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Abstract: - The present paper presents in an informative manner, an efficient method providing the 
dispersion curves for a planar multilayered structure in vacuum, made of isotropic homogeneous visco-
elastic materials. The energy flux of the resulting generalized Lamb waves is then determined for each 
frequency in the selected range. The energy flux distribution, as function of the position along the normal 
direction on the laminar structure, can thus be plotted. The flux integral along the cross-section is 
obtained and represented as function of frequency for all propagating modes. 
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1. INTRODUCTION 

 All guided waves applications require the 
information from related dispersion curves, 
representing either the wavenumbers, or wave 
phase/group velocities, as functions of frequency 
[1], [2]. These dispersion curves are obtained by 
solving the specific dispersion equations, usually by 
numerical methods, but for multilayered structures 
this task can prove to be difficult.  

The present paper presents an efficient method 
providing the dispersion curves for a planar 
multilayered structure in vacuum, made of isotropic 
homogeneous visco-elastic materials. The energy 
flux of the resulting generalized Lamb waves is then 
theoretically and numerically determined for each 
frequency in the selected range. Using the dispersion 
curves, the displacements, strains and stress 
components can be determined at each frequency, 
for each mode. The energy flux distribution, as 
function of the position along the normal direction 
on the laminar structure, is then plotted. The flux 

integral can then be represented as function of 
frequency for all propagating modes. 

The purpose of the paper is to give an explicit 
and detailed algorithm, based on the so-called Semi-
Analytical Finite Elements Method (SAFEM) which 
is easily implementable in COMSOL, a commercial 
available software dedicated to Finite Elements 
Method (FEM) applications. Other methods or 
algorithms to compute the dispersion curves were 
developed [3], [4], [5], etc. The detailed steps used 
in our case and the given example, are intended for 
master, Ph.D. students and researchers, remarking 
that the algorithm and results concerning the energy 
flux frequency dependency are not mentioned to our 
knowledge in reference textbooks. 
 
2. LAMB WAVES IN MULTILAYERED 
LAMINAR STRUCTURES 
  
 An isotropic homogeneous plate of thickness H is 
considered. 
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Figure 1. Elastic lamina and Lamb wave propagating 
along the Ox axis (top). The FEM model (bottom) 

The displacements field for the Lamb waves 
propagating along the Ox direction, can be 
considered as planar waves: 
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in which k is the wavenumber and 2 f  , in 
which f is the wave frequency. The functions U(y) 
and V(y) represent the longitudinal and transversal 
component respectively, of the local displacement 
vector, which has in general a complex valued 
amplitude A, accounting thus for the wave phase. 
The partial derivatives with respect to x, which are 
used for strain computation, are:  
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and their respective time derivatives are: 
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 The differential equations of motion and stresses 
in the plane strain hypothesis, are valid also in the 
particular case of Lamb waves [6]: 
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 The elasticity coefficients for isotropic materials 
C11, C66, (C12=C11-2C66) can be computed from 
experimental data, such as the Young modulus and 
Poisson coefficient, or from ultrasonic experiments 
providing cL and cT, the longitudinal and shear 
waves velocities respectively. For visco-elastic 
materials, these coefficients should be set as 
complex values, the imaginary part accounting for 
the dissipation. 

 Applying the derivation rules in this case, these 
differential equations along the Ox and Oy axis 
become: 
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As can be seen, the wave amplitude was 
cancelled, meaning that the modal displacements 
and stresses will be determined with the 
approximation of a multiplicative constant. 
However, the modal displacements U(y) and V(y) 
are complex functions of the transverse coordinate, 
which means that relative phase between them are 
determined, e.g. U can be only imaginary, whereas 
V is a real function, in which case the phase lag 
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between the two components of the displacement 
field is π/2. The equation (6) can be rewritten in 
COMSOL formulation as: 
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       (7) 

 
 Multilayered laminar structures can be modeled 
by similar equations, in which only the elastic 
constants are different but constant over each layer. 
Perfect bonding condition between layers is 
represented by usual displacement and strain 
continuity between layers. 
 
