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INTRODUCTION

In order to reduce carbon emissions, there is a worldwide transition of the energy production scheme from fossil fuels to renewable energy sources. Furthermore, there is currently in Europe a strong political drive for the development of Marine Renewable Energies (MRE). For instance, the European Union (EU) Renewable Energy Directive (2009) has set a common target for 20% of EU's energy to come from renewable sources by 2020. As a consequence, the development of Offshore Wind Farm (OWF) projects along the coast of France is rapidly increasing. Three successive calls for tenders related to OWF development have been successively announced, and seven sites have been selected for future OWF construction. Among them, three should be built in the Eastern English Channel: in Fécamp, Dieppe-LeTréport, and Courseulles-sur-mer. Beyond the fact that the English Channel is the current hotspot for OWF development in France [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF], it is also a significant economic area already subjected to multiple anthropogenic perturbations such as pollution, transport, fishing, aquaculture, aggregate extraction, and sediment dredging and deposit [START_REF] Dauvin | Are western and eastern bassin of the English two separate ecosystems[END_REF][START_REF] Dauvin | History of benthic research in the English Channel: from general patterns of communities to habitat mosaic description[END_REF]. Development of OWF installations across the Eastern English Channel will lead to the introduction of hard substrates in the natural soft sediments, which is expected to cause changes in the benthic community in the vicinity of the turbines [START_REF] Coates | Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea[END_REF]. In fact, these hard substrates are likely to be used directly as habitats by several epibenthic and benthic species, and to attract a new suits of species, including non-native ones [START_REF] Wilhelmsson | Fouling assemblages on offshore wind power plants and adjacent substrata[END_REF][START_REF] Maar | Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark[END_REF]. Previous studies made in the Baltic and North seas showed that filter feeders such as mussels and amphipods tended to dominate on the turbine vertical structures, while benthic predators such as crabs dominate on the foundation base and the score protections [START_REF] Wilhelmsson | The influence of offshore windpower on demersal fish[END_REF][START_REF] Krone | Mobile demersal megafauna at common offshore wind turbine foundations in the German Bight (North Sea) two years after deployment -increased production rate of Cancer pagurus[END_REF]. This aggregation of epibenthic and benthic organisms on the turbine foundations is known as the "reef effect" and is considered as one of the most important effects on the ecosystem generated by OWF construction [START_REF] Petersen | Offshore windmill farms: threats to or possibilities for the marine environment[END_REF][START_REF] Langhamer | Artificial Reef Effect in relation to Offshore Renewable Energy Conversion: State of the Art[END_REF]. Besides the "reef effect", spatial restrictions in form of fisheries exclusion zones (e.g. bottom trawl and dredge) are likely to be implemented around turbines and cables for navigation safety. These two fishing activities are known to be major threats to benthic organisms and their associated habitats [START_REF] Thurstan | The effects of 118 years of industrial fishing on UK bottom trawl fisheries[END_REF][START_REF] Turner | Fishing impacts and the degradation or loss of habitat structure[END_REF]. A possible exclusion of fishing activities inside the OWFs could act as local Marine Protected Areas (MPAs) [START_REF] Shields | Marine renewable energy technology and environmental interactions[END_REF]. MPAs are known to cause "reserve effect" which can lead to increased local biomasses [START_REF] Leonhard | Effect of the Horns Rev 1 Offshore Wind Farm on Fish Communities Follow-up Seven Years after Construction[END_REF][START_REF] Lindeboom | Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation[END_REF][START_REF] Shields | Marine renewable energy technology and environmental interactions[END_REF] and possible changes in the food-web structure. However, until now, it has seemed difficult to separate effects of fisheries exclusion from the "reef effect" in field (Bergström et al., 2014). Clearly, solutions set to mitigate the impacts of climate change will have consequences on biodiversity and ecosystem functioning. Therefore, an important challenge for the scientific community is now to assess the range of the possible ecological consequences before project implementations (or decisions) to optimize the targeted objectives. The Marine Strategy Framework Directive (MSDF) (EU, 2008) stresses the urgent need of development, tests and validation of ecosystem health indicators. The ecosystem approach is explicitly developed and applied with the aim of attaining Good Environmental Status (GES) of ecosystems. The directive's recent revision (EU, 2017) has even emphasized the importance of considering marine ecosystem's structure, functions and processes to achieving GES. Further, MSFD has suggested to develop more integrative and process-oriented food-web indicators [START_REF] Rombouts | Food web indicators under the Marine Strategy Framework Directive: From complexity to simplicity?[END_REF]. The OSPAR convention (an international cooperation on the marine environmental protection of the North East Atlantic) has proposed a list of food-web indicators which would capture the emerging properties of the food web [START_REF] Niquil | Ongoing research on ecosystem health indicators for food webs in the MSFD context[END_REF]. The ENA indices are among these indicators, but they are not yet considered as "operational" and cannot be used in the assessment of the marine environmental status.

For several years, the "reef effect" has only been investigated on benthic and fish species alone, but never with a holistic approach to assess its potential impacts on the ecosystem taken as a whole. Recently, [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF] explored a new way to look at the potential impacts of OWFs through food-web models and flow analysis. They used the Ecopath with Ecosim (EwE) approach [START_REF] Polovina | Model of a coral reef ecosystem. I . The ECOPATH model and its application to French Frigate Shoals[END_REF][START_REF] Christensen | Ecopath with Ecosim: methods, capabilities and limitations[END_REF][START_REF] Christensen | Ecopath with Ecosim version 6 User Guide[END_REF] to model the trophic web at Courseulles-sur-mer OWF site. This approach, in which all biotic components of the system can be considered at the same time, is useful to gain a better understanding of the ecosystem structure and functioning, and for predicting how it may change over time when facing perturbations (Plagànyi, 2007). Then, [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF] used the Ecosim model (the temporal dynamic module of EwE) to project the evolution of the ecosystem over the next 30 years after an expected increase in biomass of some targeted benthic and fish compartments in relation to the OWF construction.

Ecological Network Analysis (ENA) indices [START_REF] Ulanowicz | Growth and Development: Ecosystems Phenomenology[END_REF] were further calculated, summarising the emergent properties of the ecosystem, giving indications about the possible state of the ecosystem at the end of the simulation. Among the core conclusions were (1) that the total ecosystem activity, the overall system omnivory, and the recycling should increase after the OWF construction, and (2) that some higher trophic levels (i.e. exploited piscivorous fish species, endangered marine mammals) are very likely to respond positively to the biomass aggregation on the scour protections of the piles and turbines. Even if the study of [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF] strongly suggested that the ecosystem structure and functioning would experience changes in response to the OWF construction, before/after statistical comparisons were not possible as outputs from the Ecopath model and Ecosim simulation were only providing one value per ENA index. The authors emphasized the need to quantify the uncertainty in the ENA indices in order to produce robust conclusions on the ecosystem functioning, and thereby better predict its responses to disturbances.

