

## Low-energy collisions between electrons and BeD +

N Niyonzima, N. Pop, I Iacob, Å Larson, A Orel, J. Mezei, K Chakrabarti, V.

Laporta, K. Hassouni, D. Benredjem, et al.

### ▶ To cite this version:

N Niyonzima, N. Pop, I Iacob, Å Larson, A Orel, et al.. Low-energy collisions between electrons and BeD +. Plasma Sources Science and Technology, 2018, 27 (2), 10.1088/1361-6595/aaabef. hal-01939252

## HAL Id: hal-01939252 https://normandie-univ.hal.science/hal-01939252

Submitted on 9 Jan 2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

### **PAPER • OPEN ACCESS**

## Low-energy collisions between electrons and BeD<sup>+</sup>

To cite this article: S Niyonzima et al 2018 Plasma Sources Sci. Technol. 27 025015

View the article online for updates and enhancements.

### **Related content**

- Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH+ ion

V Laporta, K Chakrabarti, R Celiberto et al.

- Electron-induced processes in hydroxyl cations Marius Cristian Stroe and Magda Fifirig
- <u>Reactive collisions of NO+ ions</u> O Motapon, M Fifirig, A Florescu et al.

https://doi.org/10.1088/1361-6595/aaabef

## **OPEN ACCESS IOP** Publishing

Plasma Sources Sci. Technol. 27 (2018) 025015 (10pp)

## Low-energy collisions between electrons and BeD<sup>+</sup>

# S Niyonzima<sup>1,2</sup>, N Pop<sup>3</sup>, F lacob<sup>4</sup>, Å Larson<sup>5</sup>, A E Orel<sup>6</sup>, J Zs Mezei<sup>2,7,8</sup>, K Chakrabarti<sup>9</sup>, V Laporta<sup>2,10</sup>, K Hassouni<sup>7</sup>, D Benredjem<sup>11</sup>, A Bultel<sup>12</sup>, J Tennyson<sup>10</sup>, D Reiter<sup>13</sup> and I F Schneider<sup>2,11</sup>

<sup>1</sup>Département de Physique, Faculté des Sciences, Université du Burundi, B.P. 2700 Bujumbura, Burundi <sup>2</sup> Laboratoire Ondes et Milieux Complexes CNRS—Université du Havre—Université Normandie, F-76058

Le Havre, France

<sup>3</sup> Fundamental of Physics for Engineers Department, Politehnica University Timisoara, 300223 Timisoara, Romania

<sup>4</sup> Department of Physics, West University of Timisoara, 300223 Timisoara, Romania

<sup>5</sup> Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden <sup>6</sup>Department of Chemical Engineering, University of California, Davis, CA 95616, United States of America

<sup>7</sup>Laboratoire des Sciences des Procédés et des Matériaux, CNRS—Université Paris 13—USPC, F-93430 Villetaneuse. France

Institute of Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, Hungary

<sup>9</sup> Department of Mathematics, Scottish Church College, Kolkata 700 006, India

<sup>10</sup> Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

<sup>11</sup>Laboratoire Aimé-Cotton, CNRS-Université Paris-Sud-ENS Cachan-Université Paris-Saclay, F-91405 Orsav, France

<sup>12</sup> CORIA, UMR CNRS 6614, Normanide Université, Campus Universitaire du Madrillet, 675 Avenue de l'Université, F-76801 Saint-Etienne du Rouvray Cedex, France

<sup>13</sup> Institute of Energy and Climate Research-Plasma Physics, Forschungszentrum Jülich GmbH Association EURATOM-FZJ, Partner in Trilateral Cluster, D-52425 Jülich, Germany

E-mail: ioan.schneider@univ-lehavre.fr

Received 30 October 2017, revised 25 January 2018 Accepted for publication 31 January 2018 Published 23 February 2018



Multichannel quantum defect theory is applied in the treatment of the dissociative recombination and vibrational excitation processes for the BeD<sup>+</sup> ion in the 24 vibrational levels of its ground electronic state (X  $^{1}\Sigma^{+}$ ,  $v_{i}^{+} = 0$  ... 23). Three electronic symmetries of BeD<sup>\*\*</sup> states ( $^{2}\Pi, ^{2}\Sigma^{+}$ , and  $^{2}\Delta$ ) are considered in the calculation of cross sections and the corresponding rate coefficients. The incident electron energy range is  $10^{-5}$ -2.7 eV and the electron temperature range is 100–5000 K. The vibrational dependence of these collisional processes is highlighted. The resulting data are useful in magnetic confinement fusion edge plasma modeling and spectroscopy, in devices with beryllium based main chamber materials, such as ITER and JET, and operating with the deuteriumtritium fuel mix. An extensive rate coefficients database is presented in graphical form and also by analytic fit functions whose parameters are tabulated in the supplementary material.

Supplementary material for this article is available online

Keywords: fusion plasma, BeD<sup>+</sup>, dissociative recombination

Original content from this work may be used under the terms  $(\mathbf{\hat{H}})$ of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

### 1. Introduction

The International Thermonuclear Experimental Reactor (ITER) is aimed at demonstrating the scientific and





**Figure 1.** Dissociative recombination (DR, black line), vibrational excitation (VE, thin lines) and vibrational de-excitation (VdE, symbols and thick lines) rate coefficients of BeD<sup>+</sup> in its electronic ground state for  $v_i^+ = 0, ...5$ . Upper panels: for each initial vibrational state of BeD<sup>+</sup>, the final vibrational quantum numbers are labeled for de-excitation and for the first vibrational excitation curve. The remaining unlabeled curves correspond to VE rate coefficients of the ion in the successive increase (in the order) of the vibrational quantum numbers. Lower panels: the same data without those of VdE process, the panels extending the range down to  $10^{-16}$  cm<sup>3</sup> s<sup>-1</sup>.

