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SUMMARY

Clearing techniques have been developed to trans-
parentize mouse brains, thereby preserving 3D
structure, but their complexity has limited their
use. Here, we show that immunolabeling of axonal
tracts followed by optical clearing with solvents
(3DISCO) and light-sheet microscopy reveals brain
connectivity in mouse embryos and postnatal
brains. We show that the Robo3 receptor is selec-
tively expressed by medial habenula axons forming
the fasciculus retroflexus (FR) and analyzed the
development of this commissural tract in mutants
of the Slit/Robo and DCC/Netrin pathways.
Netrin-1 and DCC are required to attract FR
axons to the midline, but the two mutants exhibit
specific and heterogeneous axon guidance de-
fects. Moreover, floor-plate-specific deletion of
Slit ligands with a conditional Slit2 allele perturbs
not only midline crossing by FR axons but also
their anteroposterior distribution. In conclusion,
this method represents a unique and powerful im-
aging tool to study axonal connectivity in mutant
mice.

INTRODUCTION

3D imaging of solvent-cleared organ (3DISCO) is a simple sol-

vent-based clearing method used for transparentizing the brain

of adult transgenic mice expressing fluorescent proteins such as

GFP (Ertürk et al., 2012a) and Alexa-conjugated axonal tracers

(Ertürk et al., 2012a, 2012b). In combination with light-sheet fluo-

rescence microscopy (LSM), 3DISCO allows one to quickly

generate 3D images of axonal tracts (Dodt et al., 2007; Ertürk

et al., 2012a, 2012b). However, the fluorescence of GFP and

related proteins rapidly vanishes after clearing. A handful of
Cell Re
clearing methods using solvent-free reagents have since been

described with which the fluorescence is better preserved

(Chung et al., 2013; Hama et al., 2011; Ke et al., 2013; Susaki

et al., 2014; Yang et al., 2014), but they are more complex tech-

nically. Clearing takes several days or even weeks and requires

large volumes of expensive reagents, such as polymers, that

impregnate the samples. Moreover, the number of fluorescent

mouse lines that have been validated with these methods is still

limited (in most cases, only Thy1-YFP transgenic lines were

tested), and in any case, using them to study axonal projections

in mutant mice would require time-consuming intercrosses.

Therefore, we reasoned that there was still a need for simple,

rapid, and inexpensive methods to clear and image brain

samples.

We first thought that performing whole-mount immunostain-

ing prior to clearing could be a good strategy, as this would

alleviate the use of fluorescent reporters. Immunostaining is

compatible with clarity (Chung et al., 2013), CUBIC (Susaki

et al., 2014), and PACT (Yang et al., 2014) but is performed after

clearing and therefore lengthens these procedures. We show

here that 3DISCO clearing can be performed after whole-mount

immunostaining on embryo or postnatal brain and preserves

the activity of fluorescent dyes for several months. We also

show that Robo3, a receptor of the roundabout family (Sabatier

et al., 2004), is a unique marker of medial habenula (mHb)

axons, which extend through the fasciculus retroflexus (FR) to

the interpeduncular nucleus (IPN; Beretta et al., 2012). The FR

exists in all vertebrate embryos (Figdor and Stern, 1993) and

primarily targets the IPN, an unpaired structure extending

across the ventral midline at the midbrain/hindbrain boundary

(Beretta et al., 2012). FR axons pathfinding in the thalamus

is controlled by Sema3F/Neuropilin-2 repulsion (Chen et al.,

2000; Sahay et al., 2003). In vertebrates, the behavior of FR

axons at the ventral midline is rather unique, as they cross it

multiple times (Ramon y Cajal, 1911; Bianco et al., 2008; Iwa-

hori et al., 1993). Surprisingly, the role of guidance cues such

as Slits and Netrin-1 in midline crossing of FR axons had not

been studied.
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Figure 1. Immunolabeling and 3DISCO Clearing of E11–E13 Embryos

(A–D) E12 mouse embryos labeled with anti-ChAT (A, C, and D) and anti-TAG-1 (B and C) antibodies. (A) Ventral view of the spinal cord motor columns and the

motor projections in the rib cage and forelimbs (fl). (B and C) Side view. TAG-1 (B) labels sensory projections in the periphery, such as the trigeminal nerve (V) and

dorsal root ganglia (arrowheads), and commissural axons in the hindbrain and spinal cord (arrow). (C) Overlay of ChAT and TAG-1 immunostaining. (D) High

magnification of motor innervation in the forelimb.