The objective of the current study was to investigate the usefulness of ENA indices in the assessment of the state of the ecosystem by confronting them to a complementary indicator developed under the OSPAR commission, the Mean Trophic Level (MTL), which is considered as operational and was used in the OSPAR 2017 intermediate assessment (www.ospar.org). Following the modelling procedure in [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF], the present study is intended to further deepen our understanding of the OWF construction effect on the ecosystem by:  the increase in number of plausible scenarios: simulations of both the "reef effect" and the "reserve effect" on the ecosystem will be performed, as well as their combined effect;

 the comparison of ENA indices to "traditional" indicators such as MTL;

 the quantification of the uncertainty in the ENA indices: this will strengthen our interpretation of these indices by allowing to statistically test the differences between the scenarios in terms of predicted ecosystem functioning. This will be performed using the ENAtool routine generating probability distributions for ENA indices at the end of each simulation run [START_REF] Guesnet | Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators[END_REF];  discussing our results in the scope of the theory of ecological stability [START_REF] Holling | Engineering resilience versus ecological resilience[END_REF] 

MATERIAL AND METHODS

Study area

The OWF will be built in the next years in the Bay of Seine (English Channel eastern part) which forms a roughly 5000-km 2 quadrilateral. The Bay of Seine never exceeds 30 m in depth. The maximum speed of the tidal currents is around 3 knots in the north of the bay [START_REF] Salomon | Courants résiduels de marée dans la Manche[END_REF]1993). The tidal currents play an important role in distributing both sediments and benthic communities (Larsoner et al., 1982;Gentil and Cabioch, 1997). The dominant offshore sediments are pebbles, gravels and coarse sands, while the inshore sediments are mostly fine sands and muddy fine sands [START_REF] Dauvin | The ecological quality status of the Bay of Seine and the Seine estuary: Use of biotic indices[END_REF][START_REF] Dauvin | History of benthic research in the English Channel: from general patterns of communities to habitat mosaic description[END_REF].

Courseulles-sur-mer Offshore Wind Farm

The Courseulles-sur-mer OWF will be located 10 to 16 km offshore from the Calvados coast at a depth of 22 to 30 m. It will be located on the coarse sand and pebbles benthic communities of the Bay of Seine (Fig. 1).

The OWF will represent an area of 50 km 2 . The 75 turbines (each 6 MW) capable of producing 450 MW will be installed by Eoliennes Offshore du Calvados" (EOC) (a subsidiary of Éolien Maritime France (EMF) and wpd Offshore) in the next years.

In the Environmental Impact Assessment (EIA), EOC proposed two scenarios. In the first scenario, the 75 monopiles and the converter station will require scour protections. In addition, 33% of the cables will be rock-dumped. In the second scenario, 7.6 km 2 or up to 15% of the total surface of the Courseulles-sur-mer OWF will be closed to fishing for safety measures. Thus, the active gears will be banned 150 m around the cables whereas the passive gears will be not banned around them and both the passive and active gears will be banned around the substation. <Figure 1>

The pre-existing Ecopath model

The Ecopath with Ecosim (EwE) approach was retained by [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF] to estimate the value of all carbon flows in the food-web at the Courseulles-sur-mer OWF site. This Ecopath model was composed of 37 compartments, from primary producers (phytoplankton) to top predators (seabirds). The calculated Pedigree index for this model called model "Before the implantation of the OWF" or BOWF was 0.523. Details about the functional group composition, a detailed description of the Ecopath with Ecosim approach [START_REF] Christensen | Ecopath with Ecosim: methods, capabilities and limitations[END_REF][START_REF] Christensen | Ecopath with Ecosim version 6 User Guide[END_REF], and the main equations are given in [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF].

2.4 Time dynamic simulations: the "reef effect" and "reserve effect" due to the OWF implantation Ecosim is the EwE temporal module which allows to re-calculate the initial Ecopath snapshot model for each time-step, taking into account a series of variations in the input parameters such as fishing effort or biomass accumulation. In this study we analysed three different scenarios using EwE. For the first scenario, we used the work by [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF], who ran the Ecosim module to analyse the potential impacts on the ecosystem of benthic and fish aggregations inside the OWF ecosystem (REEF scenario). In the REEF scenario, expected biomasses were calculated for species that would presumably profit from the "reef effect" (Koller et al., 2006;[START_REF] Reubens | Aggregation and feeding behaviour of pouting (Trisopterus luscus) at wind turbines in the Belgian part of the North Sea[END_REF][START_REF] Krone | Mobile demersal megafauna at artificial structures in the German Bight -Likely effects of offshore wind farm development[END_REF][START_REF] Reubens | Aggregation at windmill artificial reefs: CPUE of Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) at different habitats in the Belgian part of the North Sea[END_REF] by multiplying the average biomass per m² found in the literature for the respective species by the surface area represented by the turbine foundations and scour protections, and divided by the total OWF area. A temporal simulation was then run over 30 years while forcing the biomasses to increase for the targeted species compartments, and while keeping the original biomass values for the other functional groups. At the end of the simulation, an Ecopath model was derived and ecosystem flows and indices were calculated. More details are given in [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF].

In the present study, the same methodology as in [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF] was followed for the REEF scenario.

But, two more scenarios were applied: (1) by decreasing the fishing pressure (OPTIM scenario) in accordance with what is proposed by the OWF owners in the EIA in order to "optimize" the area for fishing activities; (2) by combining the REEF scenario developed by [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF] and the OPTIM scenario developed in this study into one (COMBINED scenario).

For the OPTIM scenario, a temporal simulation was run over 30 years with a reduction in fishing pressure inside the OWF. In this scenario, 7.6 km 2 or 15% of the total surface of the Courseulles-sur-mer OWF was closed to fishing. Landings of species that would presumably profit from this decrease in fishing pressure, such as king scallop, European plaice, sole, other flat fish, sea bream, pouting, Atlantic cod, sharks and rays, European sea bass, mackerel, benthic and benthopelagic cephalopods were changed accordingly. The Ecosim model was run with the new landings values (-15 % of the initial landing values of the BOWF model) for the targeted groups listed above as the only variations taken into account to drive the evolution of the system through time. Benthic and fish catches were obtained from the IFREMER Fisheries Information System (http://sih.ifremer.fr/). For more information about the landing data please see [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF].

For the COMBINED scenario, we combined the assumptions from the REEF and the OPTIM scenarios, as detailed above.

For these two new scenarios, we extracted, from the Ecosim simulation, a new Ecopath model at the end of the 30 years' simulations, to compare the situation described in the BOWF model to the one after the construction of the OWF (OPTIM and COMBINED simulations). We followed the same balancing procedure as presented in [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF].

Linking ecosystem health with two types of OSPAR indicators

Recently, there has been a growing interest and need for robust ecological indices to evaluate ecosystem status. Several indicators are being developed by the OSPAR Commission to protect and conserve marine ecosystems. These include the Mean Trophic Level (MTL) which has been adopted as a common indicator (i.e. commonly adopted by several OSPAR Member States) and the ENA indices which are candidate indicators (i.e indicators that are still being developed and tested prior to potential adoption by OSPAR Member States). In the current study, the suitability of ENA indices to assess the ecosystem's state was investigated, confronting them to two other OSPAR indicators, namely the Mean Trophic Level and the Biomass of the Groups.