technological feasibility of fusion power [1]. It is now widely accepted by the fusion community that some form of controlled thermonuclear reactor, capable of producing a useful amount of electrical power, will be built-in the not-too-distant future. To obtain tenfold power multiplication in a controlled fusion process, at a power level greater than 500 MW and during pulses of 10 min or longer, exothermic reactions involving light nuclei, those between the hydrogen isotopes, are by far the most probable and efficient. The Joint European Torus (JET), in operation since 1983, has been persistently upgraded, most recently to become an ITER-like wall with respect to material composition. It is currently the largest and most powerful tokamak in the world capable of operating with the deuterium-tritium fuel mix. One of the main improvements of JET was to equip the vessel with a first wall material combination comprising beryllium (Be) in the main chamber and tungsten (W) in the divertor [2-4]. These plasma facing components are expected to improve the machine conditioning, impact on operational space and energy confinement. The installation of Be and W in the main chamber wall of JET is aimed at studying the impurity transport and material migration under plasma and material conditions relevant for ITER [5]. The selection of beryllium in the main chamber wall is explained by its operational flexibility

| Table 1. BeD <sup>+</sup> | vibrational   | levels referred           | d to $v^+ = 0$ . | The values of |
|---------------------------|---------------|---------------------------|------------------|---------------|
| dissociating er           | nergies are D | $_{e} = 2.794 \text{ eV}$ | and $D_0 = 2$    | .682 eV.      |

| $v^+$ | $\epsilon_{v^+}(eV)$ | $v^+$ | $\epsilon_{v} + (eV)$ |
|-------|----------------------|-------|-----------------------|
| 0     | 0.000                | 12    | 1.920                 |
| 1     | 0.194                | 13    | 2.031                 |
| 2     | 0.380                | 14    | 2.135                 |
| 3     | 0.564                | 15    | 2.232                 |
| 4     | 0.742                | 16    | 2.321                 |
| 5     | 0.914                | 17    | 2.401                 |
| 6     | 1.079                | 18    | 2.473                 |
| 7     | 1.238                | 19    | 2.535                 |
| 8     | 1.391                | 20    | 2.585                 |
| 9     | 1.537                | 21    | 2.623                 |
| 10    | 1.674                | 22    | 2.655                 |
| 11    | 1.802                | 23    | 2.678                 |
|       |                      |       |                       |

anticipated for a low-Z main wall [6], its low-fuel retention and excellent oxygen getter property, confirmed experimentally [4, 7]. In tokamaks, material erosion limits the lifetime of plasma-facing components, while in the edge and divertor regions of fusion reactors, plasma-wall interactions generate new molecular species, this formation of impurities being



**Figure 2.** Same as in figure 1 for  $v_i^+ = 6, \dots 11$ .

allowed by the relatively low-temperatures of this region of the fusion plasma. Moreover, due to the strong chemical affinity of beryllium and tungsten to oxygen, those surfaces will be oxidized [8].

In JET, the formation of BeD as well as the presence of Be, Be<sup>+</sup>, BeD<sup>+</sup>, BeT<sup>+</sup> and other impurities into the plasma are clearly described in [2, 10] and experimentally confirmed by spectroscopic methods [2–4, 11, 12, 14]. Be erosion as well as its continuous deposition towards the divertor is intrinsic to plasma operation due to the relatively high chemically assisted physical sputtering yield of Be via the radical BeD molecule [4], which dissociates by the reactions [3]:

$$e + BeD \rightarrow Be + D + e.$$
 (1)

Though deuterium ion bombardment of Be targets may cause the formation of the stable  $BeD_2$  molecule near the main chamber, there is no spectroscopic access to the  $BeD_2$  molecule released by chemically assisted physical sputtering of Be wall [3, 12]. Furthermore, retention of fuel elements by implantation in Be is expected to be saturated quickly due to the narrow interaction zone [7]. With the full W divertor installed in JET, all Be ions flowing into the inner divertor [11] are originated primarily in the main chamber during diverted plasma operation. Finally, the main physics mechanism responsible for the fuel retention under the Be wall conditions in the JET experiments is co-deposition of fuel in Be co-deposits [7]. The rate of fuel retention with the ion flux to the main plasma facing components in both the divertor and main chamber is increased by co-deposition of fuel atoms with Be [6, 14]. This information is in line with the measured spectral line emission of BeII (Be<sup>+</sup>) influx [4, 12] from the main chamber into the inner divertor whose plasma-facing surfaces are a net deposition zone [11].

In tokamaks with Be/W environment, all studies leading to physics understanding of beryllium migration and connecting the lifetime of the first wall components under erosion, with tokamak safety, in relation to the temporal behavior of each fraction contribution to the long-term retention. The erosion mechanism itself is not studied in this work, but we are interested in providing data to support diagnosing beryllium in the fusion plasma. Moreover, in JET equiped with Be/W wall environment and operating with deuteriumtritium fuel mix, the rate of Be erosion is measured by spectroscopy of all the states of the atoms and molecules, so primarily of Be, Be<sup>+</sup>, Be<sup>+</sup>, BeD, BeD<sup>+</sup>, BeT, BeT<sup>+</sup>, BeD<sub>2</sub>, BeDT, BeT<sub>2</sub>, BeD<sup>+</sup><sub>2</sub>, BeDT<sup>+</sup> and BeT<sup>+</sup><sub>2</sub>. Several observations of Be erosion by optical emission spectroscopy of various transitions of Be (at 457 nm) [2, 3], Be<sup>+</sup> (at 527 nm and 436 nm) [3] and the A  $^{2}\Sigma^{+} \rightarrow X ^{2}\Sigma^{+}$  band emission of BeD (band head at 497-500 nm) [12, 13] under different plasma conditions and surface temperatures, have been carried out successfully in laboratories and JET experiments.

As shown in [2], BeD and  $BeD^+$  are the only beryllium hydride molecules observed in the plasma. Even though  $BeD^+$  is expected to be stable in the JET divertor plasma [15],



**Figure 3.** Same as in figure 1 for  $v_i^+ = 12, \dots 17$ .

being formed through the reactions [3, 12],

$$e + \text{BeD} \to \text{BeD}^+ + e + e,$$
 (2)

$$Be^+ + D_2 \rightarrow BeD^+ + D, \qquad (3)$$

its A  ${}^{1}\Sigma^{+} \rightarrow X {}^{1}\Sigma^{+}$  band emission in visible and ultra-violet range is not observable, probably due to its weak intensities [15, 16]. Be is the main and dominant intrinsic impurity in limited and diverted plasmas with the JET. Those impurities hugely influence the low temperature edge and divertor plasma behavior in which electrons and ions originating from the core plasma are cooled by radiation and charge exchange processes till below 1 eV [1, 17, 18]. All molecular species in these regions undergo many collisions in particular those between electrons and molecular ions are of crucial importance [17]. The electron-impact processes of vibrationally excited BeD<sup>+</sup> play a key role in the reaction kinetics of lowtemperature plasmas in general, and particularly also in certain cold regions of fusion reactor relevant (e.g. the divertor) plasmas. Hence, modeling and diagnosing these varied plasma environments require accurate, reliable cross-sections and rate coefficients for interactions of these molecular ions with electrons [19, 20] which produce simpler species, most of which being unsuitable for visible spectroscopy. The present complete database of cross-sections and rate coefficients for electron-impact collision processes coupled to the availability of absolutely calibrated spectroscopic emission from this molecular ion provides a way to characterize also the  $BeD^+$  formation rates in the edge and divertor plasma of fusion devices.