 
3. DISPERSION CURVES COMPUTED 
USING A ONE-DIMENSIONAL FEM 
MODEL 
 
 The dispersion curves can be obtained in 
COMSOL using as FEM model, only a line segment 
AB perpendicular on the laminar structure, using the 
eigenvalue solver in the Partial Differential 
Equations module. It must be noted that in the 
COMSOL module, the line segment is plotted along 
the horizontal direction, as shown on Figure 1. This 
means that the physical transversal coordinate y 
from Figure 1 is represented by the variable x and 
the partial derivatives U,x and V,x available for post-
processing correspond to U,y and V,y in the physical 
model. Equations (7) can be cast in matrix form, 
with the mentioned change of variable: 
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 The following COMSOL general expression for 
an eigenvalue problem is given in ref. [7]: 
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 Changing sign and grouping the useful matrices, 
the following shorter form represents the problem: 

   2C u ikLu ikB u Au k D u           (10) 

using the following notations: 
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The eigenvalue problem will be solved for 
eigenvalues k (the wavenumbers), for a given 
angular frequency ω. It is clear that matrices ikLu or 
ikB have no equivalent in this COMSOL 
formulation. It is however possible to solve the 
problem, introducing another set of variables 
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in which [M] is an arbitrary nonsingular matrix. It 

can be chosen for example   M A . Thus the 

COMSOL displacements vector will have four 
components, requiring more computer RAM 
memory, but has the advantage of including the 
matrix expressions ikLu  and ikB in equation (8) at 
the correct locations corresponding to the involved 
stresses. The expression ikLu  from (10), is thus 
included in the model as: 

 

  1

1

0 0 0 0

0 0 0 0

0 0

0 0

U

V

U
iL

V

      
      
      
             

,               (13) 

using a four by four coefficient matrix. In a similar 
manner the imaginary matrix ikB is included in the 
model. Returning to the COMSOL equation general 
form (9):  

 ac U U U aU kd U           
     , (14) 

which is written for the extended set of modal 
displacements 
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   1 1

T T
U U V U V U V kU kV   with 

the new matrices: 
 

0 0 0
; ; ;

0 0 0 00

0 0
;

0 0 0

a

D C iL
d c

A

iB A
a

A





      
       

    
   

    
   

(15) 

in which 0 represents a 2 by 2 null matrix. The 
boundary conditions if the two surfaces are free, as 
in most practical cases, correspond to Neumann 
boundary conditions: 

      0c U U     .              (16) 

 Solving for the eigenvalues in a parametric 
sweep over the selected frequency range, will 
provide the full set of complex wavenumbers, 
among which there are the real valued ones. The real 
valued wavenumbers, with positive or negative sign, 
correspond to propagative modes in positive or 
negative Ox directions, as shown on Figure 1. 
 
4. THE ENERGY FLUX THROUGH THE 
CROSS-SECTION 
 

The instantaneous value of the energy flux or 
power per lamina cross section area of unit depth, of 
a mode of order q, deduced from the general form 
given by Auld [2], is:  

 

       
2

2

,

Re Re Re Re

q

H
q q
xx q xy q

H

P t

u v dy



 


   



 
 . (17) 

 This formula refers to real valued functions of 
position and time and assumes here and in the 
following to be computed per unit depth (1m), in 
agreement with the plain strain hypothesis.  
 However, by solving the dispersion equation, 
even for propagating modes with real kx, the 

displacements functions r iU U iU  , r iV V iV   

as well as the stress functions r i
xx xxS iS  and r i

xy xyS iS  

are complex valued functions. Their imaginary parts 
are offering information on the phase of the 
respective quantity (displacement, stress), relative to 
another of the same mode.  
 For the physical point of view, in formula (17) 
only products of real parts from the stresses and 
displacements are required. Since for two arbitrary 

complex numbers z1 and z2, 1 2 1 2z z z z , in which the 
overbar stands for complex conjugate, some 
mathematical transformations are required for a 
simpler formula. At any given x position along the 

lamina, the energy flux is the same, if there is no 
dissipation mechanism involved. For this reason, it 
can be assumed an arbitrarily selected cross-section 
(e.g. x=0) in the following. The first product from 
(17) can be written, for an arbitrary mode q, which 
index is ignored in the following: 

 

   
   

   

 
2 2

Re Re

Re exp

Re exp

cos sin

cos sin

cos sin ...

cos sin

xx

r i
xx xx

r i

r i
xx xx

i r

r i i r
xx xx

i i r r
xx xx

u

S iS i t

i U iU i t

S t S t

U t U t

S U t S U t

S U S U t t





 

  

 

 


 

    
     
   

   
     

   



  (18) 

 The superscript r indicates the real part and i the 
imaginary part of the complex valued function. For a 
periodic wave, it is practically important to 
determine the averaged energy flux during one 
period, as defined in an equivalent form by 
Achenbach [1], pp.214: 

   