OSPAR common Indicator (The Mean Trophic Level)

The MTL, an indicator from the OSPAR food-web list of indicators [START_REF] Niquil | Ongoing research on ecosystem health indicators for food webs in the MSFD context[END_REF], was used to describe changes in the structure of the food web following the OWF construction. Using outputs of functional groups' biomass and trophic levels derived from the three scenarios, MTL was calculated as the weighted average trophic level for functional groups following the equation:

𝑀𝑇𝐿 = ∑ 𝑇𝐿i.𝐵i 𝑖 ∑ 𝐵i 𝑖 (Eq. 1)
where TLi and Bi are the trophic level and the biomass of each functional group, respectively. According to [START_REF] Shannon | Trophic level-based indicators to track fishing impacts across marine ecosystems[END_REF], three MTL were calculated for each scenario, in order to capture (1) the whole community of consumers (MTL_2.0) with a cut-off of functional groups with a Trophic Level (TL) ˂ 2 (i.e: primary producers and detritus were not taken into account); (2) the higher trophic levels species (MTL_3.25) excluding functional groups with TL ˂ 3.25; and (3) the top predators (MTL_4.0) excluding functional groups with TL ˂ 4.0.

Candidate Indicators (the Ecological Network Analysis indices)

Ecological Network Analysis indices (ENA, [START_REF] Ulanowicz | Growth and Development: Ecosystems Phenomenology[END_REF] were used to compare the ecosystem structure and function before and after the OWF installation. The following structural ENA indices namely Total System Throughput (T.., [START_REF] Latham | Network flow analysis algorithms[END_REF], Ascendency (A, Ulanowicz, 1997, relative Ascendency (A/C, [START_REF] Ulanowicz | Quantifying sustainability: Resilience, efficiency and the return of information theory[END_REF], Redundancy [START_REF] Ulanowicz | Growth and Development: Ecosystems Phenomenology[END_REF][START_REF] Ulanowicz | Ecology, the Ascendant Perspective[END_REF], relative redundancy (R/C, [START_REF] Ulanowicz | Quantifying sustainability: Resilience, efficiency and the return of information theory[END_REF], System Omnivory Index and Transfer Efficiency (TE, Lindeman 1942) as well as the following functional ENA indices namely Finn's Cycling Index were retained (FCI, 1980). More details were given in [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF].

Finally, two more ecosystem attributes were characterized by the following ratios: the total primary production/total respiration (PP/R) and total biomass/total system throughputs (B/T..)

The network analysis plug-in included in EwE [START_REF] Christensen | Ecopath with Ecosim: methods, capabilities and limitations[END_REF] was used to calculate the ENA indices for the BOWF, REEF, OPTIM and COMBINED models.

Statistical analysis on the ENA indices

Ecopath is a single solution model and so statistical comparisons between models were not possible. The ENAtool routine [START_REF] Guesnet | Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators[END_REF] was built to incorporate uncertainty around input parameters and provided ENA index distributions that can be statistically compared between models. This tool is resampling multiple balanced input matrices and calculating a set of ENA indices for each one. To do so, for each input parameter of the BOWF Ecopath model, an uncertainty interval based on the EwE pedigree routine was allocated. In fact, EwE presents a pedigree routine that allows modellers to quantify the input parameter quality and associates a confidence interval according to predefined tables [START_REF] Christensen | Ecopath with Ecosim: methods, capabilities and limitations[END_REF]).

Here, a set of 50 balanced models were sampled with input parameters boundaries defined as in Table 1.

The same was completed with the REEF, OPTIM and COMBINED models. As the models were highly constrained (i.e. EE close to 0.99 for many groups), computational time to generate balanced input matrices was extremely high. As such, the set was limited to 50 in the present study which corresponded already to several millions of trials to obtain the number of solution obeying our constraints. As probability distributions were generated for each index in the four models, it was now possible to test the significance of differences between models.

<Table 1>

Considering that the ENA indices distributions generated by the ENAtool routine were unpaired, statistical differences between these ENA indices distributions of the BOWF model and the three scenarios were obtained by testing whether ENA indices means differed from zero following permutation tests. In fact, the permutation method is a non-parametric test which means that unlike popular parametric test like ANOVAs, it does not make specific assumption about the shape of population distribution from which the observation has been derived (Groope et al., 2011). It assumes only that the observation is exchangeable. Thus, ENA indices distributions were randomized across the model and the three scenarios. However, as we tested several times the same hypothesis for non-independent indices, the maximum-statistic method for multiple comparisons (also called minimal p-value method for multiple comparisons) [START_REF] Nichols | Controlling the familywise error rate in functional neuroimaging: a comparative review[END_REF][START_REF] Groppe | Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review: Mass univariate analysis of ERPs/ERFs I: Review[END_REF]. This method, like Bonferroni correction, allows to control the probability that one or more false discoveries is made during the multiple comparison (Groope et al., 2011). It also allows to take into account the multiplicity of testing but also to keep the correlation structure between the indices. With this method, all the indices were compared at the same time (multiple comparisons). For that, each ENA indices was standardized by removing by its mean and by dividing its standard deviation, thus the unit of all the ENA were the same. One thousand randomization samples were carried out. Significant values were then determined by comparing the distributions obtained to the ENA indices means before randomization. Results are presented in Table 3, significant value (pvalue< 0.05) are indicated in bold.

Results

The ecosystem structure and functioning before OWF construction (i.e. BOWF model) have already been described in [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF]. The BOWF model and the REEF scenario were used unchanged in the present paper. The 4 balanced trophic webs included 37 functional groups.

Trophic levels and biomass profiles

The trophic levels of the functional groups ranged from TL=1 for primary producers and detritus, to a maximum of 4.8 represented by marine mammals (i.e. by grey seals in the BOWF model and OPTIM scenario, and by bottlenose dolphins in the REEF and COMBINED scenarios) (Table 2). Most functional groups maintained approximately the same trophic level between the different scenarios.

The biomass by trophic levels exhibited a similar pattern between the BOWF model and the three scenarios, with the majority of the biomass being concentrated at TL 2 (Table 2). These high biomasses were mainly related to bivalves in the BOWF model and the OPTIM scenario, and more specifically, to bivalves and benthic predators in the REEF and COMBINED scenarios. The REEF and COMBINED scenarios exhibited also a higher biomass of benthic invertebrates compared to the BOWF model and the OPTIM scenario.