This work is a part of a series of papers [9, 10, 21–23] devoted to the study of electron-impact processes in fusion devices with beryllium-based main chamber materials. This series was dedicated to the BeH<sup>+</sup> and BeH species, but they also contained preliminary studies of the isotopic effects. According to figure 5 from [9] and figure 11 from [21], these effects are quite notable, and this has pushed us to address it in a systematic and exhaustive manner. In this article, we present reactive collisions cross sections and rate coefficients between electrons and the BeD<sup>+</sup> molecular ion in all vibrationnal states, relevant for the divertor and edge plasma kinetics of JET and ITER. In collision with electrons the BeD<sup>+</sup> ion undergoes several processes, in particular dissociative recombination (DR) and vibrational-excitation/ de-excitation (VE/VdE), respectively [24, 25]:

$$e + \operatorname{BeD}^+(v_i^+) \to \operatorname{Be} + \operatorname{D},$$
 (DR), (4)

$$e + \operatorname{BeD}^+(v_i^+) \to \operatorname{BeD}^+(v_f^+) + e^-, \qquad (VE/VdE),$$
(5)

where  $v_i^+(v_f^+)$  denote the initial(final) vibrational level of the cation. At an energy exceeding the dissociation energy of BeH<sup>+</sup> (calculated to be 2.68 eV, see below) also the process of dissociative excitation sets it. It is not considered in the present paper.



Figure 4. Same as in figure 1 for  $v_i^+ = 18, \dots 23$ .

The manuscript is organized as follows: in section 2, we briefly review the theoretical method used to calculate the cross sections and the corresponding rate coefficients; section 3 presents Maxwellian isotropic rate coefficients computed for the DR, VE and VdE processes. These rate coefficients have been fitted with a modified Arrhenius law. Section 4 contains the final remarks concluding the paper.

### 2. Brief description of the theoretical approach of the dynamics

In the present paper, we used the multichannel quantum defect theory (MQDT)-type approach [26] to study the vibrational resolved reactive collisions of beryllium deuteride cation (BeD<sup>+</sup>) with electrons. We assumed that BeD<sup>+</sup> is initially in its electronic ground state,  $X^{1} \Sigma^{+}$ , with energies below its dissociation limit. The electron-impact collision processes covered by the present article involve two mechanisms which are treated simultaneously by the MQDT [26]: (i) the *direct* process, in which the electron is captured into a doubly excited resonant state BeD<sup>\*\*</sup> of the neutral system, resulting in two neutral atomic fragments Be and D or in autoionization,

$$e + \operatorname{BeD}^+(v_i^+) \to \operatorname{BeD}^{**} \to \begin{cases} \operatorname{Be} + \mathrm{D} \\ \operatorname{BeD}^+(v_f^+) + e, \end{cases}$$
 (6)

and (ii) the *indirect* process consisting of the temporary capture of the electron into BeD<sup>\*</sup>, a singly excited bound Rydberg state, which is predissociated by BeD<sup>\*\*</sup>,

$$e + \operatorname{BeD}^{+}(v_{i}^{+}) \to \operatorname{BeD}^{*} \to \operatorname{BeD}^{**} \to \begin{cases} \operatorname{Be} + \mathrm{D} \\ \operatorname{BeD}^{+}(v_{f}^{+}) + e. \end{cases}$$
(7)

In the MQDT approach, the processes (i) and (ii) result in the total mechanism which includes quantum interference. As mentioned in equations (6) and (7), the excited neutral system, reached by the electron capture, can autoionize to the initial electronic state of a different vibrational quantum number  $v_{\rm f}^+$  and then expel an electron to the continuum. Vibrational excitation takes place when  $v_{\rm f}^+ > v_{\rm i}^+$ , while vibrational de-excitation occurs if  $v_{\rm f}^+ < v_{\rm i}^+$ . The quantum defect approach treats the processes represented by equations (6) and (7) as multichannel reactive processes involving the dissociation channels (accounting for the atomatom scattering) and ionization channels (accounting for the electron-molecular ion scattering). Each ionization channel, for which the collision coordinate is the electron distance rfrom the molecular ion center, is defined by its threshold, a vibrational level  $v^+$  of the molecular ion ground state and by the angular quantum number l of the incoming or outgoing electron. An ionization channel is open if its corresponding threshold is situated below the total energy of the system, and



Figure 5. Dissociative recombination (DR), vibrational excitation (VE) and vibrational de-excitation (VdE) rate coefficients for various initial vibrational states indicated in the legend, those of VE and VdE processes being obtained by sum over all the final states.

closed otherwise. Each closed channels introduce into the calculations a series of Rydberg states BeD<sup>\*</sup> differing only by the principal quantum number of the external electron [27]. On the other hand, a dissociation channel, having the internuclear distance R as the collision coordinate, relies on an electronically bound state BeD<sup>\*\*</sup> whose potential energy in the asymptotic limit is situated below the total energy of the system.

Within the Born–Oppenheimer approximation,  $BeH^+$  and  $BeD^+$  ions having the same electronic structure, we used the same set of potential energy curves, electronic couplings [25] and quantum defects as in our previous work on  $BeH^+$  [10, 22], taking care to consider the reduced mass of  $BeD^+$ . Moreover, as the mathematical model is the same, we skip further details and we refer the reader to the previous article [10].

