

Morphology of sodium bromate (NaBrO3) under the influence of purified sodium dithionate (Na2S2O6)

M. Schindler, Clément Brandel, G. Coquerel

▶ To cite this version:

M. Schindler, Clément Brandel, G. Coquerel. Morphology of sodium bromate (NaBrO3) under the influence of purified sodium dithionate (Na2S2O6). 43èmes JEEP, Mar 2017, Barcelone, Spain. hal-01938524

HAL Id: hal-01938524 https://normandie-univ.hal.science/hal-01938524

Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Morphology of sodium bromate (NaBrO₃) under the influence of purified sodium dithionate $(Na_2S_2O_6)$

Manon SCHINDLER*, Clément BRANDEL, Gérard COQUEREL

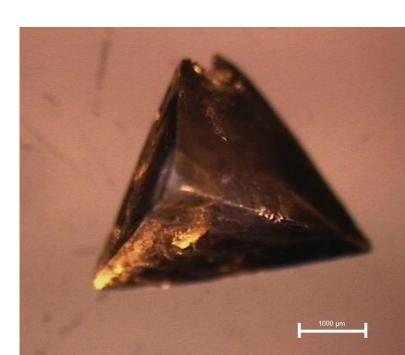
Normandie Univ, Laboratoire SMS-EA3233, Univ Rouen, F76821, Mont-Saint-Aignan, France.

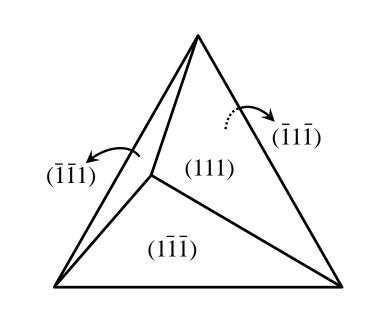
*manon.schindler@etu.univ-rouen.fr

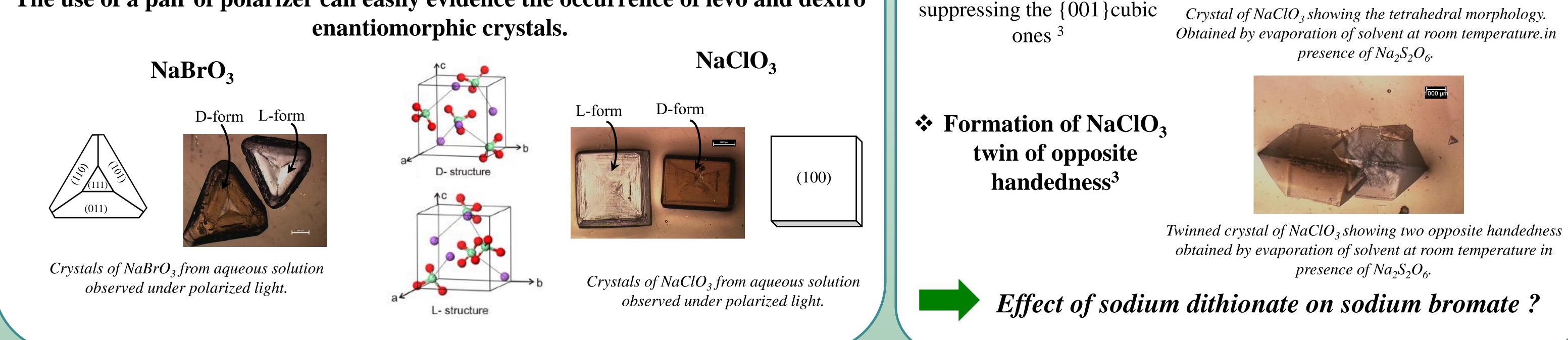
INTRODUCTION

NaClO₃ and NaBrO₃ present **isomorphous structures** (same space group $P2_13$ and same atomic positions in the unit cell).¹ Although the two substances are **achiral**, crystals of NaClO₃ and NaBrO₃ both show supramolecular chirality. However, the crystal habits of NaClO₃ and NaBrO₃ differ: NaClO₃ crystals exhibit large cubic {100} faces while NaBrO₃ crystals exhibit tetrahedral {111} faces.²

SUPRAMOLECULAR CHIRALITY


The use of a pair of polarizer can easily evidence the occurrence of levo and dextro


INFLUENCE OF Na₂S₂O₆ ON NaClO₃


Crystallization of NaClO₃ from aqueous solution in presence of $Na_2S_2O_6$ (molar ratio 1/1000)

***** Habit modification of NaClO₃ by addition of $Na_2S_2O_6$

Enhancing the {111} tetrahedral faces and

SYNTHESIS & CHARACTERIZATION OF Na₂S₂O₆

As the sodium dithionate is not easily available, Na₂S₂O₆ was synthesized. The synthesized product has been compared with the commercial batch.