A comparison between the compartmental throughflows (the amount of energy going through a compartment in terms of carbon) between the BOWF model and the three simulated scenarios were done to understand how the system changed after the OWF construction. The BOWF model compared to the REEF scenario showed: 1) an increase in top predators activity (except for diving seabirds), elasmobranchs, Atlantic cod, whiting, pouting, European sprat, sea bream, flatfish, benthic invertebrate predators, filter feeders and bivalves; 2) a decrease in benthic invertebrate deposit feeders, suprabenthos and King Scallop (Fig. 2). The comparison between the BOWF model and the COMBINED scenario differed from the previous comparison for the following compartments: mackerel, sea bass and King Scallop which showed an increase in their activity (Fig. 2). Finally, the comparison between the BOWF model and the OPTIM scenario differed from the two previous comparisons as 1) the activity of the lower trophic levels (zooplankton, bacteria, suprabenthos) and some top predators (cetaceans, cephalopods) had increased, and 2) the activity of benthic invertebrate filter feeders, sea bream, sprat, pouting, and whiting decreased (Fig. 2). <Figure: 2>

MTL comparisons between scenarios

A change in the food web structure was observed when simulating the "reef effect". This applied to both the REEF and COMBINED scenarios that registered a decrease in the MTL compared to the BOWF and OPTIM situations (Fig. 4). Firstly, when considering the whole consumers' community (i.e. MTL_2.0), a decrease of 0.1 in the MTL was noticed, which seemed to be driven by the important increase in the benthic bivalves' biomass (TL = 2.1). Bivalves doubled their biomass from around 19 gC.m -2 in the BOWF and OPTIM scenarios to more than 40 gC.m -2 in the REEF and COMBINED scenarios (Fig. 3). The important increase of bivalves' biomass went along with an increase in the biomass of the benthic filter feeders and a decrease in the biomass of a higher TL functional group (i.e. European pilchard), which strengthened the decrease in the global MTL. Secondly, after excluding the low trophic level species (i.e. MTL_3.25), the decrease in the MTL was even more marked (more than 0.3 decrease in MTL) between BOWF-OPTIM and REEF-COMBINED. This decrease was not influenced anymore by the bivalves' biomass change as this functional group was excluded.

The main functional groups driving the MTL_3.25 trend (i.e. functional groups representing 95% of the total biomass) were exclusively fish functional groups (Fig. 3). Within these functional groups, two of them showed a marked shift between BOWF-OPTIM and REEF-COMBINED. The pouting biomass doubled but, in the same time, its TL decreased (i.e. TL of pouting decreased from 3.7 in BOWF-OPTIM to 3.3 in REEF-COMBINED, see Table 2). The combination of a biomass increase and a TL decrease resulted in a decreasing trend of the MTL_3.25. In this case, the change in the TL of pouting between scenarios highly influenced the MTL trend.

Indeed, when applying a unique mean TL value for all scenarios (TL mean between the different scenario for each group), the decrease in MTL between BOWF-OPTIM and REEF-COMBINED was significantly reduced.

The MTL decrease was also stressed by the important decrease in the relative biomass of piscivorous fish (TL = 3.8). Thirdly, when focusing on top predators (i.e. MTL_4.0), the registered decrease in MTL trend was around 0.1, similar to the observed decrease in MTL_2.0 (Fig. 3). The shark and rays functional group showed an important increase in its biomass while a decrease in the TL of this functional group was observed between BOWF-OPTIM and REEF-COMBINED (Table 2). Again, the combination between biomass increase and TL decrease has resulted in a decreasing trend of the MTL_4.0. The MTL decreasing trend at the three cut-offs (i.e. MTL_2.0, MTL_3.25 and MTL_4.0) was thus driven by an important restructuration of functional groups' biomass with the "reef effect" coupled to the modification of the functional groups' TL in relation to the simulated scenarios. <Figure 3>

ENA indices and ecosystem attributes comparisons between scenarios

From a methodological perspective, the single ENA indices values derived from the EwE software for T.., A, A/C, AMI, R, R/C were included in the distributions calculated by the ENAtool routine for the BOWF model and the three scenarios (Fig. 4). For the FCI index, the Ecopath point estimates were included in the distributions for the BOWF model and the OPTIM scenario and were above the upper boxplot whisker for the REEF and COMBINED scenarios. 3). In comparison, the T.. increased significantly between the BOWF and the REEF scenario as well as between the REEF and the OPTIM scenario. R increased significantly between the BOWF model and the REEF scenario. A similar pattern was observed between the BOWF model and the COMBINED scenario as well as between the REEF and COMBINED scenarios. The ratio R/C increased significantly between the BOWF model and the COMBINED scenario as well as between the REEF and the COMBINED scenario. On the opposite, the AMI decreased significantly between the BOWF model and the COMBINED scenario as well as between the REEF and the COMBINED. Finally, no significant changes were noticed for the FCI index between the BOWF model and the three scenarios (Table 3).

<Table 3>

The graph of the transfer efficiencies (TE) as function of the trophic level showed a similar pattern between the BOWF model and the three scenarios, decreasing with increasing TL in all models (Fig. 5). Nonetheless, values were lower in the REEF and COMBINED scenarios compared to the two other situations.

<Figure 5>

Concerning the other ecosystem attributes, results showed that the total PP/R decreased between the BOWF model and both the REEF and COMBINED scenarios, by approximately 35% (Table 4). The B/T.. increased between the BOWF model and both the REEF and COMBINED scenarios, by approximately 33% (Table 4). <Table 4>

DISCUSSION

Methodological issues

The Ecopath model of the Courseulles-sur-mer area was based on local, highly replicated, and detailed samplings [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF]. The overall pedigree index (0.523) for this model fall into the upper range of pedigree values obtained for other published models, confirming the relatively low level of data uncertainty.

Compared to what was done previously by [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF], the moderate uncertainty around the input data were taken into account with the ENAtool routine when analysing the outputs of the model and scenarios [START_REF] Guesnet | Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators[END_REF]. Thus, statistical comparisons between the BOWF model and the 3 scenarios was performed. It is worth noting that the ENAtool allows to calculate uncertainty only for the ENA indices. This methodology brought rather substantial differences to the conclusions. For instance, [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF] found an increase of 40% of the FCI between the BOWF model and the REEF scenario. However, in the present paper, this difference appeared none significant. Nonetheless, from a methodological point of view, this routine needs further development, particularly to reduce the computation time through paralle calculations for highly constrained models. In addition, allowing to quantify the uncertainty around the changes in the initial parameters such as compartment biomass and TL of the functional groups would be a useful addition to this method.