(E) Ventral view of the brain of an E13 embryo labeled with anti-Foxp2 antibodies. The entire expression pattern of FoxP2+ neurons can be observed in a single

brain. Foxp2 is highly expressed in the inferior olivary nucleus (ION), Purkinje cells in the cerebellum (Cer), neocortex (Cx), and anterior olfactory nucleus (AON).

(legend continued on next page)
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RESULTS

Immunolabeling of Mouse Embryos Is Compatible with
3DISCO Clearing
First, we tested the technique on embryonic day 12 (E12)–E14

mouse embryos immunostained with antibodies against choline

acetyl transferase (ChAT) to label motor projections and

transient axonal glycoprotein 1 (TAG-1/Contactin-2), which is

expressed by many axons (Yamamoto et al., 1986), including

sensory ganglia axons (Figures 1A–1D). The precise 3D pattern

of motor and sensory projections could be visualized, including

oculomotor nerves and limb innervation (Movies S1, S2, and S3).

Postacquisition treatments using Imaris allowed us to obtain

high-resolution images of regions of interest. The samples, or

part of it, such as a limb (Figure 1D; Movie S4), could be optically

sliced in all orientations, thereby allowing one to generate

classic sagittal, horizontal, and coronal sections with a single

embryo. Next, we used anti-FoxP2 (forkhead box P2) antibody,

which recognizes a transcription factor expressed by neurons in

multiple brain areas (Ferland et al., 2003; Fujita and Sugihara,

2012). The comprehensive distribution of FoxP2 immunore-

active nuclei was revealed (Figure 1E). Notably, automatic 3D

counting of the number of FoxP2+ neurons could also be done

(data not shown).

Transgenic mice expressing fluorescent proteins are increas-

ingly used to study axonal circuits and gene expression patterns.

To determine if the quenching of fluorescent proteins after

3DISCO could be overcome by antibody staining, we performed

anti-GFP staining. Tau-lox-Stop-lox-mGFP-IRES-nls-lacZ mice

(TaumGFP), which express a membrane-tethered GFP in axons

following Cre-mediated recombination (Hippenmeyer et al.,

2005), were crossed withWnt1:Cremice. In this line, Cre recom-

binase is targeted to some hindbrain and spinal cord commis-

sural neurons and sensory ganglia (Danielian et al., 1997). In

E11.5 Wnt1:Cre;TauGFP embryos, GFP-immunoreactive axons

could be followed throughout the CNS and peripheral nervous

system (Figures 1F and 1G; Figure S1A;Movies S5 and S6). Like-

wise, anti-dsRed immunostaining was performed on E14 Ptf1a:

CreERTM;Rosa26dTomato embryos that had received tamoxifen

at E12.5. In this line, Cre is activated upon tamoxifen injection

in subsets of neurons in the CNS (Kopinke et al., 2012), and

this induces the expression of a red fluorescent protein from

the Tomato transgene inserted into the ubiquitous Rosa locus

(Madisen et al., 2010). After anti-dsRed immunostaining and

clearing, the distribution of Tomato-positive neurons, derived

from Ptf1a+ progenitors, could be observed, including Purkinje

cells in the cerebellum (Figure 1H). This showed that 3DISCO,

in combination with immunostaining, can bypass the problem

of native fluorescence instability. Last, we performed immuno-

staining against Robo3, a transmembrane receptor of the round-
(F and G) Side views of an E11.5 Wnt1:Cre;TaumGFP embryo labeled with anti-GF

magnification of the spinal cord showing axons from dorsal root ganglia neurons

(H) Dorsal view of the brain an E14 Ptf1a:CreERTM;RosaTomato embryo injected wi

Tomato+ neurons originating from E12.5 Ptf1a+ progenitors is seen, including a

diencephalon (Vd).

(I) Dorsal view of the spinal cord of an E11 mouse embryo stained with anti-Robo

Scale bars represent 100 mm (I), 150 mm (G), 200 mm (D), 300 mm (E and H), 400
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about family, transiently expressed by commissural axons in the

mouse hindbrain and spinal cord (Marillat et al., 2002; Sabatier

et al., 2004). In the E11 spinal cord, the whole array of commis-

sural axons crossing the floor plate was observed in the spinal

cord and hindbrain (Figure 1I; Figure S1B; Movies S7 and S8).