Synthesis⁴

Reaction involved: Step I: $Na_2SO_3 + 2AgNO_3 \rightarrow Ag_2SO_3 + 2NaNO_3$

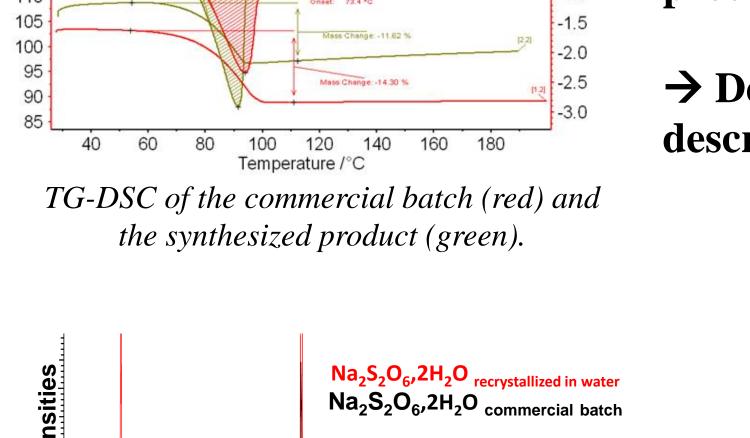
DSC W/g TG (%) xo up 115 -1.0

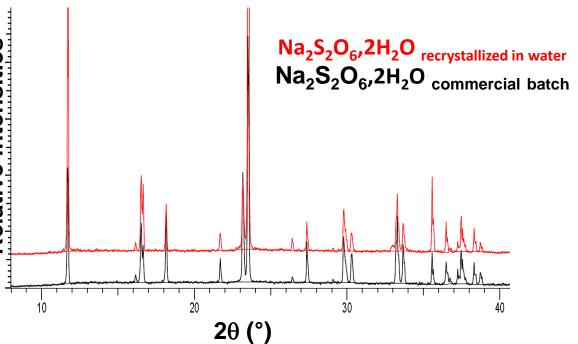
→ Commercial batch and synthesized product are sodium dithionate dihydrate.

Step II (oxidation-reduction reaction)*: $Ag_2SO_3 + Na_2SO_3 \rightarrow Na_2S_2O_6 + 2Ag_2SO_3 \rightarrow Na_2S_2O_6 \rightarrow Na_2S_$

Experiment: Reagents mixture is kept 30 min under stirring and boiling. White precipitate of Ag₂SO₃ disappears and Ag crystallizes. After filtration of silver, solution of dithionate is concentrated by evaporation of solvent. Crystallization of dihydrated dithionate is induced by addition of antisolvent (ethanol and acetone). Yield: 75%

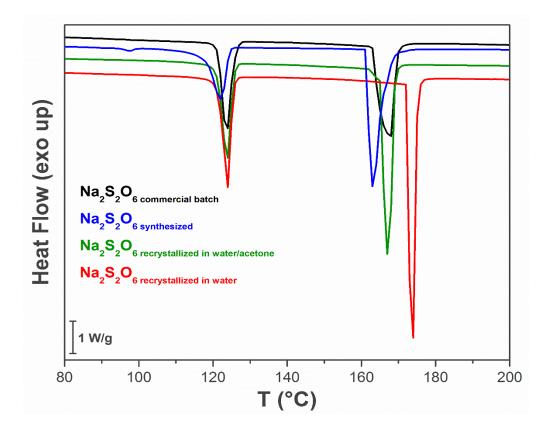
***Involved oxidation-reduction reaction:** Strongest oxidizing agent (Ag⁺) reacts with the weakest reducing agent (SO₃²⁻).


$$2Ag^{+} + 2e^{-} \rightarrow 2Ag \qquad E^{\circ} = 0,800 \text{ V}$$


$$(+I) \qquad (0) \qquad E^{\circ} = 0,800 \text{ V}$$

$$(+I) \qquad (+V) \qquad E^{\circ} = 0,514 \text{ V}$$

$$(+IV) \qquad (+V) \qquad (+V) \qquad E^{\circ} = 0,514 \text{ V}$$

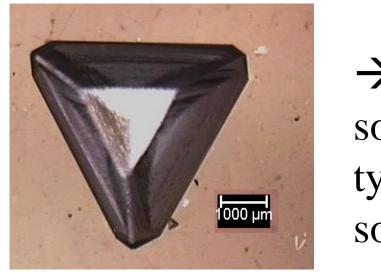

 $2Ag^{+} + SO_{3}^{2-} + 2Na^{+} + SO_{3}^{2-} \rightarrow 2Na^{+} + S_{2}O_{6}^{2-} + 2Ag$