The MTL a good indicator to assess changes in trophic webs

The MTL was first applied on fish landings' data by [START_REF] Pauly | Fishing Down Marine Food Webs[END_REF] which led to the famous concept of "fishing down the marine food webs". The rationale behind this indicator is that a decline in MTL values indicates a gradual transition in the food web from long-lived, high trophic level piscivorous fish, towards short-lived, low trophic levels such as invertebrates and planktivorous fish. The resulting shorter food chain reduces the food webs' complexity, increasing the systems' vulnerability to both natural and anthropogenic perturbations (CBD 2004, Pauly and[START_REF] Pauly | Counting the last fish[END_REF]. In the current study, the MTL was applied to describe the food-web structure under different scenarios after the implementation of an offshore wind farm. The MTL showed a decreasing trend between BOWF-OPTIM and REEF-COMBINED scenarios, for all tested cut-offs (i.e. MTL_2.0, MTL_3.25, MTL_4.0). However, the observed decrease in MTL was not due to the disappearance or reduction of higher trophic levels. The different MTL indices along with the functional groups' biomass, allowed to detect a reconstruction of the food web caused by the simulated "reef effect" (REEF and COMBINED scenarios), which induced an increase in the total biomass of lower trophic levels mainly (benthic invertebrates' filter feeders and bivalves). In this new configuration, the "reef effect" cascaded up to the higher trophic levels feeding on filter feeders, which also increased in biomass. However, their increase in biomass is clearly overwhelmed by the large biomass increase in filter feeders, which resulted in a decrease in the relative biomass of higher trophic levels and a reduced MTL as a consequence.

The MTL indicator and the "fishing down marine food webs" concept has largely been tested and applied in the world oceans, generally on large ecosystem scales [START_REF] Pinnegar | Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution[END_REF][START_REF] Ainley | Fishing down the food web of the Antarctic continental shelf and slope[END_REF][START_REF] Gascuel | Fishing impact and environmental status in European seas: A diagnosis from stock assessments and ecosystem indicators[END_REF] and in global comparative approaches [START_REF] Pauly | Fishing Down Marine Food Webs[END_REF][START_REF] Pauly | Fishing down marine food web: it is far more pervasive than we thought[END_REF]. The application of MTL indicator on smaller geographical scales, such as the OWF scale, and in relation to OWF installation rather than direct fishing pressure impact, is rather rare. However, in most studies using the MTL indicator, TL values applied to calculate the indicator are generally unique values extracted from global databases such as Fishbase or Sealifebase [START_REF] Froese | FishBase[END_REF][START_REF] Palomares | SeaLifeBase[END_REF]. The evolution of species TL according to the different scenarios was applied on MTL indicator in the current study which induced an increased sensitivity of the MTL indicator to the structural changes occurring in the ecosystem. Indeed, when a unique mean TL value per species was applied for all scenarios instead of using the various TL estimated by models in the various scenarios, the decrease in MTL trend between BOWF-OPTIM and REEF-COMBINED was significantly reduced. The interpretation of changes in the MTL indicator should thus be made considering the geographical scale that is applied, the main human pressure that is considered, and the accuracy of the TL estimates in regard to the potential spatial and temporal difference in TL. In the OSPAR context, the appropriate geographical scale for integrating the various indicators is a current issue under consideration (Elliott et al. 2017, Haraldsson et al. 2017). An indicator can be applied at different geographical scales from large OSPAR regions to local subregional areas [START_REF] Haraldsson | Report on the integration of OSPAR Food Webs Indicators into the NEAT tool[END_REF].

Interpretation of the MTL at different spatial scales should be made with caution, as this study shows that a decreasing trend in this indicator cannot be automatically translated as "unsustainable" status, but closer evaluation of the underlying reason is needed, at least at the small OWF scale.

The importance of having regular and accurate trophic level estimations that reflect the changes occurring in the food web was also highlighted in the current work. This emphasizes the importance of surveying the evolution of TL estimation in order for the MTL to detect accurately the changes that occurs in the food web. This has been highlighted previously [START_REF] Bourdaud | New trophic indicators and target values for an ecosystem-based management of fisheries[END_REF], Arroyo et al., 2017), and should be especially applied when this indicator is to be used for assessing the marine environmental status under management context.

In [START_REF] Heymans | Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach[END_REF], the MTL was applied on worldwide food-web models along with ENA indices. These authors observed that the reduced MTL values were related to reduce transfer efficiency (TE) and high Ascendency (A) reflecting an energy efficient transfer up the food chain, with low omnivory but a food web high organization which is in line with the present ENA results as detailed below.

Ecosystem maturity and resilience: interpreting ratios and ENA patterns

According to [START_REF] Odum | The strategy of ecosystem development[END_REF], ecosystems evolve towards maturity in a process that involves structural changes that are orderly, directional and predictable. Odum stated that the PP/R ratio is a functional index of ecosystem maturity, and is expected to be higher than 1 in immature systems, and tends to 1 as a system matures. The estimated PP/R values of the BOWF model and the three scenarios exceeded 1, meaning that they have not yet reached a mature stage. However, the PP/R values for the scenario related to a "reef effect" (REEF and COMBINED) were lower (table 4), suggesting a more mature ecosystem under these scenarios.

These results are in line with the high B/T.. values in the REEF and COMBINED scenarios, which in fact, are expected to increase as an ecosystem matures [START_REF] Odum | Fundamentals of Ecology[END_REF].

According to our model and scenarios thirty years after the implantation of the OWF, the reserve effect seems to have a relatively limited overall impact on the ecosystem. In fact, changes in the ENA indices between the BOWF model and the OPTIM scenario were not significant. This could be explained by the fact that the area which would be closed to the fisheries would be too small to have a significant impact at the ecosystem level. Meanwhile, significant changes were observed in the ENA indices between the BOWF model and the different "reef effect" scenarios (REEF and COMBINED), which may have potential consequences in terms of resilience of the system. The term resilience can refer to two different aspects of system stability: engineering resilience and ecological resilience [START_REF] Holling | Engineering resilience versus ecological resilience[END_REF]. The "engineering resilience" concept assumes the existence of a local equilibrium; a system with a short return time to equilibrium will be more resilient than one with a longer return time [START_REF] Pimm | The Balance of Nature[END_REF][START_REF] Holling | Engineering resilience versus ecological resilience[END_REF]. On the other hand, a system might exist in more than one stable state, a condition called "multiple stable states". In this case, resilience would be defined as the measure of the pressure magnitude that can be absorbed before the system crosses a threshold and settles into another state. [START_REF] Holling | Engineering resilience versus ecological resilience[END_REF] called this second concept "ecological resilience".

Here, to interpret the differences in ENA indices between the BOWF model and the REEF/COMBINED scenarios, we will focus on ecological resilience as it is more applicable to changes observed by ecologists [START_REF] Gunderson | Foundations of ecological resilience[END_REF].

It has been demonstrated that resilience for a system is strongly related to its structure and functioning [START_REF] Chapin | Biotic control over the functioning of ecosystems[END_REF]. ENA indices are therefore powerful tools as they link system architecture to system function, revealing the emergent properties [START_REF] Ulanowicz | Quantitative methods for ecological network analysis[END_REF]. ENA indices have been calculated in several marine and coastal ecosystems to assess their trophic structure [START_REF] Rybarczyk | An analysis of the trophic network of a macrotidal estuary: The Seine Estuary (Eastern Channel, Normandy, France)[END_REF]. In fact, under stressful conditions, the emergent properties of an ecosystem can change (Mukherjeer et al., 2015;[START_REF] Tecchio | The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis[END_REF][START_REF] Pezy | Before-After analysis of the trophic network of an experimental dumping site in the eastern part of the Bay of Seine (English Channel)[END_REF]. Ascendency increased significantly in the REEF and COMBINED scenarios.

