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LOMC, CNRS and Université Le Havre Normandie, 76058 Le Havre, France

Abstract

When a polymer solution is sheared between concentric cylinders, with the
inner rotating and the outer fixed, the torque on the inner cylinder is modified
compared to a Newtonian fluid of the same viscosity revealing the di↵erent
flow patterns that emerge above the linear stability threshold for circular
Couette flow. Here, mixtures of relatively short and long linear polymers
in dilute and semi-dilute concentrations were considered. Their shear vis-
cosity and extensional relaxation time are quantified. The stability of the
flow is monitored through torque measurements and flow visualisations for
a constant rate of acceleration and deceleration of the inner cylinder in a
wide range of polymer concentrations. The torque exhibits an hysteretic
behaviour, typical of subcritical transition. For large concentrations, six
di↵erent numbers of steady solitary pairs of vortices, called diwhirls, were
observed depending on the deceleration rate and their torque contribution is
reported.

Keywords: Torque, Taylor-Couette flow, Rheology of polymer solutions

1. Introduction

The stability of complex fluids in flows with curved streamlines is often
considered in order to enhance mixing, for instance in serpentine microflows
[7] or flow reactors [39]. Hence, the Taylor-Couette flow, i.e., the flow between
concentric di↵erentially rotating cylinders, can be destabilised by centrifugal
forces when the rotation rate of the inner cylinder exceeds a critical value.
When filled with a viscoelastic polymer solution, rheological properties can
give rise to the inertio-elastic instabilities, or elastic instabilities [26], and
special patterns, such as localised steady vortex pairs of large wavelength,
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called tall Taylor cells [5, 20] or diwhirls [17, 18] can arise. The challenge
when dealing with polymer solutions is the increase of dimensionality of the
parameter space, including parameters depending on the rheological proper-
ties of the fluid.

After pioneering studies in the sixties [11, 26], there has been a grow-
ing interest in viscoelastic instabilities in the Taylor-Couette system [26, 17,
19, 9]. Theoretical studies are nowadays complemented by numerical cal-
culations using viscoelastic models, like the upper-convected-Maxwell fluid
model [36] or the Oldroyd-B model [25] and also finite extensible nonlinear
elastic (FENE) dumbbell models [24, 47, 29, 30]. Although these studies
were able to reproduce many flow properties observed in experiments, such
as diwhirls, the quantitative comparison in torque and wavelength selection
is not well understood.

From an experimental point of view, there is a large variety of poly-
mers and the present study considers high-molecular-weight linear polymer
poly(ethylene oxyde) (PEO). The properties of aqueous PEO solutions and
mixtures of PEO and poly(ethylene glycol) (PEG) are well documented
[3, 9, 23, 8, 48, 41, 6, 2, 22, 14] and stability diagrams of di↵erent regimes in
Taylor-Couette flow are available [9, 14, 27]. Recently, Dutcher and Muller
[13, 14] summarised most of previous experimental studies on viscoelastic
Taylor-Couette flow. They identified inertial and inertio-elastic transitions
depending on the viscoelasticity of the fluids (viscosity ratio and Elasticity
number, defined below). Another technique to detect the transition is to
monitor the torque that the fluid exerts on the inner cylinder as done by
Denn and Roisman [11], Yi and Kim [50] and Groisman and Steinberg [19].
Denn and Roisman [11] provided torque data for several concentrated poly-
mer solutions, including PEO of 4 ⇥ 106 g/mol. Yi and Kim [50] studied
dilute polyacrylamide solutions. Groisman and Steinberg [19] also studied
polyacrylamide in sugar syrup solutions and reported hysteretic behaviour
for a single fluid. The novelty of the present study lies on systematic measure-
ments of the torque in a wide range of polymer concentration. The advantage
of the monitoring of the flow through torque is the possibility of quantifying
the hysteresis in acceleration and deceleration protocols hence quantify the
subcritical behaviour.