 
2

2

1
,

1
Re Re Re Re

t T

q q

t

Ht T

xx zx

t H

P P t dt
T

u v dy dt
T

 

 







 

 
    

 



 



 
. (19) 

 Replacing in (19) the expression (18) and a 
similar one for Re Rezx zu  , then the time average 

can be obtained using simple formulas, detailed in 
the Annex (a): 

 
2

22

q

H
r i i r r i i r
xx xx xy xy

H

P

S U S U S V S V dy







 
        

 


.(20) 

 This formula can be cast into several equivalent 
forms, using the transformations detailed in Annex 
(b): 

  
2

2

Im
2

H

q xx xy q
H

P S U S V dy




 
      

 
 ,  (21) 

or using the conjugate of displacements: 

  
2

2

Im
2

H

q xx xy q
H

P S U S V dy




 
     

 
 .  (22) 

 In some cases, it is useful to use an equivalent 
combination of these two forms [8]: 
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 
2

2

Im
4

q

H

xx xx xy xy q
H

P

S U S U S V S V dy









 
       

 


. (23) 

 
5. NUMERICAL EXAMPLE 
 
5.1 Dispersion curves 
 
 As numerical example, an aluminum plate with 
5mm thickness and 2600 kg/m3 mass density is 
selected. The elastic constants are: C11=113.97 GPa, 
C66=26.91 GPa, C12=60.15 GPa. 
 The wavenumbers obtained according to formula 

(14), using a “Parametric sweep” for the frequency 
range 2-1000 kHz with a step of 2 kHz are shown on 
Figure 2. 
 The program provides positive and negative 
wavenumbers as real solutions. Each complex 
wavenumber is determined as four numbers: k’+ik”, 
k’-ik”; -k’+ik”; -k’-ik”, in which k’ and k” are the 
real and imaginary parts of the wavenumber 
respectively. 

Only two complex roots correspond to 
attenuating (evanescent) waves propagating towards 
the positive or negative direction respectively. For 
this reason it is necessary to request a minimum of 
20 eigenvalues to the COMSOL solver, to obtain the 
results shown on Figure 2. The solver is sorting the 

A

S0 

A S1 S2 
A

Figure 3. Phase velocities of the 5 mm thick aluminum plate

A S0 A

S1 

S2 

S2 A

Figure 2.  Wavenumbers of the 5 mm thick aluminum plate
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eigenvalues in decreasing order of the modulus of 
complex values with negative real parts, followed by 
those with increasing modulus but with positive real 
part. For this reason, it is not convenient to follow 
the modes for wide frequency ranges, over cut-off 
frequencies when a mode changes its wavenumbers 
from complex or imaginary to real values. Beyond 
these frequencies, the modes propagate, theoretically 
without attenuation. For this reason, we preferred to 
plot in COMSOL only the positive real values as 
dots, which are sufficiently close to allow mode 
identification. This is done by multiplication of the 
obtained wavenumbers by two logical conditions: 
“real(lambda)>0” and “abs(imag(lambda)) <1”, in 
which lambda is the implicit name given by 
COMSOL to the eigenvalues. A mode tracking 
program is available, but it is written in Matlab, so 
data communication is required between the two 
software packages.  
 As the given example is simple, the mode 
identification is straightforward (Figure 2) being 
given in any specialized textbook. One important 
remark is the separation between the symmetrical 
modes S1 and S2 at about 0.58 MHz in this case. The 
S2 mode begins as a so called “backward” mode: the 
wavenumber decreases with increasing frequency 
and the group velocity (not shown here) and phase 
velocity (Figure 3) have opposite signs [9]. The 
missing part between the two branches of the S2 
mode is in fact purely imaginary and thus not 
shown. The dispersion curves can also be 
represented by the phase velocities 2c k   
(Figure 3). One remark is the presence of vertical 
asymptotes at the cut-off frequencies.  
 