Once the scattering matrix *S* for the processes DR and VE/VdE are determined, the corresponding global cross sections, as a function of the incident electron kinetic energy  $\varepsilon$ , are obtained by summation over all relevant symmetries of the system and over the projection of the total electronic angular momentum on the nuclear axes  $\Lambda$  of the resulting partial capture cross sections  $\sigma$  into all the dissociative states  $d_j$  of the same symmetry:

$$\sigma_{\text{diss} \leftarrow v_i^+}(\varepsilon) = \frac{\pi}{4\varepsilon} \sum_{\Lambda, \text{sym}} \rho^{\text{sym},\Lambda} \sum_{l,j} |S_{d_j,lv_i^+}|^2, \quad (8)$$

$$\sigma_{v_{\rm f}^+ \leftarrow v_{\rm i}^+}(\varepsilon) = \frac{\pi}{4\varepsilon} \sum_{\Lambda, \rm sym} \rho^{\rm sym,\Lambda} \sum_{l,l'} |S^{\Lambda}_{l'v_{\rm f}^+, lv_{\rm i}^+} - \delta_{l'l} \delta_{v_{\rm i}^+v_{\rm f}^+}|^2, \quad (9)$$

where  $\rho^{\text{sym},\Lambda}$  is the multiplicity ratio between the electronic states of BeD and the electronic states of BeD<sup>+</sup>. In equation (9), the vibrational transition occurs via the temporary neutral BeD<sup>\*</sup> (direct process) or BeD<sup>\*\*</sup> (indirect process) molecule electronic state. In equation (9), *l* denotes the partial wave of the incident electron and *l*' that of the outgoing electron. The total state multiplicities of the fragments (D and Be) are those of the BeD molecular state. Notice that the equations (8) and (9) are written in atomic units.

In order to obtain the thermal rate coefficients, we have convoluted the global cross sections with the Maxwellian distribution function for velocities v (related to incident energy of the electrons by  $\varepsilon = \frac{1}{2}mv^2$ ) of the free electrons:

$$K(T) = \frac{8\pi}{\sqrt{m}(2\pi k_{\rm B}T)^{3/2}} \int_0^{+\infty} \sigma(\varepsilon)\varepsilon \exp(-\varepsilon/k_{\rm B}T) \mathrm{d}\varepsilon,$$
(10)

where  $\sigma(\varepsilon)$  is the cross sections given by (8) or (9),  $k_{\rm B}$  and T being the Boltzman constant and the absolute temperature, respectively.