Concentrated polyacrylamide viscoelastic solutions are known to exhibit
solitary vortex pairs solutions known as diwhirls [5, 20, 17] for Taylor-Couette
flow of radius ratio 0.8. The most detailed studies of these solutions are by
Groisman and Steinberg [17, 19] where the radial velocity was measured and
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they showed that diwhirls are really a pair of vortices having a common core
of fast fluid motion inwards. The inward radial component in the core flow is
relatively fast compared to the slow outflow, which spreads axially over many
gap widths. They also showed diwhirls can merge and di↵erent number of
diwhirls can be observed. These diwhirls solutions were reproduced in three-
dimensional time-dependant numerical simulations of viscoelastic FENE-P
models [47], where the drag was found to be two to three times the laminar
drag. Note that similar fluid systems (POE solutions) have been shown to
exhibit drag reduction, but for low concentrations and far from the transition
at relatively large velocities [38, 1].

Our objective was to carry out a study of the dependence of the flow
patterns and the torque on di↵erent rotation speeds during slow accelera-
tion/deceleration cycles. A brief description of the experimental setup and
the working fluids is given in section 2. This is followed, in section 3, of rhe-
ological results on the fluid. In section 4, the results that consist of flow dia-
grams and the associated torque measurements are presented and discussed.
The wavelength and the torque of the diwhirls are found to be controlled by
the deceleration rate of the inner cylinder.

2. Experimental methodology

2.1. Apparatus

A controlled stress rotational rheometer (Anton Paar MCR 501) was used
with di↵erent geometries. For measuring the dynamic shear viscosity, µ, a
bob-cup geometry was installed having the bob radius 13.330 ± 0.001 mm
together with a cup of radius 14.460±0.001 mm and a length of 40.006±0.001
mm. The Taylor-Couette geometry is also fitted on this rheometer and a
sketch of the experiment is presented in figure 1. The radii of the inner
and outer cylinders are ri = 50.00 ± 0.01 mm and ro = 55.00 ± 0.01 mm,
respectively. The gap between the cylinders is d = ro � ri = 5.00 ± 0.01
mm. The length of the inner cylinder is L = 150.0 ± 0.5 mm. Thereby, the
geometrical dimensionless parameters of the Taylor-Couette system are the
radius ratio ⌘ = ri/ro = 0.909 and the aspect ratio � = L/d = 30. The ends
of the gap and the outer cylinder are stationary walls, only the inner cylinder
is moving. The rheometer allows to measure the angular speed of the inner
cylinder, ⌦, and the torque, T , that it exerts on the fluid. The accuracy of
the torque is 0.5% of the measured value and is never smaller than 0.2 µN.m.
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Figure 1: Schematic diagram of the Taylor-Couette experiment (drawn to scale).

There is a glass jacket around the outer cylinder connected to a flow of water
in order to maintain the temperature at 22± 0.05�C.

The outer cylinder and the jacket are made of glass, thus flow visu-
alisation can be used. Snapshots (see figure 8) are obtained using a six
megapixel SLR digital camera together with illumination from the top. For
the spatio-temporal diagrams (see figures 5 and 6), flow visualisation images
are recorded at 15 Hz using a digital digital camera with over 1000 pixels
in the vertical direction. Then, a computer program combines vertical-pixel
lines from the mid-gap radius at di↵erent times. Further details of the device
and the measurement systems can be found in [32, 33].

The inertia e↵ects are measured by the Reynolds number, Re = �̇⌧ ,
where �̇ = ⌦ri/d is the applied shear rate and ⌧ = d2/⌫ is the viscous
di↵usion time across the gap, where ⌫ is the kinematic viscosity of the working
fluid. In addition, the Taylor number, Ta, is sometimes used as a measure
of the centrifugal forces and the conversion of Re is the following, Ta =
Re

p
(1� ⌘)/⌘ [9]. The torque exerted on the inner cylinder can be made

dimensionless as G = T/(2⇡⇢⌫2L) where ⇢ is the density of the working fluid.
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The ratio

N! =
G

Glam

, where Glam =
2⌘

(1 + ⌘)(1� ⌘)2
Re, (1)

represents the transfer of the momentum in the radial direction and is some-
times called pseudo-Nusselt number in analogy with the thermal convection.
Glam is the torque of the laminar flow for an infinitely long cylinder [49]. For
Newtonian solutions, it is related to the dissipation rate [45]. The product
of the applied shear rate, �̇, and �e, the extensional relaxation time, is the
Weissenberg number, Wi. Finally, the elasticity number is El = �e/⌧ .