According to [START_REF] Ulanowicz | Growth and Development: Ecosystems Phenomenology[END_REF], this index allows to assess the development status or maturity of an ecosystem. [START_REF] Ulanowicz | An informational synthesis of ecosystem structure and function[END_REF] stated that high values of Ascendency represent a mature system whereas low values indicate a stressed or immature system [START_REF] Ulanowicz | Ecology, the Ascendant Perspective[END_REF][START_REF] Ortiz | Trophic models of four benthic communities in Tongoy Bay (Chile): comparative analysis and preliminary assessment of management strategies[END_REF]Patricio et al., 2006;[START_REF] Baird | On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis[END_REF]. More specifically, during maturation, ecosystems develop in order to increase their activity (T..) and energy storage, and they tend towards greater Ascendency [START_REF] Ulanowicz | Ecology, the Ascendant Perspective[END_REF]. The highest possible value of Ascendency is called the development capacity (C) which represents the real potential reached by the system in terms of structure. Our results indicated that the ecosystems under a "reef effect" (REEF and COMBINED), seems to be more mature than in the BOWF model and OPTIM scenarios, which agrees with the PP/R and B/T.. ratios. However, a high value of Ascendency also means the system is more active in constraining flows along more specific pathways, and so the system can lose flexibility which could lead to an ecosystem with less resilience. Although the Ascendency increased significantly in the "reef effect" scenarios (in the REEF and COMBINED scenarios), the significantly increased redundancy (R) suggest that the ecosystem did not lose its flexibility. The redundancy (or overhead), which is the difference between the internal capacity (Ci) and the internal Ascendency (Ai), is an indicator of the inefficiency of the network (the ecosystem part which is not organised). It measures the number of parallel trophic pathways connecting the different trophic compartments [START_REF] Ulanowicz | Symmetrical overhead in flown networks[END_REF]. The redundancy is based on the idea that within an ecosystem, some species can functionally replace others [START_REF] Mccann | The diversity-stability debate[END_REF]Woodward, 2009). These redundant species can be considered as "guarantors" resulting in a reliable ecosystem functioning [START_REF] Naeem | Species redundancy and ecosystem reliability[END_REF]. Thus redundancy increases the ecosystem resilience as this reservoir of energy acts as an insurance against perturbations [START_REF] Naeem | Species redundancy and ecosystem reliability[END_REF][START_REF] Costanza | The ecological, economic, and social importance of the oceans[END_REF]. The significant increase in both Ascendency and redundancy indicate that after the installation of the OWF, the ecosystem keeps its balance (or equilibrium) between the organised (Ascendency) and non-organised part (redundancy or overhead), which will bring flexibility to potential perturbations as the energy transfers through the trophic network can be maintained via other pathways [START_REF] Ulanowicz | Quantifying sustainability: Resilience, efficiency and the return of information theory[END_REF]. In addition, according to [START_REF] Mukherjee | Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations[END_REF], the ecosystem after the installation of a OWF seems to be in a healthy state as it "can develop an efficient diversity of components and exchange pathways (high organization) while maintaining some overhead (redundancy) or resilience as insurance against stress".

Adding to this, the TE decreased with TL in the model and scenarios without any interruptions. This indicates that the compartments functionally behaved in a similar way before and after the OWF construction.

According to [START_REF] Coll | Decadal changes in a NW Mediterranean Sea food web in relation to fishing exploitation[END_REF], important perturbations can be detected by analysing the TE profile. In fact, these authors showed that ecosystems undergoing a perturbation such as intense fishing activities, showed breaks in the typical decreasing pattern of TE. This observation of stable TE profiles strengthened our conclusion that the Courseulles-sur-mer OWF construction adds limited stress on the ecosystem. This result can be explained by the fact that the Bay of Seine is historically influenced by a high level of human activities [START_REF] Dauvin | The Seine Estuary, a Highly Developed Area. Seine-Aval Special Issue[END_REF] may have led to an increased resilience over time to face these multiple pressures (Pezy et al., 2017). However, it is worth noting that our model and simulated scenarios did not take into account all possible effects generated by potential changes in the community, as we chose to use estimates derived from the literature and expert knowledge, and not from complex models. For instance, our simulation did not take into account the potential arrival of invasive species. In fact, some authors suggest that OWF could act as stepping stones for invasive species [START_REF] Wilhelmsson | Fouling assemblages on offshore wind power plants and adjacent substrata[END_REF]. One example, is the giant chironomid, Telmatogeton japonicus, that have been recorded in the intertidal zone of the wind turbines at Utgrunden, Baltic sea [START_REF] Wilhelmsson | Fouling assemblages on offshore wind power plants and adjacent substrata[END_REF].

To summarise, ENA indices bring together different holistic indices giving the currently most complete view of an ecosystem approach. They also show a high sensitivity to detect ecosystem changes under different conditions [START_REF] Dame | A Statistical Test of Network Analysis: Can it Detect Differences in Food Web Properties?[END_REF]. However, the ecological interpretation remains sometimes complex, as establishing the link between ENA indices and system resilience or maturity (sensu Odum) is still in progress. Thus, the interpretation of their behaviour needs further definitions and contrasted case-studies before they can be useful to characterise ecosystem health and for management purposes.

Conclusions

An Ecopath model of the food web flows at the Courseulles-sur-mer OWF site was built allowing to 1) summarize all available ecological data on this site, 2) test different known impacts of OWF at the ecosystem level, 3) investigate the contribution of ENA indices in the assessment of ecosystem health state by confronting them to other indicators commonly-used by the scientific community, and 4) analyse the consequences of potential OWF impacts on ecosystem maturity and resilience through both ENA indices and other ecosystem attributes [START_REF] Odum | The strategy of ecosystem development[END_REF][START_REF] Odum | Fundamentals of Ecology[END_REF][START_REF] Ulanowicz | Growth and Development: Ecosystems Phenomenology[END_REF]. Our results revealed a combination of changes in the ecosystem structure and functioning through the analysis of the ENA indices, MTL, and ecosystem attributes. After the installation of the OWF, the ecosystem is expected to be more mature (according to [START_REF] Odum | The strategy of ecosystem development[END_REF][START_REF] Odum | Fundamentals of Ecology[END_REF] while still in a healthy state (according to [START_REF] Mukherjee | Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations[END_REF]. Moreover, our study suggested that the small size of the fisheries restriction area would not have any important impact on the ecosystem structure and functioning.