| $v_i^+$ | $A_{v_{\mathrm{i}}^+}$   | $\alpha_{v_{\rm i}^+}$ | $B_{v_i^+}(1)$            | $B_{v_{i}}^{+}(2)$        | $B_{v_{i}}^{+}(3)$       | $B_{v_{i}}^{+}(4)$        | $B_{v_{i}}^{+}(5)$        | $B_{v_i}^{+}(6)$          | $B_{v_{i}}^{+}(7)$        |
|---------|--------------------------|------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 0       | $0.8974 \times 10^{-09}$ | 0.3841                 | $-0.2563 \times 10^{+04}$ | $0.2470 	imes 10^{+07}$   | $-0.1130 	imes 10^{+10}$ | $0.2766 \times 10^{+12}$  | $-0.3713 \times 10^{+14}$ | $0.2571 \times 10^{+16}$  | $-0.7179 \times 10^{+17}$ |
| 1       | $0.6299 \times 10^{-06}$ | -0.2688                | $-0.2190 	imes 10^{+02}$  | $-0.3068 	imes 10^{+06}$  | $0.2394 	imes 10^{+09}$  | $-0.7544 	imes 10^{+11}$  | $0.1177 	imes 10^{+14}$   | $-0.9028 	imes 10^{+15}$  | $0.2710 	imes 10^{+17}$   |
| 2       | $0.1395 	imes 10^{-04}$  | -0.5889                | $0.7304 \times 10^{+03}$  | $-0.7024 	imes 10^{+06}$  | $0.3170 	imes 10^{+09}$  | $-0.7705\times10^{+11}$   | $0.1032 	imes 10^{+14}$   | $-0.7156 \times 10^{+15}$ | $0.2002 	imes 10^{+17}$   |
| 3       | $0.3307 	imes 10^{-05}$  | -0.4462                | $0.9445 	imes 10^{+02}$   | $-0.8147 	imes 10^{+05}$  | $0.3345 	imes 10^{+08}$  | $-0.7925\times10^{+10}$   | $0.1074 	imes 10^{+13}$   | $-0.7665 	imes 10^{+14}$  | $0.2216 	imes 10^{+16}$   |
| 4       | $0.4349 \times 10^{-05}$ | -0.4673                | $0.2376 \times 10^{+03}$  | $-0.2605 	imes 10^{+06}$  | $0.1310 	imes 10^{+09}$  | $-0.3448 	imes 10^{+11}$  | $0.4893 \times 10^{+13}$  | $-0.3541 	imes 10^{+15}$  | $0.1023 \times 10^{+17}$  |
| 5       | $0.2623 \times 10^{-04}$ | -0.6473                | $0.1421 	imes 10^{+04}$   | $-0.1540 	imes 10^{+07}$  | $0.7367 	imes 10^{+09}$  | $-0.1848 	imes 10^{+12}$  | $0.2520 	imes 10^{+14}$   | $-0.1766 	imes 10^{+16}$  | $0.4973 	imes 10^{+17}$   |
| 6       | $0.3822 	imes 10^{-04}$  | -0.6855                | $0.7458 	imes 10^{+03}$   | $-0.5492 	imes 10^{+06}$  | $0.1993 	imes 10^{+09}$  | $-0.4139 	imes 10^{+11}$  | $0.4962 \times 10^{+13}$  | $-0.3181 	imes 10^{+15}$  | $0.8418 	imes 10^{+16}$   |
| 7       | $0.6649 \times 10^{-05}$ | -0.5080                | $0.2471 	imes 10^{+03}$   | $-0.4732 	imes 10^{+06}$  | $0.2797 	imes 10^{+09}$  | $-0.7808\times10^{+11}$   | $0.1134 	imes 10^{+14}$   | $-0.8287 	imes 10^{+15}$  | $0.2402 	imes 10^{+17}$   |
| 8       | $0.7614 \times 10^{-05}$ | -0.5318                | $0.4697 	imes 10^{+03}$   | $-0.5195 	imes 10^{+06}$  | $0.2456 	imes 10^{+09}$  | $-0.6106 \times 10^{+11}$ | $0.8275 	imes 10^{+13}$   | $-0.5776 	imes 10^{+15}$  | $0.1623 \times 10^{+17}$  |
| 9       | $0.6493 \times 10^{-05}$ | -0.5295                | $0.5057 	imes 10^{+03}$   | $-0.6108 	imes 10^{+06}$  | $0.3022 	imes 10^{+09}$  | $-0.7682 	imes 10^{+11}$  | $0.1054 	imes 10^{+14}$   | $-0.7416 	imes 10^{+15}$  | $0.2094 	imes 10^{+17}$   |
| 10      | $0.3819 	imes 10^{-05}$  | -0.4877                | $0.4455 	imes 10^{+03}$   | $-0.6156 	imes 10^{+06}$  | $0.3269 	imes 10^{+09}$  | $-0.8697 	imes 10^{+11}$  | $0.1230 	imes 10^{+14}$   | $-0.8836 	imes 10^{+15}$  | $0.2532 	imes 10^{+17}$   |
| 11      | $0.2883 	imes 10^{-05}$  | -0.4686                | $0.4699 	imes 10^{+03}$   | $-0.6798 	imes 10^{+06}$  | $0.3766 	imes 10^{+09}$  | $-0.1028 	imes 10^{+12}$  | $0.1479 	imes 10^{+14}$   | $-0.1074 	imes 10^{+16}$  | $0.3105 	imes 10^{+17}$   |
| 12      | $0.2315 \times 10^{-05}$ | -0.4563                | $0.4047 	imes 10^{+03}$   | $-0.6130 	imes 10^{+06}$  | $0.3466 	imes 10^{+09}$  | $-0.9566 	imes 10^{+11}$  | $0.1385 	imes 10^{+14}$   | $-0.1011 \times 10^{+16}$ | $0.2931 \times 10^{+17}$  |
| 13      | $0.1442 \times 10^{-05}$ | -0.4155                | $0.2709 	imes 10^{+03}$   | $-0.4825 	imes 10^{+06}$  | $0.2839 	imes 10^{+09}$  | $-0.8004 	imes 10^{+11}$  | $0.1174 	imes 10^{+14}$   | $-0.8643 	imes 10^{+15}$  | $0.2521 \times 10^{+17}$  |
| 14      | $0.9694 \times 10^{-06}$ | -0.3803                | $0.1729 \times 10^{+03}$  | $-0.3907 	imes 10^{+06}$  | $0.2413 	imes 10^{+09}$  | $-0.6932 \times 10^{+11}$ | $0.1026 	imes 10^{+14}$   | $-0.7602 	imes 10^{+15}$  | $0.2226 \times 10^{+17}$  |
| 15      | $0.7270 	imes 10^{-06}$  | -0.3590                | $0.1667 	imes 10^{+03}$   | $-0.4139 	imes 10^{+06}$  | $0.2543 	imes 10^{+09}$  | $-0.7253 	imes 10^{+11}$  | $0.1068 	imes 10^{+14}$   | $-0.7881 	imes 10^{+15}$  | $0.2301 	imes 10^{+17}$   |
| 16      | $0.4768 \times 10^{-06}$ | -0.3232                | $0.1124 	imes 10^{+03}$   | $-0.3870 \times 10^{+06}$ | $0.2458 	imes 10^{+09}$  | $-0.7065 	imes 10^{+11}$  | $0.1042 	imes 10^{+14}$   | $-0.7692 	imes 10^{+15}$  | $0.2245 \times 10^{+17}$  |
| 17      | $0.3339 \times 10^{-06}$ | -0.2965                | $0.8587 	imes 10^{+02}$   | $-0.3909 	imes 10^{+06}$  | $0.2567 	imes 10^{+09}$  | $-0.7453 \times 10^{+11}$ | $0.1104 	imes 10^{+14}$   | $-0.8167 	imes 10^{+15}$  | $0.2387 \times 10^{+17}$  |
| 18      | $0.2383 \times 10^{-06}$ | -0.2735                | $0.1221 	imes 10^{+03}$   | $-0.4597 	imes 10^{+06}$  | $0.2953 	imes 10^{+09}$  | $-0.8485 	imes 10^{+11}$  | $0.1250 	imes 10^{+14}$   | $-0.9205 	imes 10^{+15}$  | $0.2683 \times 10^{+17}$  |
| 19      | $0.1868 \times 10^{-06}$ | -0.2609                | $0.1973 	imes 10^{+03}$   | $-0.5555 	imes 10^{+06}$  | $0.3423 	imes 10^{+09}$  | $-0.9644 	imes 10^{+11}$  | $0.1404 	imes 10^{+14}$   | $-0.1025 	imes 10^{+16}$  | $0.2974 	imes 10^{+17}$   |
| 20      | $0.1332 \times 10^{-06}$ | -0.2495                | $0.2343 	imes 10^{+03}$   | $-0.6118 	imes 10^{+06}$  | $0.3644 	imes 10^{+09}$  | $-0.1009 \times 10^{+12}$ | $0.1454 	imes 10^{+14}$   | $-0.1056 	imes 10^{+16}$  | $0.3048 	imes 10^{+17}$   |
| 21      | $0.1114 \times 10^{-06}$ | -0.2452                | $0.2826 \times 10^{+03}$  | $-0.6493 \times 10^{+06}$ | $0.3776 \times 10^{+09}$ | $-0.1035 \times 10^{+12}$ | $0.1486 	imes 10^{+14}$   | $-0.1076 	imes 10^{+16}$  | $0.3102 \times 10^{+17}$  |
| 22      | $0.8079 	imes 10^{-07}$  | -0.2366                | $0.2937 	imes 10^{+03}$   | $-0.6480 	imes 10^{+06}$  | $0.3747 	imes 10^{+09}$  | $-0.1027 	imes 10^{+12}$  | $0.1475 	imes 10^{+14}$   | $-0.1069 	imes 10^{+16}$  | $0.3084 \times 10^{+17}$  |
| 23      | $0.4801 \times 10^{-07}$ | -0.2398                | $0.3455 \times 10^{+03}$  | $-0.7133 \times 10^{+06}$ | $0.4152 \times 10^{+09}$ | $-0.1148 \times 10^{+12}$ | $0.1659 \times 10^{+14}$  | $-0.1208 	imes 10^{+16}$  | $0.3498 \times 10^{+17}$  |