Robo3 Is a Selective Marker of the Fasciculus
Retroflexus
We next performed whole-mount anti-TAG1 immunostaining on

E16 brain and could observe that the 3D framework of TAG-1+

axons such as the lateral olfactory tract, anterior commissure,

and commissural axons in the hindbrain (Figure 2A). By contrast,

at E16, Robo3 was still detected in the hindbrain, such as in late-

migrating pontine neurons, but it was absent from the forebrain

(Figure 2B; Movie S9). Surprisingly, only the FR was immunore-

active for Robo3 in the diencephalon (Figures 2B–2E). Robo3

was only expressed in the mHb, as previously described (Quina

et al., 2009; Schmidt et al., 2014; data not shown). FR axons

cross multiple times and zigzag at the ventral midline (Ramon y

Cajal, 1911; Iwahori et al., 1993 ; Bianco et al., 2008). This feature

was seen on 3D images and following optical slicing (Figure 2E;

Movie S10). The presence of Robo3 in E16 FR axons, which

reach the ventral midline around E13–E14 (Funato et al., 2000),

was unexpected, as this receptor is usually downregulated in

postcrossing axons (Marillat et al., 2002; Sabatier et al., 2004).

Tissues shrink after clearing with 3DISCO (Ertürk and Bradke,

2013), but the FR length (Figure S1C) was similar between E16

brains (862.9 mm ± 10.5 SEM; n = 20 E16 brains; p = 0.93;

one-sample t test). It was also equivalent between the right

(867.1 mm ± 14.8 SEM) and left (858.7 mm ± 15.3 SEM; p =

0.34; paired t test) side. This demonstrates that the shrinkage

is homothetic and that comparing relative dimensions between

cases is possible. Although LSM is the most rapid and efficient

method to image cleared samples (see also Tomer et al.,

2014), confocal microcopy could be used (Figure S1D). Lastly,

the same sample could be imaged several times without sig-

nificant quenching of the fluorescence, which was only slightly

diminished 6 months after clearing (Figure S1E). We next at-

tempted to perform whole–mount Robo3 immunostaining and

3DISCO clearing on postnatal brain (postnatal day 0 [P0] and

P5). This revealed that FR axons still expressed high levels of

Robo3 and that no other tracts were labeled in the CNS (Figures

2F–2H). However, Robo3 was not expressed in the adult mHb

(data not shown). The FR could also be stained with anti-

bodies against the netrin-1 receptor deleted in colorectal cancer

(DCC) and TAG-1 (Figures 2J and 2K; Figure S1F), as previously

shown (Wolfer et al., 1994; Yamamoto et al., 1986; Funato et al.,

2000; Schmidt et al., 2014). Therefore, we next studied FR

structure in a collection of knockout mice for axon guidance

molecules involved in midline crossing.
P. The oculomotor nerve (III) and trigeminal axons (V) are seen in (F). (G) High

(arrowheads) and the dorsal root entry zone (drez).

th tamoxifen at E12.5 and immunostained with anti-dsRed. The distribution of

subset of cerebellar Purkinje cells (PC), cells in the hindbrain (Hb), and ventral

3 antibodies. The commissural axons are seen crossing the floor plate (arrow).

mm (A–C), and 600 mm (F).
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Figure 2. Robo3 Labeling and 3DISCO Clearing Is a Unique Tool to Study the Development of the Fasciculus Retroflexus

(A) Ventral view of an E16 brain stained with anti-TAG-1. TAG-1 is expressed in the lateral olfactory tract (LOT), anterior commissure (AC), optic nerve (ON),

fasciculus retroflexus (FR), pontine neurons (PN), and trigeminal axons (V).

(B) Ventral view of an E16 brain stained with anti-Robo3. Migrating pontine neurons (PN) are seen in the hindbrain, and only the FR is labeled in the diencephalon.

The arrowhead indicates the medial habenula.

(C–E) Robo3 immunostaining of the FR of an E16 embryo in ventral (C), lateral (D), and caudal (E) views. Axons from the medial habenula (mHb) project via the FR

to the interpeduncular nucleus (IPN). Pontine neurons (PN) also express Robo3.

(F–H) Robo3 immunostaining on a P5 brain. The FR is the only tract labeled. Dorsal view (F), lateral view (G), and higher magnification of the IPN level (H) are

shown.

(I–K) Lateral (I and J) and dorsal (K) views of the FR of E16 embryos labeled with antibodies against DCC (I), TAG-1 (J), or TAG-1 and Robo3 (K). Note in (K) that FR

axons coexpress TAG-1 and Robo3.