XRPD patterns of commercial batch (in *black) and synthesized product (in red)*

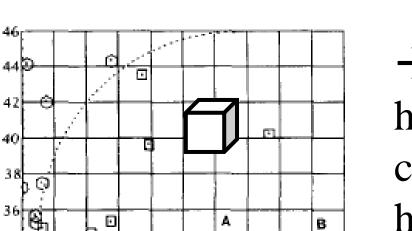
DSC analyses of different samples of $Na_2S_2O_6$. Comparison of different purification of synthesized product. (heating rate: 5K/min, closed crucibles)

 \rightarrow Recrystallization in water is more efficient to purify Na₂S₂O₆; the drawback is the low yield (47%).

Characterization of synthesized product

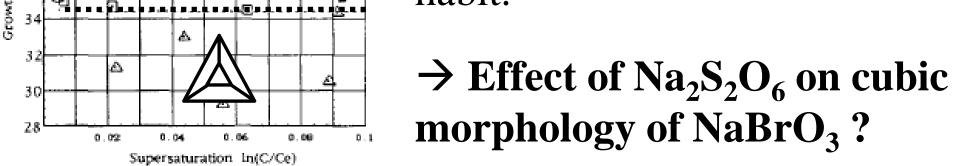

PROSPECTS

\Rightarrow Synthesis and characterization of Na₂S₂O₆


Improve yield of synthesis and recrystallization

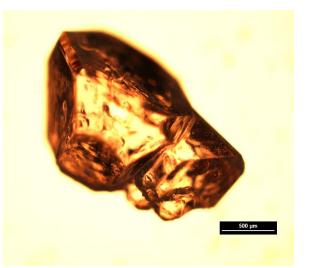
A NaBrO₃/Na₂S₂O₆ system

THE MORPHOLOGIES OF SODIUM BROMATE³



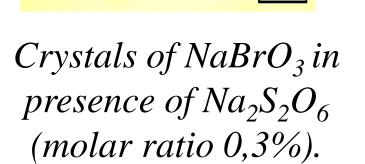
→ No significant effect of sodium dithionate on the typical trigonal form of sodium bromate

 \rightarrow At high temperature and high supersaturation, NaBrO₃ crystals can present a cubic habit.⁶


Crystal of NaBrO₃ obtained from aqueous solution in presence of $Na_2S_2O_6$ (molar ratio 1/1000) by evaporation of solvent, at room temperature



Morphodrome of NaBrO₃ as a function of the crystallization temperature and supersaturation⁶


In sealed vial, required amount of NaBrO₃ to achieve desired supersaturation is dissolved in water and then cooled to crystallization temperature. Without seeding, crystallization occurs in few hours.

> ' supersaturation: 1.05 T_{crvst} : 45°C /

Crystals of pure $NaBrO_3$.

 \rightarrow No expected cubic crystals at high temperature and high supersaturation. Crystallization is not well controlled.

- \rightarrow Na₂S₂O₆ seems to lead to twinned crystals.
- \rightarrow Effect on handedness ?

- Reconsider experimental conditions to well control of NaBrO₃ crystallization
- What will be the effect of $Na_2S_2O_6$ on expected cubic crystals of NaBrO₃? Will effects be the same (twins by inversion) than on

NaClO₃ cubic crystals ?

AKNOWLEDGMENTS

This work was funded by the Normandy region and European regional development fund (FEDER).

References:

[1] Kipping, F. S., Pope, W. J., J. Chem. Soc. Trans., 73, 606–617 (1898). [2] Surender, V., Arundhathi, N., Rao, K. K., Bull. Mater. Sci., 29 (5), 427–432 (2006). [3] Lan, Z.-P., Lai, X., Roberts, K., Klapper, H., Cryst. Growth Des. 14 (11), 6084–6092 (2014). [4] Schlessinger, G.G., Inorganic laboratory preparations, Chemical Publishing Company, 58-59 (1962).

[5] Larson, D. W.; VanCleave, A. B. Can. J. Chem. 1963, 41 (2), 219–223. [6] Holcomb, E. R.; Inoue, T.; Nishioka, K. J. Cryst. Growth 1996, 158 (3), 336–339.