**Table 2.** List of the parameters used in equation (11) for the DR rate coefficients of BeD<sup>+</sup>.

| $v_i^+$ | $A_{v_{\mathrm{i}}^+  ightarrow v_{\mathrm{f}}^+}$ | $\alpha_{v_i^+ \to v_f^+}$ | $B_{v_i^+ \to v_f^+}(1)$ | $B_{v_i^+ \to v_f^+}(2)$ | $B_{v_i^+ \to v_f^+}(3)$ | $B_{v_i^+ \to v_f^+}(4)$ | $B_{v_i^+ \to v_f^+}(5)$ | $B_{v_i^+ \to v_f^+}(6)$ | $B_{v_i^+ \to v_f^+}(7)$ |
|---------|----------------------------------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0       | $0.232 \times 10^{+02}$                            | $-0.210 	imes 10^{+01}$    | $0.168 	imes 10^{+05}$   | $-0.156 	imes 10^{+08}$  | $-0.611 \times 10^{+10}$ | $0.173 \times 10^{+14}$  | $-0.101 \times 10^{+17}$ | $0.251 \times 10^{+19}$  | $-0.230 	imes 10^{+21}$  |
| 1       | $0.395 \times 10^{-09}$                            | $0.361 	imes 10^{+00}$     | $-0.592 	imes 10^{+03}$  | $0.698	imes10^{+07}$     | $-0.787\times10^{+10}$   | $0.442 \times 10^{+13}$  | $-0.128 	imes 10^{+16}$  | $0.176 	imes 10^{+18}$   | $-0.830 	imes 10^{+19}$  |
| 2       | $0.156 \times 10^{-11}$                            | $0.887	imes10^{+00}$       | $-0.423 	imes 10^{+04}$  | $0.126 	imes 10^{+08}$   | $-0.135 	imes 10^{+11}$  | $0.833 	imes 10^{+13}$   | $-0.294 	imes 10^{+16}$  | $0.551 	imes 10^{+18}$   | $-0.424 	imes 10^{+20}$  |
| 3       | $0.240 \times 10^{-06}$                            | $-0.294 	imes 10^{+00}$    | $0.638 	imes 10^{+04}$   | $-0.158 	imes 10^{+08}$  | $0.216 	imes 10^{+11}$   | $-0.150 	imes 10^{+14}$  | $0.567 	imes 10^{+16}$   | $-0.110 	imes 10^{+19}$  | $0.867 	imes 10^{+20}$   |
| 4       | $0.109 \times 10^{-07}$                            | $0.162 \times 10^{-01}$    | $0.249 \times 10^{+04}$  | $-0.457 \times 10^{+07}$ | $0.739 \times 10^{+10}$  | $-0.555 \times 10^{+13}$ | $0.218 \times 10^{+16}$  | $-0.439 \times 10^{+18}$ | $0.353 \times 10^{+20}$  |
| 5       | $0.432 \times 10^{-08}$                            | $0.776 \times 10^{-01}$    | $-0.205 \times 10^{+04}$ | $0.113 \times 10^{+08}$  | $-0.144 \times 10^{+11}$ | $0.960 \times 10^{+13}$  | $-0.351 \times 10^{+16}$ | $0.669 \times 10^{+18}$  | $-0.519 \times 10^{+20}$ |
| 6       | $0.517 \times 10^{-08}$                            | $0.507 \times 10^{-01}$    | $-0.211 \times 10^{+04}$ | $0.892 \times 10^{+07}$  | $-0.100 \times 10^{+11}$ | $0.639 \times 10^{+13}$  | $-0.229 \times 10^{+16}$ | $0.435 \times 10^{+18}$  | $-0.336 \times 10^{+20}$ |
| 7       | $0.753 \times 10^{-08}$                            | $-0.187 \times 10^{-02}$   | $-0.107 	imes 10^{+04}$  | $0.714 \times 10^{+07}$  | $-0.824 \times 10^{+10}$ | $0.509 \times 10^{+13}$  | $-0.175 \times 10^{+16}$ | $0.318 \times 10^{+18}$  | $-0.236 \times 10^{+20}$ |
| 8       | $0.128 \times 10^{-07}$                            | $-0.677 \times 10^{-01}$   | $-0.679 \times 10^{+03}$ | $0.444 \times 10^{+07}$  | $-0.448 	imes 10^{+10}$  | $0.262 \times 10^{+13}$  | $-0.889 	imes 10^{+15}$  | $0.160 \times 10^{+18}$  | $-0.119 \times 10^{+20}$ |
| 9       | $0.220 \times 10^{-06}$                            | $-0.353 	imes 10^{+00}$    | $0.627 \times 10^{+03}$  | $0.160 	imes 10^{+07}$   | $-0.141 	imes 10^{+10}$  | $0.746 \times 10^{+12}$  | $-0.234 	imes 10^{+15}$  | $0.402  	imes  10^{+17}$ | $-0.290 	imes 10^{+19}$  |
| 10      | $0.143 \times 10^{-05}$                            | $-0.530 	imes 10^{+00}$    | $0.138 	imes 10^{+04}$   | $0.943 	imes 10^{+05}$   | $0.135 \times 10^{+09}$  | $-0.209 	imes 10^{+12}$  | $0.107 	imes 10^{+15}$   | $-0.249 	imes 10^{+17}$  | $0.220 \times 10^{+19}$  |
| 11      | $0.380 \times 10^{-05}$                            | $-0.613 \times 10^{+00}$   | $0.172 \times 10^{+04}$  | $-0.627 \times 10^{+06}$ | $0.732 \times 10^{+09}$  | $-0.503 \times 10^{+12}$ | $0.195 \times 10^{+15}$  | $-0.394 \times 10^{+17}$ | $0.321 \times 10^{+19}$  |
| 12      | $0.850 \times 10^{-05}$                            | $-0.673 \times 10^{+00}$   | $0.196 \times 10^{+04}$  | $-0.135 \times 10^{+07}$ | $0.151 \times 10^{+10}$  | $-0.976 \times 10^{+12}$ | $0.358 \times 10^{+15}$  | $-0.693 \times 10^{+17}$ | $0.547 \times 10^{+19}$  |
| 13      | $0.144 \times 10^{-04}$                            | $-0.718 	imes 10^{+00}$    | $0.216 \times 10^{+04}$  | $-0.203 \times 10^{+07}$ | $0.230 \times 10^{+10}$  | $-0.148 \times 10^{+13}$ | $0.542 \times 10^{+15}$  | $-0.104 \times 10^{+18}$ | $0.824 \times 10^{+19}$  |
| 14      | $0.129 \times 10^{-04}$                            | $-0.698 \times 10^{+00}$   | $0.192 \times 10^{+04}$  | $-0.167 \times 10^{+07}$ | $0.184 \times 10^{+10}$  | $-0.114 \times 10^{+13}$ | $0.404 \times 10^{+15}$  | $-0.755 \times 10^{+17}$ | $0.578 \times 10^{+19}$  |
| 15      | $0.160 \times 10^{-04}$                            | $-0.719 	imes 10^{+00}$    | $0.193 	imes 10^{+04}$   | $-0.204 	imes 10^{+07}$  | $0.237 \times 10^{+10}$  | $-0.153 \times 10^{+13}$ | $0.556 \times 10^{+15}$  | $-0.106 \times 10^{+18}$ | $0.827 \times 10^{+19}$  |
| 16      | $0.153 \times 10^{-04}$                            | $-0.723 \times 10^{+00}$   | $0.181 	imes 10^{+04}$   | $-0.207 	imes 10^{+07}$  | $0.247 \times 10^{+10}$  | $-0.161 \times 10^{+13}$ | $0.591 \times 10^{+15}$  | $-0.113 \times 10^{+18}$ | $0.893 \times 10^{+19}$  |
| 17      | $0.103 \times 10^{-04}$                            | $-0.700 \times 10^{+00}$   | $0.153 \times 10^{+04}$  | $-0.162 \times 10^{+07}$ | $0.189 \times 10^{+10}$  | $-0.121 \times 10^{+13}$ | $0.434 \times 10^{+15}$  | $-0.817 \times 10^{+17}$ | $0.630 \times 10^{+19}$  |
| 18      | $0.784 \times 10^{-05}$                            | $-0.691 	imes 10^{+00}$    | $0.137 	imes 10^{+04}$   | $-0.150 	imes 10^{+07}$  | $0.176 	imes 10^{+10}$   | $-0.113 \times 10^{+13}$ | $0.405 	imes 10^{+15}$   | $-0.765 	imes 10^{+17}$  | $0.589 	imes 10^{+19}$   |
| 19      | $0.401 \times 10^{-05}$                            | $-0.638 	imes 10^{+00}$    | $0.942 \times 10^{+03}$  | $-0.839 	imes 10^{+06}$  | $0.939 	imes 10^{+09}$   | $-0.576 \times 10^{+12}$ | $0.199 \times 10^{+15}$  | $-0.365 \times 10^{+17}$ | $0.276 \times 10^{+19}$  |
| 20      | $0.323 \times 10^{-05}$                            | $-0.609 \times 10^{+00}$   | $0.779 \times 10^{+03}$  | $-0.786 \times 10^{+06}$ | $0.904 \times 10^{+09}$  | $-0.574 \times 10^{+12}$ | $0.205 \times 10^{+15}$  | $-0.387 	imes 10^{+17}$  | $0.298 \times 10^{+19}$  |
| 21      | $0.273 \times 10^{-05}$                            | $-0.573 \times 10^{+00}$   | $0.600 \times 10^{+03}$  | $-0.489 	imes 10^{+06}$  | $0.528	imes10^{+09}$     | $-0.319 \times 10^{+12}$ | $0.109 \times 10^{+15}$  | $-0.200 	imes 10^{+17}$  | $0.150 \times 10^{+19}$  |
| 22      | $0.221 \times 10^{-05}$                            | $-0.545 \times 10^{+00}$   | $0.446 \times 10^{+03}$  | $-0.367 \times 10^{+06}$ | $0.403 \times 10^{+09}$  | $-0.250 \times 10^{+12}$ | $0.878 	imes 10^{+14}$   | $-0.162 \times 10^{+17}$ | $0.123 \times 10^{+19}$  |