Scale bars represent 50 mm (E), 100 mm (K), 150 mm (I), 200 mm (C, D, G, and J), 300 mm (A), and 500 mm (B, F, and H).
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3D Analysis of the Development of the FR in Midline
Guidance Mutants
Previous studies showed that Netrin-1 attracts FR axons and

that the FR is disorganized in Netrin-1 and DCCmutants (Funato

et al., 2000; Schmidt et al., 2014). However, the phenotypic anal-

ysis of Netrin-1/DCC knockout embryos was done on cryostat

sections that only provide an incomplete visualization of the

guidance defects. Robo3 immunostaining and 3DISCO clearing

revealed that the FR was severely perturbed in E16 DCC and

Netrin-1 knockout embryos (n = 8 and n = 6, respectively). Inter-

estingly, this method allowed us to compare FR axonal defects

between cases and score embryos as done in invertebrate spe-

cies and zebrafish. In each case, the position and orientation of

all the Robo3+ fascicles was determined.

In all DCC knockout embryos (n = 8/8), a large axonal bundle

projected rostrally from the mHb instead of caudally and a sec-

ond one grew along the normal pathway to the IPN level (Figures

3D–3I; Movie S11). These axons passed the IPN and extended

along the midline. Floor plate crossing was severely reduced in

all cases, although a few axons still crossed in six of eight cases

(Figure 3F; Figures S2D and S2E). In five of the eight embryos,

a small tract projected dorsally from the mHb and aberrant

crossing of the dorsal midline at the level of the mHb was

observed. Overall, the embryos could be grouped in two main

categories (containing five and three embryos, respectively)

based on their combination of axonal defects.

Next we studied Netrin-1 knockout embryos (Figures 3J–3O).

The spectrum of Robo3+ FR axon guidance defects was distinct

from DCC knockouts. Compared to a single tract in wild-type

(n = 5/5) and Netrin-1+/� (n = 7/7) embryos, the mHb projections

were strongly defasciculated in Netrin-1�/� embryos (n = 6/6),

but cases were heterogeneous. In five out of six Netrin-1�/� em-

bryos, a fascicle failed to grow toward the midline and projected

caudally from the mHb, and in two out of six cases, a small tract

extended rostrally from the mHb (Figures 3J–3O; Movie S12).

Like in DCC knockouts, dorsal midline crossing was observed

(four out of six cases; Figures S2B and S2C). All other axons

extended along the normal FR pathway, but one or two large fas-

cicles left the main tract dorsally before the IPN. The remaining

axons reached the IPN and formed a commissure (six out of

six embryos) from which a few axons extend pass the IPN

parallel to the ventral midline (two out of six). In a single embryo

(Figures 3M–3O), a fascicle of axons extended ventrorostrally

instead of caudally when approaching the IPN. These data

show that although a pattern of FR axon guidance defects could

established, their combination was almost unique to each em-

bryo. This confirms that Netrin-1 and DCC play a major role in

FR axon guidance but indicates that their role is not limited to

floor plate crossing.

Habenula neurons and FR axons express Robo1 and Robo2

receptors and Slit ligands (Marillat et al., 2002; Schmidt et al.,

2014), but the consequence of Slit or Robo loss of function on

FR development had not been studied. Therefore, we applied

our clearing procedure to the analysis of FR organization in Slit

and Robo mutants. In Robo�/�;Robo�/� double knockouts

(n = 6), FR axons formed a single tract and reached the IPN (Fig-

ures 4A–4C; Movie S13), where they defasciculated into smaller

bundles. Some axons crossed the midline, but many remained
Cell Re
on the ipsilateral side without extending further caudally (n = 6/

6). In only one embryo, a few axons crossed the dorsal midline

at the level of the mHb (data not shown). Next, we used anti-

Tag1 immunostaining to study the organization of FR projections

in Robo3 knockouts (n = 3). FR axons extended to the IPN level

and crossed the floor plate (Figures 4D–4F; Movie S14), but they

next turned back toward the midline and coalesced at the

midline. Together, the FR wiring defects in Robo mutants were

unexpected and distinct from what has been described for other

commissural tracts (see Discussion). We next studied various

combinations of Slit knockouts, including a conditional Slit2lox

allele. To delete Slit2 from the floor plate, Slit2lox mice were

crossed to the Shh:Cre line, in which Cre is highly expressed

throughout the floor plate. InSlit1�/� knockouts (n = 1) and single

and compound heterozygous controls (n = 3), Robo3+ FR axons

projected as in wild-type embryos (Figures 4G–4I and data

not shown). However, severe midline crossing defects were

observed in Shh:Cre;Slit1�/�;Slit2lox/lox and Shh:Cre;Slit1�/�;
Slit2lox/lox;Slit3�/� embryos (n = 2 for each genotype). In bothmu-