2.2. Working fluids and experimental protocol

The working fluids are mixtures of water, PEG, PEO and isopropyl
alcohol (IPA). They are transparent, non-ionic and non-toxic. The PEG
is a polymer with relatively short linear chains whose molar mass is of
20 000 g/mol. The PEO polymer, also from Sigma Aldrich, has a molar
mass Mw = 8 ⇥ 106 g/mol. These polymers have the simplest structure:
H� [O� CH2 � CH2]� [O� CH2 � CH2]� [...]�OH among water-soluble
polymers, which allows a wide range of concentrations and a large number
of macromolecular conformations.

Considering the mixture of water with 7 wt.% PEG as the solvent, it is
possible to estimate an overlap concentration, c⇤, of the POE polymer using
the relationship proposed by Graessley [15]: c⇤ = 0.77/ [⌘], where [⌘] is the
intrinsic viscosity. Bailey [3] reported previously measured intrinsic viscosity
for POE: [⌘] = 0.072 M0.65

w . Although this correlation was obtained for
slightly di↵erent conditions, it leads to an estimate of c⇤ ' 350 ppm, which
is consistent with previous results [42, 23, 2]. Five PEO concentrations have
been chosen that range from dilute and semi-dilute regimes. The density of
the mixture is 1009 ± 1 kg/m3 and, in due course, 2 wt.% of Kalliroscope
was added for visualization purposes. All fluids were prepared in batches of
1 kg and the protocol is as follows. In one vessel, PEG flakes were dropped
in water and the mixture was stirred gently until complete dissolution. In
another vessel, PEO powder was mixed in 5 g of IPA and poured into water
without any kind of stirring. Both vessels were stored at 5�C during 72
hours to allow su�cient dissolution. Then, the solutions were mixed and
gently stirred. After that, the fluid remained at room temperature, 22�C,
during several hours before the experimental run.
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Without pre-shear, the critical speed for flow instability is random. The
pre-shear consists in applying a constant shear rate slightly larger than the
critical shear for instabilities for su�ciently long time until the torque reaches
a constant value. It is assumed the pre-shear brings the solution to a steady
state that allows reproducible results for the transition experiments. The
pre-sheared solutions were only used once.

The rotation speed of the inner cylinder was varied linearly with a con-
stant acceleration and deceleration �⌦/�t = ±5.2 ⇥ 10�3 rad/s2. This
ramping rate was selected so the dimensionless acceleration agrees to the
criterion of Dutcher and Muller [12]: �Re/�⌧ . 0.60 for the solvent. More-
over, as the polymer concentration increases, the viscosity of the solution
also increases. Hence the viscous di↵usion time decreases and viscous e↵ects
act faster. Consequently, the experiments conducted here can be considered
in quasi-static conditions with respect to the viscous e↵ects. Newtonian flu-
ids in quasi-static acceleration/deceleration conditions are know to have zero
hysteresis [12].