5.2 Energy flux 
 
 According to formula (22), the energy flux 
function along the cross-section can be expressed in 
COMSOL as the following expression: 

 

 =pi freq

imag((C11 i u1+C12 vx) conj(u)

+C66 (ux+i v1) conj(v))

y 

    
  

  (24) 

Since 1 1;u ku v kv  , these shorter 

expressions were used in defining the strains. One 
can thus investigate the energy flux for any mode at 
any frequency. It is only required to extract the 
eigenvalue index for the selected mode at the chosen 
frequency, from the wavenumbers plot at the chosen 
frequency. Then plotting expression (24) on a new 
line graph window, for the frequency selected from a 
list and manual eigenvalue selection, provides 
graphs like the one on Figure 4.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Energy flux distribution along the plate cross-
section at 600 kHz: mode A0 (a), S0 (b), A1 (c), S1 (d), 
S2 (e) 

(a) 

(b) 

(c) 

(d) 

(e) 
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One remark concerns the magnitude of flux 
distribution range in W/m2 multiplied by an arbitrary 
unit (A.U.) of identical magnitude order for all 
modes. The A.U. comes from the COMSOL modal 
displacements. Usually the modal displacements are 
normalized by their Root Mean Square (RMS). As 
an option, the displacements can be normalized by 

their maximum value. In these conditions, the modal 
displacements are of the order of unity, in which 
implicitly the unit is 1 m. Consequently, the strains 
are large and then multiplied by the physical values 
of elasticity constants. In these conditions the A0 and 
S0 modes have energy fluxes of the order 1014, for 
A1 and S1 of the order 1015 and S2 of the order 1016. 
These results can be interpreted as required energy 
flux required to obtain almost the same 
displacements. Other authors are dividing the 
computed displacements by the associated averaged 
energy flux.  
 
 Thus, the displacements of the fundamental 
modes (A0 and S0) are considerably larger than those 
of higher order modes. The fundamental modes have 
maxima of flux distributions confined to the plate 
free surfaces at this frequency. The higher order 
modes exhibit subdomains with local negative 
values of the flux distribution, but the integral will 
prove to remain positive, indicating the energy flux 
propagating in the same sense as the wavenumber 
which is positive. The S2 mode has the highest 
values of Φ(y) in absolute value, but mostly 
negative. Indeed, this result confirms the 
“backward” mode for this mode at this specific 
frequency.   
 In order to have an overall image, the integral 
(22) can be computed by defining in the 
“Definitions” of “Component 1” of COMSOL, an 
integration operator along the cross-section line 
segment. Then in “Results/Derived values/Integral” 

the function to be integrated is (24) multiplied by the 
logical conditions mentioned in the previous 
paragraph. This product eliminates non-propagating 
modes. The results are shown on Figure 5. The 
fundamental modes have practically identical fluxes 
above 475 kHz, resembling to Rayleigh waves.  
 

 Right after the cut-offs, since the phase velocities 
are asymptotic, so are the fluxes. The “backward” 
branch of the S2 mode is also clearly visible with 
negative energy flux, relative to the positive phase 
velocity. It can be remarked that S1 mode between 
600-900 kHz requires a similar energy flux as S0 in 
the low frequency domain. 
 These results can be used in interpreting 
experimental results. Extending the algorithm to 
multilayered structures is very simple. It suffices to 
define a line segment for each layer and set the 
elastic or visco-elastic constants for each layer.  
 
4. CONCLUSIONS 

 The novelty of this paper is to explicitly present 
the SAFEM algorithm implemented in COMSOL 
providing the dispersion curves for guided waves of 
homogeneous isotropic plates, with particular 
emphasis on computing the energy flux as function 
of frequency. This last aspect can be used in 
interpreting experimental data. The algorithm can be 
easily extended for multilayered plates (composites), 
using a more general material model, if the layers 
are not isotropic. 
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Annex A. 
 The time average over a period for the functions 
involved in the energy flux, uses the following 
simple integrals: 

 

 

 

   

2

2

1 1
cos ;

2
1 1

sin ;
2

1
sin cos 0

t T

t

t T

t

t T

t

t dt
T

t dt
T

t t dt
T





 



















  (25) 

 
Annex B. 
 
 Three formulations of the functions involved in 
the energy flux formula (20). The first two terms in 
the integral can be expressed as: 

 
  
    

Im

Im

Im Im

r i i r
xx xx

r r i i r i i r
xx xx xx xx

r i r i
xx xx

r i r i
xx xx xx

S U S U

S U S U i S U S U

S iS U iU

S iS U iU S U

 

    
    
      

  (26) 

 Another form can be obtained, using the complex 
conjugate of the displacement field: 

  
 

  
    

Im

Im

Im Im

r i i r
xx xx

r r i i r i i r
xx xx xx xx

r i r i
xx xx

r i r i
xx xx xx

S U S U

S U S U i S U S U

S iS U iU

S iS U iU S U



      
     
        

  (27) 

A combined form can be obtained from the previous 
two formulas: 

 
1

Im
2

r i i r
xx xx xx xxS U S U S U S U      . (28) 
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