tants, FR axons projected to the IPN, but their growth at the

midline was perturbed. In Shh:Cre;Slit1�/�;Slit2lox/lox embryos,

FR axons defasciculated at the IPN level but then followed the

floor plate in both directions (Figures 4J–4K; Movie S15) toward

the diencephalon or hindbrain. In Shh:Cre;Slit1�/�;Slit2lox/lox;
Slit3�/� embryos, each FR divided into two branches that

crossed the midline and joined axons from the contralateral

FR to form two commissures. In addition, a bundle of axons

escaped the anterior commissure to grow along the ventral

midline (Figure 4O; Movie S16). Together, these results show

that 3DISCO clearing after whole-mount immunostaining reveals

unexpected axonal defect in midline mutants.

DISCUSSION

Whole-Mount Immunostaining and 3DISCO Clearing: An
Optimal Recipe for Studying Brain Connectivity?
Embryos from most invertebrate species, such as Drosophila or

C. elegans, or some vertebrates, including zebrafish or Xenopus,

are optically transparent. Therefore, one can visualize and recon-

struct entirely axonal tracts and their arborization using specific

transgenes or whole-mount immunostaining. This has facilitated

the phenotypic characterization of axon guidance mutants and

large-scale genetic screens (Baier et al., 1996; Kolodkin et al.,

1993; Seeger et al., 1993; Zallen et al., 1998). By contrast,

mammalian embryos and postnatal brains are opaque and cur-

rent imaging techniques mostly restrict the 3D analysis of axonal

connections to young embryos or brain samples at immature

stages. Older brains need to be cut, which is time consuming

and only provides fragmentary information on brain connectivity.

Serial electron microscopy was used to reconstruct neuronal

networks in small pieces of tissue (Helmstaedter et al., 2013),

but the technique is still in its infancy and inaccessible to most

laboratories. Using it for genetic screens or to assess interspeci-

men variability would also be extremely challenging.

A few forward genetic screens for axon guidance mutants

have been performed inmice using N-ethyl-N- nitrosoureamuta-

genesis (Lewcock et al., 2007;Merte et al., 2010) but restricted to

E11.5–E12.5 embryos.We show here that our imagingmethod is
ports 9, 1191–1201, November 20, 2014 ª2014 The Authors 1195



Figure 3. Diversity of FR Axon Guidance Defects in Netrin-1 and DCC Knockouts

Robo3 immunostaining and 3DISCO clearing on E16DCC+/� (A–C),DCC�/� (D–I),Netrin-1�/� (J–O) embryos imaged by LSM. Lateral, oblique, ventral, and dorsal

views and caudal views at the IPN level (IPN) are shown.

(A–C) Normal FR in a DCC+/� embryo.

(D–F) Organization of FR axons in oneDCC�/�mutant (#1). An abnormal tract develops rostrally (1) and another one caudally (2). Other FR axons (3) reach the IPN,

but only a few cross the midline (arrowhead in F). Note that many axons cross the dorsal midline at the level of the habenula (arrowhead in E).

(G–I) FR defects in another DCC�/� embryo (#2). The rostral tract is also present (1). Other FR axons reach the IPN (3) but fail to cross the midline (arrowhead in I).

Axons do not cross the dorsal midline (arrowhead in H).

(legend continued on next page)
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fast, inexpensive, and scalable enough for processing a large

number of embryos. Moreover, it is compatible with multiple la-

beling and therefore several types of axonal tracts can be stained

in a single embryo. The procedure is technically simple and does

not require any specific device (perfusion is not even needed).

Another main advantage of this immunostaining/clearing proce-

dure over existing ones is its low cost (about 10 Euros [V] per

sample, including 3V of antibodies and only 3.5V of clearing so-

lutions), which can be reduced if several embryos are processed

simultaneously. Last, brains and embryos can be stored for

weeks before staining and after clearing. As with every immuno-

histochemical procedure, the staining protocol will have to be

optimized for each antibody and specific needs. Our work also

confirms that LSM is a very powerful imaging technique for 3D

analysis of brain connectivity.