2.3. Degradation

Early studies [34] have shown that PEO solutions are susceptible to degra-
dation due to mechanical, thermal, oxidative or ageing processes. Recently,
Dutcher and Muller [14] showed that the relaxation time drops significantly
over ten days for aqueous solutions of PEG and PEO whereas it remains
almost constant for aqueous solutions of PEO in 47% glycerol. The present
study circumvents this drawback by always making use of the fluids the
third day after preparation. In order to test the maximum shear rate be-
fore breakdown of the polymer properties, a solution was sheared up to the
highest shear rate reachable in our Taylor-Couette system (⇡ 620 1/s) in an
acceleration-deceleration cycle while monitoring the torque. Figure 2 reports
the torque as a function of shear rate for the 1000 ppm solution and for the
solvent. First, the transition to inertio-elastic turbulence is identified by an
abrupt change in slope at low shear rate (⇡ 50 1/s) and an increase in the am-
plitude of torque fluctuations. At �̇ ' 400 1/s the level of torque fluctuations
decreases significantly and the vortices resemble turbulent Taylor vortices as
in a Newtonian solution. The following steps of the curve correspond to a
change in the number of vortices that reduces the torque further [32]. Dur-
ing the deceleration, the torque significantly reduces down to the level of the
solution without PEO. This, together with the fact that the torque fluctu-
ations are reduced, suggests that the fluid has lost some of its viscoelastic
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Figure 2: Torque as a function of shear rate for 0 and 1000 ppm of PEO dissolved in 7%
PEG aqueous solution during an acceleration and deceleration cycle in the Taylor-Couette
geometry. These experiments were done without pre-shear. The up- and down-arrows
indicate the acceleration and deceleration, respectively.
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properties. The experiments reported in the following were limited to shear
rate below 85 s�1. Therefore, it is assumed that the degradation is negligible
for �̇  85 s�1.

3. Rheology

3.1. Shear rheology

The polymer solutions were characterised using rotational and extensional
rheometry. The values of the shear viscosity, µ, as a function of the shear
rate, �̇, are presented in figure 3. As the concentration of PEO increases, the
shear viscosity increases, but remains constant with respect to the shear rate.
Only in the case of the solution with 1000 ppm of PEO, the shear thinning
is significant and the shear viscosity can be fitted using a Carreau model:

µ = µ1 + (µ0 � µ1)
⇥
1 + (�C �̇)

2
⇤(n�1)/2

, (2)

where µ0 is the viscosity when �̇ tends to zero, µ1 is the viscosity when
�̇ tends to infinity, �C is the Carreau relaxation time and n is the shear-
thinning index. Here µ0 = 33.5 mPa.s, µ1 = 18.1 mPa.s, n = 0.7 and
�C = 1.62 s. The curve µ(�̇) that fits the points is represented in figure 3 as
a (red) continuous line, and is used to assess the viscosity in Re and N! for
1000 ppm.

3.2. Extensional rheology

The extensional relaxation time, �e, was measured using a capillary breakup
extensional rheometer (CaBER) and recording the capillary thinning of a
fluid filament joining two circular plates [46, 21]. In figure 4(a), the evolution
of the fluid filament diameter, D(t), is monitored using a laser micrometer
at the mid-plane between the end plates, when the upper one is rapidly dis-
placed upwards. For Newtonian fluids, the diameter of the sample decreases
linearly and no filament is observed. For the viscoelastic samples at slightly
later times, the diameter decreases slower with increasing concentrations of
PEO. To extract the extensional relaxation time, �e, the upper convected
Maxwell constitutive model is used [46, 40, 21]:

D(t)

D0
/ exp

✓
� t

3�e

◆
. (3)
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Figure 3: Shear viscosity, µ, as a function of the shear rate, �̇, for di↵erent concentrations
of PEO in 7% PEG aqueous solution in the bob-cup geometry. The red continuous line
corresponds to a fit by the Carreau model.
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Figure 4: (a) Time evolution of the dimensionless diameter, D(t)/D0, for di↵erent concen-
trations of PEO in 7% PEG aqueous solution. The black stars correspond to the solvent.
The continuous lines are fits of the thinning region in the elasto-capillary regime using (3)
and dashed lines extrapolations of these fits. (b) Variation of relaxation time, �e, with
the concentration of PEO. The error bars represent the standard deviation over three
measurements and are smaller than the symbols. The black straight line is a power law
fit with an exponent of 0.61.