Nonetheless, as marine ecosystems face many natural and anthropogenic perturbations, there is an urgent need to understand how multiple perturbations interact to influence each other and their consequences on ecosystem functioning and stability (Crowe and Frid, 2015;[START_REF] Raoux | Assessing cumulative socioecological impacts of offshore wind farm development in the Bay of Seine (English Channel)[END_REF]. Thus, a natural next step would be to develop a holistic view of cumulated impacts within the OWF [START_REF] Raoux | Assessing cumulative socioecological impacts of offshore wind farm development in the Bay of Seine (English Channel)[END_REF]. A qualitative modelling approach (Puccia and Levins, 1986) could suggestively be developed to analyse the ecosystem structure and dynamics, and to take into account ecosystem components and processes that are difficult to measure. This approach could allow to highlight key linkages between the different ecological components and other human dimensions [START_REF] Dambacher | Qualitative mathematical models to support ecosystem-based management of Australia's Northern Prawn Fishery[END_REF]. Integrating cumulative impacts and human dimensions in models fits within the socio-ecosystem approach [START_REF] Mazé | Pour une Anthropologie politique de la Mer[END_REF], is part of the field of sustainability sciences dedicated to find concrete applications for coastal management. 
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 2 Figure 2: Differences in compartment throughflows between the three EwE simulations (scenario REEF,OPTIM and COMBINED) and the BOWF model. Note that the y-axis scale was log-transformed, and that this percentage analysis did not consider the difference in absolute values between functional groups. Grey bars identified both functional groups for which the biomasses have been set to their accumulated maximum during the Ecosim 30-years simulations of 'reef effect' as well as the functional groups for which a decrease in fishing effort have been set during the Ecosim 30-years simulations 'reserve effect'. Black bars, on the contrary, represented groups for which variations in biomass were an output of the Ecosim simulation across 30 years.

Figure 3 .

 3 Figure3. Mean Trophic Level (MTL) and biomass (gC.m -2 ) of functional groups for the four Ecopath models(BOWF model and OPTIM, REEF and COMBINED scenarios). Three MTL are applied to each scenario (black lines) in order to capture (i) the whole consumers' community (MTL_2.0) with a cut-off of functional groups with TL ˂ 2; (ii) a focus on higher trophic level species (MTL_3.25) excluding functional groups with TL ˂ 3.25; and (iii) a focus on top predators (MTL_4.0) excluding functional groups with TL ˂ 4.0. The functional groups displayed are those who represent 95% of the total biomass for each cut-off. For interpretation of colours the reader is referred to the online version of the article.

Figure 4 .

 4 Figure 4. Boxplots of ENA indices for the four Ecopath models (BOWF model and OPTIM, REEF and COMBINED scenarios) using the ENAtool routine, where the median of the distributions was represented by a bold line. Red dots corresponded to the single ENA indices values obtained from the pre-existing Ecopath model using the EwE software. As a validation rule, these single values were all equal to the ENA indices values calculated after the importation of the pre-existing Ecopath model to Matlab with no change on the input parameters. Significant differences (p-value < 0.05) are indicated by letter a, b and c.
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 5 Figure 5. Transfer efficiencies (TE) by discrete trophic levels for the four Ecopath models (BOWF model and OPTIM, REEF and COMBINED scenarios).

  

  

Table 1 :

 1 Percentages of change applied on input parameters for the pedigree routine in the four Ecopath 734 models (BOWF model and OPTIM, REEF and COMBINED scenarios) in the ENAtool routine. Values 735 corresponded to a percentage of variation around the initial values provided in Table2. Inv.: invertebrates; 736 B: biomass (gC.m -2 ); P/B: production to biomass ratio (year -1 ); Q/B: consumption to biomass ratio (year -1 ); 737

	738	DC: diet composition.			
		Compartments	B	P/B Q/B DC
		1 Bottlenose dolphins	0.3	0.5	0.5	0.1
		2 Harbour porpoises	0.3	0.5	0.5	0.1
		3 Harbour seals	0.3	0.5	0.5	0.1
		4 Grey seals	0.3	0.5	0.5	0.1
		5 Diving seabirds	0.1	0.5	0.5	0.3
		6 Surface feeders seabirds	0.1	0.5	0.5	0.3
		7 Benthopelagic cephalopods	0.1	0.5	0.5	0.1
		8 Benthic cephalopods	0.1	0.5	0.5	0.3
		9 Fish. mackerel	0	0.5	0.5	0.3
		10 Fish. European seabass	0.1	0.5	0.5	0.3
		11 Fish. sharks and rays	0.1	0.5	0.5	0.3
		12 Fish. Atlantic cod	0.1	0.5	0.5	0.3
		13 Fish. whiting	0.1	0.5	0.5	0.3
		14 Fish. Atlantic horse mackerel	0	0.5	0.5	0.3
		15 Fish. gurnard	0.1	0.5	0.5	0.3
		16 Fish. pouting	0.1	0.5	0.5	0.3
		17 Fish. poor cod	0.1	0.5	0.5	0.3
		18 Fish. European pilchard	0	0.5	0.5	0.3
		19 Fish. European sprat	0	0.5	0.5	0.3
		20 Fish. piscivorous	0	0.5	0.5	0.3
		21 Fish. planktivorous	0	0.5	0.5	0.3
		22 Fish. benthos feeders	0	0.5	0.5	0.3
		23 Fish. sea bream	0.1	0.5	0.5	0.3
		24 Fish. sole	0	0.5	0.5	0.3
		25 Fish. European plaice	0	0.5	0.5	0.3
		26 Fish. other flatfish	0	0.5	0.5	0.3
		27 Benthic inv. predators	0.1	0.5	0	0.3
		28 Benthic inv. filter feeders	0	0.5	0	0.3
		29 Benthic inv. Bivalves filter feeders	0.1	0.5	0	0.3
		30 King scallop	0.1	0.5	0	0.6
		31 Benthic inv. deposit feeders	0	0.5	0	0.3
		32 Suprabenthos	0	0.5	0	0.6
		33 Meiofauna	0	0.3	0	0.6
		34 Zooplankton	0.5	0.3	0.6	0.6
		35 Bacteria	0.5	0.3	0	0.6
		36 Phytoplankton	0.5	0.3	0	0
		37 Detritus	0.5	0	0	0

Table 2 :

 2 Biomass values, trophic level (TL) and Ecotrophic Efficiencies (EE) for the four Ecopath models (i.e. BOWF model and OPTIM, REEF and COMBINED scenarios).