Unique Features of Midline Guidance in the Habenular
System
The habenular complex is an important relay between the limbic

forebrain and caudal brain nuclei, in particular monoaminergic

ones (Herkenham and Nauta, 1979; Hikosaka, 2010). The medial

habenula project mostly to the IPN (Kuhar et al., 1975) and plays

a role in nicotine intake (Fowler et al., 2011) and anxiety (Yama-

guchi et al., 2013), among other emotional behaviors. The habe-

nula has fascinated neuroatomists for being an asymmetric brain

structure in most vertebrate species, excepting mammals. This

lateralization (in size, neurotransmitter content, and connectivity)

is most obvious in anamniotes, including fish (Amo et al., 2010).

In zebrafish, the axons from both sides cross themidline multiple

times in a different pattern depending on their lateral origin in the

dorsal habenula (Bianco et al., 2008). This unusual, and seem-

ingly unique, midline recrossing behavior was also described in

mammals (Ramon y Cajal, 1911; Iwahori et al., 1993). This raised

the question of the underlying axon guidance mechanisms, as

in other commissural systems, midline recrossing is prevented

(Chédotal, 2011). We show here that Slit/Robo signaling plays

a major role in the control of midline recrossing. Although FR

pathfinding to the midline is not affected in Robo1/2, Robo3

knockouts or in mice lacking all Slit expression at the floor plate,

their final arborization is severely perturbed. Midline recrossing

is strongly reduced in Robo1/2 double knockouts. This is

somehow counterintuitive, as one would have expected axons

to recross or coalesce at the midline, as described in other

commissural systems (Farmer et al., 2008; Jaworski et al.,

2010). Likewise, the FR phenotype of Robo3 knockout is

unexpected, as axons cross the midline and even fail to leave

it. Moreover, Robo3 is still expressed by FR axons several

days after they crossed the midline, unlike in other commissural

systems (Marillat et al., 2004; Sabatier et al., 2004). The analysis
(J–L) FR defects in aNetrin-1�/�mutant (#1). Some axons project rostrally over the

the habenula (2), and other axons extend along the normal FR pathway (3). Two bu

whereas other axons reach the IPN level. They form a large commissure (6), but a f

(arrowhead in K and L).

(M–O) Distinct FR guidance defects in anotherNetrin-1�/�mutant (#2). The dorsal

normal FR pathway (3). Upon reaching the floor plate, a large bundle is deflected

(7). Other axons reach the IPN level and cross the midline to form a small comm

Scale bars represent 50 mm (C, F, and L), 100 mm (I), and 200 mm (A, B, D, E, G,

Cell Re
of Slit triple knockouts also reveals that Slits control the defasci-

culation of FR axons at the midline and prevent them from

growing caudally and rostrally, thereby confining them to the

IPN level.

By contrast, the analysis ofNetrin-1 andDCC knockouts dem-

onstrates that they are essential for guiding FR axons to the

midline and promoting crossing. However, they also favor FR

axon fasciculation and prevent axons from crossing the dorsal

midline or from extending rostrally, as previously described

(Schmidt et al., 2014). The distinct fascicles that form in these

mutants might reflect the molecular diversity of the adult medial

habenula (Yamaguchi et al., 2013). This heterogeneity of guid-

ance defects is unlikely to rely on a differential expression of

unc5 receptors in mHb neurons, as they only express unc5a,

and homogeneously (van den Heuvel et al., 2013).

Interestingly, the spectrum of axon defects is specific for each

mutant line, and a common signature of pathfinding errors

can be established. However, a clear interindividual variability

exists in each knockout line. For Netrin-1 knockouts, this could

be related to a hypomorphic allele (Serafini et al., 1996), but

this should not be the case for the other mutants. This suggests

that FR axon rewiring in these mutant is partially stochastic.

In conclusion, this method will facilitate the development

of large-scale forward genetic screens and of 3D atlases of

immunolabeled tissues. It will be a valuable tool to implement

ongoing initiatives aimed at establishing the brain connec-

tome (see, for instance, http://connectivity.brain-map.org/ and

http://www.gensat.org/index.html).