The figure 4(b) shows the extensional relaxation time versus POE concen-
tration. In theory [40], the relaxation time should remain constant in dilute
regime, yet �e is found to increase monotonously with the concentration.
The points have been fitted by an power-law function as �e / c�PEO, where
the exponent � = 0.61, which is close to 0.71±0.03 found by Stelter et al.
[46] for aqueous solutions of PEO of molar mass 4⇥106 g/mol.

Although the Taylor-Couette flow is shear dominated, the relaxation time
used here is �e as it is available for the whole range of concentrations. Note
that �e is shorter than the relaxation times from shear oscillatory tests [2, 6]
and the Carreau parameter �C . However, �e is longer than the relaxation
time from normal force analysis [10].

The flow of polymer solutions is characterised by a stress tensor that can
be expanded into two parts: the stress tensor of the solvent and the polymeric
tensor. It follows that the total viscosity, µ, can be interpreted as the sum
of the solvent viscosity, µs, and the polymeric viscosity, µp, i.e., µ = µs+µp.
The elasticity of the fluid only has e↵ects in the polymeric component of
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Table 1: Properties of the di↵erent PEO solutions dissolved in an aqueous solvent con-
taining 7% PEG whose shear viscosity, µs, is 7.4 mPa.s. For the solution with 1000 ppm,
the minimum and maximum values of S and El correspond to the shear rate dependence
of the viscosity.

cPEO µ S �e �C El �̇c Rec Wic AN!(Re) AN!(Wi)

(ppm) (mPa.s) (ms) (ms) (1/s)
76 8.07 0.09 171 - 0.06 42.5 133 7.5 1.0 0.05
100 8.12 0.1 201 - 0.07 42 130 8.5 - -
150 8.95 0.21 254 - 0.09 45 127 11.5 - -
300 10.97 0.48 395 - 0.17 49 111 19 12.4 2.12
1000 33.5-20.06 1.71-3.53 823 1620 0.71-1.09 63 73 53 5.3 3.62

the stress, whereas the inertia has e↵ects on both components. To quantify
the importance of the polymeric stress to the total stress, the viscosity ratio
is defined as S = µp/µs = (µ � µs)/µs. Table 1 reports the values for the
total shear viscosity, the viscosity ratio, the extensional relaxation time and
the Elasticity number. The parameters S and El can be used to determine
the boundary between the inertia-dominated and the elasticity-dominated
regimes.

4. Results and discussion

The results are presented in four parts. The first one is dedicated to the
visualisations. The second one deals with torque measurements. The third
one discusses the hysteresis phenomena. Finally, the fourth part is devoted
to the diwhirls.

4.1. Visualization

Figure 5(a) presents the spatio-temporal diagram for a solution of 76
ppm of PEO with the inner cylinder accelerating. For low rotation speeds,
the circular (Couette) flow and the Ekman vortices at the end gap of the
cylinders develop. Then, as Re increases, these vortices evolve into a well-
defined steady state of axisymmetric steady toroidal (Taylor) vortices that
rapidly join at the centre of the cylinder. The critical Re is at 133 (�̇c = 42.5
s�1), indicating that the fluid is destabilised compared to the Newtonian case
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Figure 5: Spatio-temporal diagrams at the mid-plane of the gap over the whole height of
the flow for 76 ppm of PEO dissolved in 7% PEG aqueous solution. (a) and (b) spatio-
temporal diagrams of the flows solution during acceleration and deceleration, respectively.