**Table 3.** List of the parameters used in equation (12) for the monoquantic VE,  $v_i^+ \rightarrow v_f^+ = v_i^+ + 1$ , rate coefficients of BeD<sup>+</sup>.

### 3. Results

Using the available molecular data shown in figure 1 of [22] (for more details, see as well [25, 28])—the potential energy curves in a quasi-diabatic representation and electronic Rydberg-valence couplings 5  ${}^{2}\Pi$ , 5  ${}^{2}\Sigma^{+}$  and 1  ${}^{2}\Delta$  states—we have performed calculations corresponding to all vibrational levels (up to  $v_i^+ = 23$ ) of the ground electronic state of the ion. These 24 vibrational levels have been obtained in solving the radial Schroedinger equation by Numerov's method, using the potential energy curve of BeH<sup>+</sup> electronic ground state from [25]. Table 1 shows the list of vibrational levels of  $BeD^+$  and the values of  $D_e$  and  $D_0$ . Notice that these values, as well as some of the potential energy curves and couplings for the neutral, are different from those of [21] since the molecular data have been obtained using different quantum chemical methods. In the following calculations, the energy of the electron is below to 2.7 eV, this value being only slightly higher than the dissociation threshold  $D_0$  of the ground electronic state of the ion.

Figures 1–4 give the whole ensemble of rate coefficients available for the state-to-state kinetics of BeD<sup>+</sup>. They illustrate the fact that DR dominates for  $v_i^+ = 0-13$  levels at low electron temperature, while the VdE becomes more important than the other processes for initial vibrational states  $v_i^+ > 13$ . Figure 5 provides a comparison between the DR rate coefficients and the global vibrational transitions rate coefficients i.e. coming from the sum over all the possible final levels. The excitation process competes with DR and VdE above 1000 K only.

The rate coefficients shown in figures 1–4 have been fitted by a generalized Arrhenius-type formula in order to be ready for use in codes for kinetics modeling. The calculated DR rate coefficients (cm<sup>3</sup> s<sup>-1</sup>) of BeD<sup>+</sup> in each of its first 24 vibrational states ( $v_i^+ = 0 \dots 23$ ) have been interpolated under the mathematical form:

$$k_{\nu_{i}^{+}}^{\mathrm{DR}}(T_{e}) = A_{\nu_{i}^{+}} T_{e}^{\alpha_{\nu_{i}^{+}}} \exp\left[-\sum_{j=1}^{7} \frac{B_{\nu_{i}^{+}}(j)}{j T_{e}^{j}}\right],$$
(11)

over the electron temperature range  $100 \leqslant T_e \leqslant 5000$  K. The parameters  $A_{\nu_i^+}$ ,  $\alpha_{\nu_i^+}$  and  $B_{\nu_i^+}(j)$  are listed in the table 2. The calculated VE and VdE rate coefficients (cm<sup>3</sup> s<sup>-1</sup>) of BeD<sup>+</sup> have been interpolated under the form:

$$k_{v_{i}^{+} \to v_{f}^{+}}^{\text{VE,VdE}}(T_{e}) = A_{v_{i}^{+} \to v_{f}^{+}} T_{e}^{\alpha_{v_{i}^{+} \to v_{f}^{+}}} \exp\left[-\sum_{j=1}^{7} \frac{B_{v_{i}^{+} \to v_{f}^{+}}(j)}{j T_{e}^{j}}\right],$$
(12)

over the electron temperature range  $300 \leq T_e \leq 5000$  K.