EXPERIMENTAL PROCEDURES

Mouse Strains and Genotyping

Netrin-1 (Serafini et al., 1996), DCC (Fazeli et al., 1997), Robo3 (Sabatier et al.,

2004), Slit1/Slit2 (Plump et al., 2002), Slit3 (Yuan et al., 2003), Robo1 (Long

et al., 2004), Robo2 (Grieshammer et al., 2004) and Slit2lox (Gibson et al.,

2014) knockouts and Shh:Cre (Harfe et al., 2004), Ptf1a:CreERTM (Kopinke

et al., 2012), Wnt1:Cre (Danielian et al., 1997), TauGFP (Hippenmeyer et al.,

2005), and Rosa26:dTomato (Madisen et al., 2010) lines were previously

described and genotyped by PCR. Wild-type mice were from the C57BL6

background (Janvier France). Compound mutants were obtained by

intercrossing the various lines. The day of the vaginal plug was counted as

E0.5. Postnatal and adult mice were anesthetized with ketamine (100 mg/ml)

and xylazine (10 mg/ml).

Embryos were collected at E12, E14, E16, and E18 and transferred to

ice-cold PBS 1X (Invitrogen). From E16, the nervous system was dissected

and a small hole was made in the telencephalon to facilitate the diffusion of

the antibodies. At postnatal ages (P0 to P8), brains were dissected and fixed

by immersion in 4% paraformaldehyde (PFA; Merck) for 3 hr at room

temperature (RT) or overnight at 4�C. Samples were kept at 4�C in PBS

1X until use.

All animal procedures were carried out in accordance to institutional guide-

lines (UPMC and INSERM).
medial habenula (1) without crossing the midline, a bundle grow caudally from

ndles leave the main tract to project dorsally before reaching the IPN (4 and 5),

ew axons extendmore caudally parallel to the floor plate, and only a few cross it

defasciculation at habenula level is also seen (1), butmost axons grow along the

dorsally (4) and a smaller ventral fascicle also forms in the ventral diencephalon

issure (6).

H, J, K, and M–O).
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Figure 4. FR Axon Guidance Defects in Slit and Robo Knockouts

Robo3 (A-C, G-O) or TAG-1 (D–F) immunostaining and 3DISCO clearing in E16 Slit and Robo mutant embryos.

(A–C) In Robo1�/�;Robo2�/� knockouts, the FR is similar to control until the IPN, where the axons defasciculate (arrowheads in C).

(D–F) In a Robo3�/� mutant, the FR reaches the IPN, where they cross the midline and extend caudally within the midline.

(G–I) in Slit1�/� embryos, the FR is similar to controls.

(J–L) Two Shh:Cre;Slit1�/�;Slit2lox/lox embryos (#1 and #2). In both cases, FR axons reach the IPN and then form a dense meshwork at the floor plate level from

which two axon bundles emerge and extend along the floor plate rostrally (1) and caudally (2).

(M–O) Two Shh:Cre;Slit1�/�;Slit2lox/lox;Slit3�/� embryos (#1 and #2). Again the FR is comparable to controls until axons reach the floor plate. In one case (#1 in M

and N), FR axons from two large commissures: a rostral one (1) and a caudal one (2). A small tract leaves the rostral commissure to grow along the floor plate

(arrowheads in M and N). In the second case (O), three commissures are observed, but they are more compact and the anterior medial bundle is larger (arrow).

Moreover, two small fascicles extend caudally on both sides (arrowheads).

Scale bars represent 40 mm (F), 50 mm (C and I), 100 mm (O), 150 mm (K), and 200 mm (A, B, D, E, G, H, J, and L–N).

1198 Cell Reports 9, 1191–1201, November 20, 2014 ª2014 The Authors



Whole-Mount Immunostaining

The procedure was similar for single and multiple labeling. Samples were first

incubated at RT on a rotating shaker in a solution (PBSGT) of PBS 1X contain-

ing 0.2% gelatin (Prolabo), 0.5% Triton X-100 (Sigma-Aldrich) and 0.01%

thimerosal (Sigma-Aldrich) for 3 hr (E12), 24 hr (E14–E18 and P0), or 48 hr

(P5 and P8). Samples were next transferred to PBSGT containing the primary

antibodies (Table S1) and placed at 37�C, with rotation at 100 rpm, for 3 days

(E12), 1 week (E14, E16, and E18), 10 days (P0), or 14 days (P5 and P8). This

was followed by six washes of 30 min in PBSGT at RT. Next, samples were

incubated in secondary antibodies (Table S2) diluted in PBSGT overnight

(E12–E18) or for 2 days (P0–P8) at 37�C. After six washes of 30 min in PBSGT

at RT, samples were stored at 4�C in PBS until clearing.