for which the transition happens at Re = 135. For the cases of 100 and 150
ppm the transitions occur at even lower Re, see Rec in table 1. According
to the non-monotonous behaviour of the stability boundaries found earlier
[9], this 76 ppm solution is not far from the intertio-elastic regime, as it
destabilises the flow. Between 134 < Re < 137 (43 < �̇ < 44 s�1) the Taylor
vortices present weak oscillations that appear at the ends of the cylinder and
propagate to the center, giving rise to disordered oscillating flow or noisy non-
axisymmetric standing waves, also called ribons, between 137 < Re < 143
(44 < �̇ < 45.5 1/s) [16, 17, 4, 9]. Beyond Re = 143 (�̇ = 45.5 1/s)
the space-time diagram shows a random pattern in which irregular lines
emerge and disappear in short ranges of Re. This pattern is present for
all the concentrations of PEO at high shear rates and is a characteristic of
elastic instabilities [37]. A snapshot of this flow is shown in figure 8(b) as
a pattern characterised by chaotically oscillating thin and entwined vortices.
This pattern has also been named as “elastic turbulence” [16] or “elastically
influenced turbulence” [13].

The deceleration ramp for the 76 ppm solution is depicted in figure 5(b).
Here, the disordered oscillating flow is also observed for 142 > Re > 136
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Figure 6: Spatio-temporal diagrams at the mid-plane of the gap over the whole height
of the flow for 1000 ppm of PEO dissolved in 7% PEG aqueous solution. (a) and (b)
spatio-temporal diagram of the flow during acceleration and deceleration, respectively. In
(b) the black horizontal lines (56 > �̇ > 42 1/s or 64 > Re > 48) correspond to diwhirls.

(45.5 > �̇ > 43.5 s�1). However, it is not replaced by Taylor vortices but
by symmetric standing waves [16, 17, 4, 9]. For 100 and 150 ppm, Taylor
vortices also also occur, but their range of existence reduces and the inertio-
elastic instabilities occur earlier. The corresponding diagrams are available
in [33].

Figure 6(a) presents the spatio-temporal diagram of the flow for a so-
lution of 1000 ppm of PEO with the inner cylinder accelerating. A rapid
transition from the laminar state to inertio-elastic turbulence is observed
and no Taylor vortices are seen even close to the gap ends. Looking closely,
short oblique standing waves are seen ahead of the inertio-elastic turbulence.
These standing waves observed as diagonal lines in a narrow range around the
transition are typical modes of high concentrations [9]. Figure 6(b) presents
the spatio-temporal diagram of the flow with the inner cylinder decelerating.
At Re > 81 (�̇ > 70 s�1) the inertio-elastic turbulent pattern is observed.
Then, during deceleration, dark irregular and horizontal lines emerge giving
rise to the flame pattern [4]. At Re = 64 (�̇ = 56 s�1) the branches of the
flame pattern end up in three horizontal stationary lines, which correspond to
three solitary pairs of vortices or diwhirls [17]. The average distance between
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the centres of the diwhirls is 7.5 times the gap. At Re = 47 (�̇ = 42 s�1),
the diwhirls disappear from bottom to top. A snapshot of a three diwhirls
pattern is shown in figure 8(e). The presence of diwhirls indicates that the
1000 ppm fluid is clearly in the elastic regime as deduced by the analysis of
S ('1.71-3.53) and El ('0.71-1.09).

4.2. Torque

The torque data is shown in figure 7 as N! as a function of Re and
Wi. In the laminar regime, N! is approximately constant and close to one.
When Re or Wi is small, N! is slightly shifted up due to the end e↵ects
that introduce an additional torque [32]. The end e↵ects seem to be reduced
for the 1000 ppm solution, but it is not clear how the viscoelasticity a↵ects
them. At higher Re or Wi, there is a slight increase of the slope of N! before
the abrupt increase of torque corresponding to the onset of inertio-elastic
instabilities. This slight increase of torque was also observed in the study
by Yi and Kim (1997) [50] and was attributed to the polymer contribution.
As the shear rate exceeds a critical value, �̇c, there is a rapid increase of
the torque. Hence, as El increases, Rec decreases, as observed by previous
authors for inertio-elastic flows [16, 9]. This e↵ect of El is also clear from
figure 7(b) where the critical Wi increases with El. Table 1 summarises
the critical values of �̇c, Rec and Wic. This torque or drag enhancement is
due to the elastic properties of the fluid [50, 29]. It should be noted that
N! fluctuates significantly for large value of Re or Wi and El as observed
by Groisman and Steinberg (2004) [19]. The amplitude of the fluctuations
increases with the polymer concentration.