The parameters  $A_{\nu_i^+ \to \nu_f^+}$ ,  $\alpha_{\nu_i^+ \to \nu_f^+}$  and  $B_{\nu_i^+ \to \nu_f^+}(j)$  are listed in the table 3 for the single quantum VE, i.e.  $\nu_f^+ = \nu_i^+ + 1$ . The fitted values obtained by equations (11) and (12) depart from the calculated values only by a few percent. The full set of coefficients for DR, VE and VdE are given in the supplementary material of the present article (available online here stacks.iop.org/psst/27/025015/mmedia).

### 4. Conclusions

The present paper provides complete set of vibrational resolved rate coefficients for BeD<sup>+</sup> cation reactive collisions with electrons below to the ion dissociation threshold. In particular, the competition between the vibrational transitions and DR processes are illustrated quantitatively. Arrhenius-type formulas are used for fitting the rate coefficients as function of the electron temperature. The rate coefficients are strongly dependent on the initial vibrational level of the molecular ion.

These data are relevant for the modeling of the edge of the fusion plasma. The higher energy region, where the dissociative excitation process [21, 29] competes the DR and the vibrational transitions, as well as similar calculations on  $BeT^+$ , are the subject of ongoing work.

### Acknowledgments

SN is grateful to the project 'Projet 1 du Programme CUI: Université du Burundi -VLIR' for the research stay in KULeuven during which the major part of the work has been carried out. VL, JZM, AB and IFS acknowledge the French LabEx EMC<sup>3</sup>, via the projects PicoLIBS (ANR-12-BS05-0011-01) and EMo-PlaF (HN0009670), the BIOENGINE project and the VIRIDIS-CO2 project (sponsored by the European fund FEDER and the French CPER), the Fédération de Recherche Fusion par Confinement Magnétique—ITER and the European COST Program CM1401 (Our Astrochemical History). JZM is grateful for financial support from Labex SEAM and IDEX-USPC. We are also grateful to the French CNRS-INSU through the Programme Nationale Physico-Chimie du Milieu Interstellaire (PCMI).

### **ORCID** iDs

V Laporta b https://orcid.org/0000-0003-4251-407X J Tennyson b https://orcid.org/0000-0002-4994-5238

#### References

- Kleyn A W, Lopes Cardozo N J and Samm U 2006 Phys. Chem. Chem. Phys. 8 1761–74
- Duxbury G, Stamp M F and Summers H P 1998 Plasma Phys. Control. Fusion 40 361–70
- [3] Brezinsek S, Stamp M F, Nishijima D, Borodin D, Devaux S, Krieger K, Marsen S, O'Mullane M, Bjoerkas C, Kirschner A and JET EFDA Contributors 2014 Nucl. Fusion 54 103001
- [4] Brezinsek S et al (JET Contributors) 2015 Nucl. Fusion 55 063021
- [5] Coenen J W et al (JET-EFDA Contributors) 2013 Nucl. Fusion 53 073043
- [6] Matthews G F and JET EFDA Contributors, the ASDEX-Upgrade Team 2013 J. Nucl. Mater. 438 S2–10
- [7] Brezinsek S et al (JET EFDA Contributors) 2013 Nucl. Fusion 53 083023
- [8] Alimov V K 2004 Phys. Scr. T108 46–56
- [9] Motapon O et al 2015 EPJ Web Conf. 84 02003

- [10] Niyonzima S et al 2017 At. Data Nucl. Data Tables 115–116 287–308
- [11] Krieger K et al (JET EFDA Contributors) 2013 J. Nucl. Mater.438 S262–6
- [12] Nishijima D, Doerner R P, Baldwin M J, De Temmerman G and Hollmann E M 2008 Plasma Phys. Control. Fusion 50 125007
- [13] Darby-Lewis D, Tennyson J, Lawson K D, Yurchenko S N, Stamp M F, Shaw A, Brezinsek S and JET Contributors J. Phys. B: At. Mol. Opt. Phys. submitted
- [14] Doerner R P, Baldwin M J, Buchenauer D, De Temmerman G and Nishijima D 2009 J. Nucl. Mater. 390–391 681
- [15] Coxon J A and Colin R 1997 J. Mol. Spectrosc. 181 215-23
- [16] Koontz P G 1935 Phys. Rev. 48 707-13
- [17] McCracken G M, Stamp M F, Monk R D, Meigs A G,
- Lingertat J, Prentice R, Starling A, Smith R J and Tabasso A 1998 Nucl. Fusion **38** 619
- [18] Krasheninnikov S I 2002 Phys. Scr. **T96** 7–15
- [19] Celiberto R, Janev R K, Laricchiuta A, Capitelli M, Wadehra J M and Atems D E 2001 Atom. Data Nucl. Data Tables 77 161–213

- [20] Celiberto R, Janev R K and Reiter D 2012 Plasma Phys. Control. Fusion 54 035012
- [21] Laporta V, Chakrabarti K, Celiberto R, Janev R K, Mezei J Z, Niyonzima S, Tennyson J and Schneider I F 2017 *Plasma Phys. Control. Fusion* **59** 045008
- [22] Niyonzima S, Lique F, Chakrabarti K, Larson Å, Orel A E and Schneider I F 2013 Phys. Rev. A 87 022713
- [23] Darby-Lewis D, Masin Z and Tennyson J 2017 J. Phys. B: At. Mol. Opt. Phys. 50 175201
- [24] Schneider I F, Dulieu O and Robert J 2015 Proc. 9th Int. Conf. Dissociative Recombination: Theory, Experiment and Applications 84 (Paris, 7 December 2013)
- [25] Roos J B, Larsson M, Larson Å and Orel A E 2009 Phys. Rev. A 80 012501
- [26] Giusti A 1980 J. Phys. B: At. Mol. Opt. Phys. 13 3867
- [27] Schneider I F, Dulieu O, Giusti-Suzor A and Roueff E 1994 Astrophys. J. 424 983
- [28] Strömholm C et al 1995 Phys. Rev. A 52 R4320
- [29] Chakrabarti K, Backodissa-Kiminou D R, Pop N, Mezei J Z, Motapon O, Lique F, Dulieu O, Wolf A and Schneider I F 2013 Phys. Rev. A 87 022702