			Biomasses gC.m -2			TL				EE		
	Compartments	BOWF	OPTIM	REEF	COMBINED BOWF OPTIM REEF	COMBINED BOWF OPTIM REEF COMBINED
	Bottlenose dolphins	1.87 × 10 -5 2.1 × 10 -5	8.44 × 10 -5 8.70 × 10 -5 4.76	4.77	4.76	4.72	0	0	0	0
	Harbour porpoises	4.10 × 10 -4 4.22 × 10 -4 1.43 × 10 -3 1.49 × 10 -3 4.63	4.64	4.61	4.57	0	0	0	0
	Harbour seals	6.73 × 10 -4 6.62 × 10 -4 1.89 × 10 -3 1.89 × 10 -3 4.63	4.62	4.63	4.63	0	0	0	0
	Grey seals	2.68 × 10 -4 2.65 × 10 -4 8.73 × 10 -4 8.74 × 10 -4 4.83	4.83	4.66	4.66	0	0	0	0
	Diving sea birds	1.50 × 10 -2 1.54 × 10 -2 9.80 × 10 -3 9.72 × 10 -3 3.98	3.97	3.93	3.94	0	0	0	0
	Surface feeders seabirds	2.08 × 10 -3 2.14 × 10 -3 1.27 × 10 -2 1.27 × 10 -2 4.07	4.06	3.95	3.95	0	0	0	0
	Benthopelagic cephalopods	1.36 × 10 -2 1.88 × 10 -2 1.70 × 10 -2 2.36 × 10 -2 4.07	4.13	4.14	4.17	0.43	0.43 0.63	0.44
	Benthic cephalopods	6.22 × 10 -3 6.52 × 10 -3 7.65 × 10 -3 9.48 × 10 -3 3.92	3.91	3.87	3.89	0.92	0.91 0.95	0.91
	Fish. mackerel	2.39 × 10 -1 2.73 × 10 -1 2.30 × 10 -1 2.61 × 10 -1 3.14	3.14	3.10	3.10	0.99	0.99 0.99	0.99
	Fish. European seabass	1.86 × 10 -2 2.22 × 10 -2 1.63 × 10 -2 1.83 × 10 -2 3.75	3.75	3.63	3.63	0.43	0.32 0.44	0.39
	Fish. sharks and rays	1.20 × 10 -1 1.22 × 10 -1 1.64 × 10 -1 1.76 × 10 -1 4.15	4.15	3.99	3.99	0.13	0.11 0.13	0.08
	Fish. Atlantic cod	1.97 × 10 -2 1.95 × 10 -2 6.87 × 10 -2 6.87 × 10 -2 4.03	4.03	4.12	4.12	0.28	0.27 0.58	0.52
	Fish. whiting	6.80 × 10 -3 6.15 × 10 -3 2.84 × 10 -2 2.84 × 10 -2 4.12	4.12	4.12	4.12	0.99	0.99 0.99	0.99
	Fish. Atlantic horse mackerel	1.41 × 10 -1 1.30 × 10 -1 6.36 × 10 -2 5.99 × 10 -2 3.83	3.83	3.70	3.70	0.99	0.99 0.99	1.00
	Fish. gurnard	6.30 × 10 -3 6.21 × 10 -3 8.69 × 10 -3 8.67 × 10 -3 3.46	3.46	3.58	3.59	0.00	0.00 0.00	0.00
	Fish. pouting	1.66	1.64	3.85	3.85	3.76	3.76	3.31	3.30	0.04	0.04 0.10	0.10
	Fish. poor cod	8.60 × 10 -3 8.55 × 10 -3 1.64 × 10 -3 1.55 × 10 -3 3.72	3.72	3.72	3.71	0.96	0.96 0.99	0.99
	Fish. European pilchard	4.76	4.73	3.68	3.65	2.80	2.80	2.79	2.79	0.99	0.99 0.99	1.00
	Fish. European sprat	1.08 × 10 -1 1.04 × 10 -1 1.28 × 10 -1 1.30 × 10 -1 3.00	3.00	3.00	3.00	0.99	0.99 0.99	0.99
	Fish. piscivorous	2.42 × 10 -1 2.37 × 10 -1 4.86 × 10 -3 3.36 × 10 -3 3.84	3.84	3.82	3.82	0.99	0.99 0.99	0.99
	Fish. planktivorous	8.19 × 10 -1 8.13 × 10 -1 7.22 × 10 -1 7.16 × 10 -1 3.01	3.01	3.00	3.00	0.99	0.99 0.99	0.99
	Fish. benthos feeders	1.21	1.20	2.50	2.50	3.76	3.76	3.55	3.55	0.99	0.99 0.99	0.99
	Fish. sea bream	2.98 × 10 -2 2.99 × 10 -2 8.33 × 10 -2 8.61 × 10 -2 3.17	3.17	3.14	3.14	0.30	0.29 0.32	0.29
	Fish. sole	5.07 × 10 -2 1.04 × 10 -1 9.80 × 10 -2 9.80 × 10 -2 3.44	3.44	3.35	3.35	0.99	0.97 1.00	0.97
	Fish. European plaice	2.16 × 10 -2 4.53 × 10 -2 5.33 × 10 -2 1.24 × 10 -1 3.37	3.37	3.22	3.22	0.99	0.97 0.99	0.97
	Fish. other flatfish	6.18× 10 -3 7.55× 10 -3 2.70 × 10 -2 2.70 × 10 -2 3.35	3.35	3.26	3.26	0.99	0.99 0.99	0.97
	Benthic inv. predators	2.94	2.92	3.01	3.01	3.07	3.07	2.82	2.83	0.98	0.98 0.99	0.99
	Benthic inv. filter feeders	3.12	3.13	4.78	4.78	2.21	2.21	2.21	2.22	0.99	0.99 0.99	0.99
	Benthic inv. Bivalves filter feeders	19.50	19.4	42.90	42.90	2.10	2.10	2.10	2.11	0.01	0.01 0.01	0.01
	King scallop	7.70 × 10 -1	1.09	7.43 × 10 -1	1.09	2.10	2.10	2.04	2.11	0.58	0.37 0.59	0.39
	Benthic inv. deposit feeders	3.57	3.54	2.98	2.90	2.21	2.21	2.21	2.21	0.99	0.99 0.99	0.99
	Suprabenthos	2.00	2.00	1.71	1.70	2.53	2.53	2.36	2.34	0.99	0.99 0.99	0.99
	Meiofauna	9.70 × 10 -1 9.70 × 10 -1	1.06	1.06	2.10	2.10	2.10	2.10	0.99	0.99 0.99	0.99
	Zooplankton	1.72	1.71	1.79	1.79	2.00	2.00	2.00	2.00	0.88	0.88 0.99	1.00
	Bacteria	7.50 × 10 -1 7.48 × 10 -1 7.70 × 10 -1 7.70 × 10 -1 2.00	2.00	2.00	2.00	0.22	0.22 0.25	0.24
	Phytoplankton	3.24	3.24	3.24	3.24	1.00	1.00	1.00	1.00	0.76	0.76 0.99	0.99
	Detritus	19.00	19.00	19.00	19.00	1.00	1.00	1.00	1.00	0.49	0.49	0.8	0.83

Table 4 :

 4 Ecosystem attributes (PP/R: total primary production/total system respiration; B/T..: Total Biomass/ Total System Throughputs)

	Model and scenarios	PP/R	B/T..
			(year)
	BOWF model	1.72	0.03
	OPTIM scenario	1.72	0.03
	REEF scenario	1.12	0.04
	COMBINED scenario	1.12	0.04
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Table 3: Significance level between scenarios for ENA indices using the maximum-statistic method for multiple comparisons (AMI: Average Mutual Information; R/C: relative redundancy; A: ascendency; A/C: relative Ascendency; R: redundancy; FCI: Finn's Cycling Index; T..: Total system Throughput). Significant differences (p-value < 0.05) are indicated in bold. 

AMI R/C