4.3. Hysteresis

The up- and down-arrows in figure 7 indicate the acceleration and decel-
eration protocol, respectively. The paths followed by N! present hysteresis
loops as observed experimentally before by Groisman and Steinberg (2004)
[19]. This hysteretic region is a signature of a subcritical transition between
the laminar state (N! ' 1) and the regime where N! fluctuates. The flow
with the smallest polymer concentration exerts almost the same torque trans-
fer when accelerating and decelerating, although the flow patterns are di↵er-
ent: horizontal (Taylor-like) vortices upwards (figure 5(a)) and intertwined
oblique standing waves downwards (figure 5(b)).

The dimensionless areas enclosed between the acceleration and deceler-
ation curves in figure 7(a) and (b) are defined as AN!(Re) and AN!(Wi), re-
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Figure 7: (a) N! as a function of the Re and (b) N! as a function of the Wi for solutions
with di↵erent El or concentrations of PEO dissolved in 7% PEG aqueous solution. The
up- and down-arrows indicate the acceleration and deceleration, respectively. Down-curves
for El = 0.07 and 0.09 are omitted.

spectively. The values of AN!(Re) and AN!(Wi) are given in table 1 for the 76,
300 and 1000 ppm (data for 100 and 150 ppm are missing). These indicate
that the amount of hysteresis seem to increase with the elasticity, although
non-monotonously. Indeed, the area for low polymer concentration (76 ppm
or El = 0.06) is presenting a low area value (small hysteresis) and for the
highest concentration case (1000 ppm or El � 0.71), AN!(Re) is not max-
imum. Such hysteresis loop has also been found in numerical simulations
by Thomas et al. (2009) [47]. Both in the present experiments and in the
simulations, the flame pattern emerges when decelerating or reducing Wi or
Re from 72 to 65 (see figure 6(b) for 62 > �̇ > 56 s�1). The associated torque
is shown in figure 7(b) for 53 > Wi > 45 and appears as “staircases”. In the
experiments, an anticlockwise hysteresis loop is observed, where the upper
branch corresponds to the flame pattern. However, in the simulations, the
initial state is oscillatory strips, which remain stable when increasing Wi,
and have larger torque than the flame pattern. Hence the hysteresis loop
predicted from the simulations is in the clockwise direction, contrary to the
experiments.
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Figure 8: Snapshots over the whole height of the flow. (a) Newtonian fluid containing 30
Taylor vortices. The others are for mixtures containing 1000 ppm of PEO dissolved in
7% PEG aqueous solution and present: (b) inertio-elastically turbulent flow, (c-h) flows
containing 1 to 6 diwhirls, from left to right, respectively.

4.4. Diwhirls

During deceleration, coming back from the inertio-elastic turbulent regime,
the latest stages of the hysteretic region gives rise to steady vortices called
diwhirls [17]. Here, these flow solutions was observed for the largest con-
centration, 1000 ppm, coming back from an inertio-elastic turbulent flow at
Re ⇡ 50 or Wi ⇡ 62. These steady vortices have been found in the form of 1
to 6 pairs and are depicted in figure 8(c-h). These diwhirls can be compared
with the 30 Taylor vortices flow state and the inertio-elastic turbulent flow in
figures 8(a) and (b), respectively. Clearly, they have longer wavelength than
Taylor vortices. Note that the diwhirls are not equally distributed along the
vertical axis, which suggest a random process for the formation mechanism
of these vortices. In practice, the numbers of diwhirls is controlled by the
deceleration rate of the inner cylinder as quantified in figure 9(a). Using the
constant deceleration of �⌦/�t = 0.1⇥��̇/�t = �5.2⇥ 10�3 rad/s2, three
diwhirls are observed (see figure 8(d) and figure 8(e)). When using faster
deceleration, the number of diwhirls is larger. An alternative procedure to
obtain 1 or 2 diwhirls is to decrease the speed of the inner cylinder until the
diwhirls start to disappear. Once the desired number of diwhirls is reached,
the inner cylinder is accelerated to a speed that can sustain it. Furthermore,
the existence of diwhirls leads to an additional torque with respect to the lam-
inar torque. It has been measured at a constant speed, Re = 51 or Wi = 37,
for several minutes and is represented in figure 9(b) as the additional torque
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Figure 9: (a) Dependency of the numbers of diwhirls, nd, on the deceleration of the inner
cylinder, ���̇/�t. (b) Additional dimensionless torque over the laminar per numbers of
diwhirls, nd, of flows containing six di↵erent numbers of diwhirls at Re = 51 or Wi = 37.
The black line represents a fit described in the text.