Tissue Clearing

We used the 3DISCO clearing procedure (Ertürk et al., 2012b) and slightly

adapted it to our samples. All incubation steps were performed at RT in a

fume hood, on a tube rotator (SB3, Stuart) at 14 rpm, using a 15 ml centrifuge

tube (TPP, Dutscher) covered with aluminum foil to avoid contact with light.

Samples were first dehydrated in a graded series (50%, 80%, and 100%) of

tetrahydroflurane (THF; anhydrous, containing 250 ppm butylated hydroxyto-

luene inhibitor, Sigma-Aldrich) diluted in H2O, during 1hr (E12-P0) or 90 min

(P5) for each step. This was followed by a delipidation step of 20 min (E12 to

P0) or 40 min (P5–P8) in dichloromethane (DCM; Sigma-Aldrich). Samples

were transferred to 100% DCM until they have sunk. Finally, samples were

cleared overnight in dibenzylether (DBE; Sigma-Aldrich). Samples should be

stored in brown glass vial (Rotilabo, Roth) filled with DBE, in the dark and at

RT. THF, DCM, and DBE are toxic (gloves must be worn at all steps) and flam-

mable. Waste should be treated and eliminated accordingly. DBE must be

stored in glass containers.

Imaging

Ultramicroscopy

3D imaging was primarily performed with an ultramicroscope (LaVision

BioTec) using ImspectorPro software (LaVision BioTec). The light sheet was

generated by a laser (wavelength 488 or 561 nm, Coherent Sapphire Laser,

LaVision BioTec) and two cylindrical lenses. A binocular stereomicroscope

(MXV10, Olympus) with a 23 objective (MVPLAPO, Olympus) was used at

different magnifications (1.63, 43, 53, and 6.33). Samples were placed in

an imaging reservoir made of 100% quartz (LaVision BioTec) filled with DBE

and illuminated from the side by the laser light. Different dipping caps were

used to image large samples with a high working distance or small samples

with a low working distance. Images were acquired with a PCO Edge SCMOS

CCD camera (2,560 3 2,160 pixel size, LaVision BioTec). The step size

between each image was fixed at 1 mm.

The acquisition time with the ultramicroscope depends on the number of la-

sers (one side or two sides) used to generate and focus the light sheet. It took

only 10 min to image (1,488 sections) the habenula and FR with a single light

source. For the entire brain, the two light sources were used and the total

acquisition time (1,856 sections) was �1 hr. Each resulting imaris (.ims) file

was �15 Gb in size at a 1 mm z resolution (16-bit images).

Confocal Microscopy

For imaging with an upright confocal microscope (Olympus FV1000), samples

were placed on a glass slide, in a homemade PDMS cuvette (DBE resistant)

with a rim of 5mm (Sylgard 184/Silicone elastomer, DowCorning). The cuvette

was filled with DBE and covered with a glass coverslip. Images were obtained

with a 103 objective (Olympus UPlanSApo 103/0.40 numerical aperture

objective Royal Microscopical Society, infinity corrected 0.31 mm working

distance). Each individual image (.oif file) was 1.08 Gb from confocal for

1 mm z resolution. The acquisition time was of about 4 hr for the FR and there-

fore much longer than with an ultramicroscope.

3D Imaging and Image Processing

Images, 3D volume, and movies were generated using Imaris x64 software

(version 7.6.1, Bitplane). Stack images were first converted to imaris file

(.ims) using ImarisFileConverter. File size was next reduced to 8 bits. 3D recon-

struction of the sample was performed using ‘‘volume rendering’’ (Imaris). The

sample could be optically sliced in any angle using the ‘‘orthoslicer’’ or ‘‘obli-

queslicer’’ tools. Air bubbles and crystals that might form at the surface of
Cell Re
the samples could be eliminated using the ‘‘surface’’ tool by creating a mask

around the each volume. 3D pictures and movies were generated using

the ‘‘snapshot’’ and ‘‘animation’’ tools. Finally, images were cropped and, if

required, their brightness was adjusted evenly using Photoshop CS4 (Adobe).

Movies legends were generated using iMovie 10.0.2.

Alternatively, movies and 3D analysis could be done with free software such

as Vaa3D (http://www.vaa3d.org) or Fiji 3D project plugin (Schindelin et al.,

2012). However, the quality of the 3D images was not as good as with Imaris

(data not shown).

The distance separating the base of the habenula from the IPNwas obtained

using the ‘‘measurement’’ tool (Imaris), and statistical analysis was performed

with Prism 6 (GraphPad).
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