased ADC0 values along with a dimi-
nution of kurtosis values from 4months until 8 months after
irradiation suggests a decreasing cell density in the OBs. In
the sameway, Gazdzinski et al (51) and deGuzman et al (52)
have evidenced notable effects in the OBs after fetal irra-
diation that displayed both a detectable volume deficit and a
loss in neurogenesis for most doses and for age. Although
these data were obtained after irradiation at different
developmental stages, they are consistent with the
irradiation-induced effects on the OBs we have highlighted
with dMRI in this study. Is it interesting that we also found
an important decrease in taurine and GABA concentrations
in the OBs from 2 months after whole-brain irradiation.
Both taurine (42, 53, 54) and GABA (55, 56) have been
shown to promote neurogenesis. Their specific decrease in
the OBs is thus consistent with the irradiation-induced
decrease in bulbar neurogenesis.

One of the major obstacles of dMRI in analyzing
neurogenic areas in mice is the small size of these regions
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in mice. We ensured the robustness of our delimitation of
the SVZ by checking (1) that the number of the ROI pixels
was similar between the animals and over time and (2) that
the ADC0 and kurtosis values were significantly different
between the SVZ and the striatum, the neighboring brain
structure.

The neurogenesis decline induced by high-dose irradi-
ation has been abundantly documented (15, 17, 57, 58).
Lazarini et al (15) have shown that the focal irradiation of
the SVZ, using the same doses of irradiation (3 fractions of
5 Gy) used in our study protocol, dramatically decreased
the rate of production of new OB neurons for up to
7 months after irradiation exposure with long-term olfac-
tory memory affected. In accordance with these studies, we
have observed a decrease in Sox-2epositive NSCs in the
SVZ and in DCX-positive newborn neurons in the OBs in
irradiated animals, reflecting the perturbations of prolifer-
ation of NSCs in the SVZ as well as the reduced migration
of newborn cells to the OBs (59). Consistently with this
neurogenesis decline, we found a decrease in S-index
values in the irradiated SVZ from 1 month until the end of
the experiment (8 months after irradiation). This longitu-
dinal follow-up with dMRI, initiated for the first time in a
mouse model, allowed us to highlight different kinetics in
the irradiation-induced alterations between the SVZ and the
OBs, consistent with the alteration of OBs as a consequence
of SVZ neurogenesis decline.

Overall, our data show that the S-index, which is opti-
mized to take into account both Gaussian and non-Gaussian
diffusion, is a more sensitive biomarker of neurogenesis
alteration, allowing the detection of irradiation-induced
microstructure alterations in the SVZ, and could thus
represent an interesting approach for the monitoring of
neurogenesis in discrete areas of the human brain. The
other main neurogenic area in the adult mouse brain, the
SGZ of the dentate gyrus in the hippocampus, has an even
smaller volume than the SVZ. For practical reasons, we
opted to delimit a larger ROI encompassing the whole
dorsal hippocampus. The irradiation-induced perturbation
of SGZ neurogenesis has been reported not to occur before
several months after cranial irradiation (17, 20, 42, 43, 60),
but neither ADC0, kurtosis, nor the S-index revealed any
significant microstructural alterations in this larger ROI. As
the size of our “hippocampal” ROI and the subsequent
partial volume effect are likely reasons to explain our
inability to detect those expected irradiation-induced al-
terations in the SGZ, future dMRI studies should work on
improving the anatomic specificity of this ROI. Even
though both ADC0 and the S-index revealed transient hip-
pocampus alterations 3 days after irradiation, further
studies are needed to determine whether they are related to
the monocyte infiltration known to occur in the days that
follow the irradiation.

Studying neurogenic areas using MRI remains a great
challenge (21, 61, 62) that requires the acquisition of data
at high spatial resolution. Diffusion MRI and especially the
S-index appear particularly well adapted. Indeed, our data
demonstrate that the S-index approach is more sensitive
than standard dMRI parameters, ADC0 and kurtosis,
considered separately. In the context of this study, that is,
brain injury induced by irradiation, this new methodologic
approach has permitted a decrease in cell density (reflected
by lower S-index values) in 2 areas of interest to be
exhibited, which is in accordance with the well-known ef-
fects of high-dose irradiation on neurogenic niches.

The SVZ in the adult human brain is less active than in
rodents. However, this neurogenic area could be re-
stimulated to produce neurons or oligodendrocytes in
various pathologies such as neurodegenerative or psychi-
atric diseases (63, 64), with the SVZ being stimulated in
stroke, epilepsy, Huntington disease, or multiple sclerosis
(65, 66). We have shown that even with placement under
excellent experimental conditions, conventional dMRI
would have a hard time monitoring irradiation-induced al-
terations in the mouse SGZ. However, our results clearly
show that the S-index has the potential to detect low cell
density changes even in a small structure such as the mouse
SVZ.
Conclusions

The overall results of this preclinical study suggest that
diffusion-weighted MRI, especially through the S-index, is
a relevant imaging biomarker to monitor brain irradiation
injury noninvasively and probe structural changes under-
lying the irradiation-induced cognitive deficits, in particular
the neurogenesis decline supposed to be one of the major
causes of irradiation-induced cognitive impairment. Future
studies will further investigate the clinical potential of the
S-index dMRI approach, especially for the monitoring
(diagnosis and therapy assessment) of various pathologies
associated with tissue microstructure alterations, such as
irradiation-induced lesions.
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