compared to the laminar, T̄ � Tlam, per number of diwhirls, nd, divided by
the laminar torque. Here, the laminar torque, Tlam, is the torque of the flow
without any diwhirl. The increase of this relationship with nd indicates that
the additional torque that each individual diwhirls needs to be sustained de-
pends on the numbers of diwhirls. This could be also explained relating this
increase of torque to the distance between diwhirls, so the closer they are
the more torque they need. The variation of the torque with the number of
diwhirls is given by the following fit: (T̄ /Tlam � 1)/nd = A + B(nd � 1)↵,
where A represents the dimensionless torque over the laminar per number of
diwhirls for a flow containing one diwhirl. The term B is related to the in-
fluence of the numbers of diwhirls on the additional torque over the laminar.
The exponent ↵ indicates how strong is the dependency of the torque on the
numbers of diwhirls. Here ↵ ' 3/5, A = 1.37 ⇥ 10�3 and B = 8.4 ⇥ 10�3.
Although deceleration rate is smaller than any elastic relaxation time, the
fluid selects the number of diwhirls accordingly. This suggests that a range
of relaxation times controlling the behaviour of the fluid [43] and support the
ideas of relaxation times dependent on shear rate as measured in previous
studies [7].
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5. Conclusions

The e↵ect of long-chain polymer addition over a wide range of concen-
trations on the torque in Taylor-Couette flow has been investigated. The
shear and the extensional properties of the solutions have been quantified
when degradation is assumed negligible. Flow visualisations and torque
measurements have been performed simultaneously during slow acceleration-
deceleration cycles.

At low concentration (76 ppm), the transition involves a sequence of
flow pattern: azimuthal flow, Taylor vortices, disordered oscillating flow and
inertio-elastic turbulence in the accelerating phase. In the decelerating phase,
inertio-elastic turbulence, disordered oscillating flow, standing waves and az-
imuthal flow are observed. For large concentration (1000 ppm), the transition
involve azimuthal flow, standing waves and inertio-elastic turbulence in the
accelerating phase. During the deceleration, inerto-elastic turbulence, flame
pattern, diwhirls and azimuthal flow were observed. These transitions, that
were reported before [4, 19, 14], are again observed and the associated torque
is given. The hysteresis of the flow patterns and the torque behaviour is quan-
tified and may be related to subcritical flow instabilities [35] or conforma-
tional hysteresis [44], which corresponds to stretched polymer configurations.
In table 1, the properties of the fluids, the critical values of the shear rate,
the Reynolds number and Weissenberg number, and the hysteresis coe�cient
defined by the area of the hysteretic region of the torque behaviour are re-
ported. This hysteresis seems to increase with the elasticity number. This
e↵ect could be used in dampers for passive control.

During the deceleration, di↵erent numbers of solitary vortex pairs or di-
whirls are observed depending on the deceleration rate of the inner cylinder.
The number of diwhirls can be tuned by the deceleration rate, yet they seem
to form unarranged as their separation length is random. The torque they
exert has been measured and is dependent on the number of diwhirls.
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