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Emmanuel Germain
Appendix B :

Approximate invariant means for boundary actions of hyperbolic
groups

We present here a different and, we believe, easier way of proving the following
theorem of Adams:

Let I' be a discrete word hyperbolic group and denote dI' its Gromov bound-
ary, then I' acts on JI" in an amenable way (as in the definition of this article)

As a corrolary, we get that the reduced C*-algebra of T" is exact and also the
result of Kuhn and Steger of the weak containment of the boundary action in the
regular representation.

We prove this theorem a la Day, showing that there exists a sequence of
positive compactly supported borel functions f,, on I' x 9" such that

Va € or /F | fu(g, 2)|dg > 0

and
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where (h.f)(g,z) = f(h™'g,h™'.2) is the action induced by the diagonal action
of 'in I' x 9.

The construction of the f,’s is simple: we just average characteristic functions
of geodesic rays in the x € JI' direction. The amenability condition is then a
corollary of a geometric lemma that states that all rays are at some point in a
d-neighborhood of each other, regardless of the starting point, provided they all

( fr|fn(97$)—h-fn(97$)|dg):0 VheTl

point in the same direction.

1 Some background on hyperbolic groups

Let I' be a finitely generated discrete group. Associated to the set of generators,
we have a left invariant word length 7, therefore a distance d may be defined by
d(a,b) = £(a~'b) and the left translation action of the group on itself is isometric.

For the distance, the group is proper (all ball of radius R have the same finite
number of elements) and geodesic.

To fix notations a geodesic g between two points a and b is an isometry
g:10,d(a,b)] = I with ¢(0) = a and g(d(a,b)) = b. We will call [[a, b]] the set of
all geodesics between a and b (it may not be a singleton) and a geodesic ray an
isometry from N7 to I

There exist several different, but equivalent, ways of expressing the property
of hyperbolicity; in a very geometric approach, we could say that I' is hyperbolic
for some constant ¢ if any geodesic triangle is d-thin, meaning that any geodesic
edge is in a d-neighborhood of the union of the other two.

But to do computations, we need a more practical definition, we shall take
the following:



Definition 1.1 We say that I' is d-word hyperbolic if for any four group ele-
ments x,y,z,t we have

d(z,y) +d(z,t) < max(d(z,z)+ d(y,t),d(z,t) + d(y,z)) + 26

There are several way of describing the boundary (See [3] Chapter 2). Either

we can consider the set of all sequences of points in I' such that

ngr_r}oo d(xp,a) + d(xm,a) —d(x,, x,) = o0

where @ is a base point together with the equivalence relation (x,) = (y,) iff
limy o0 d(2n,a) + d(yn,a) — d(x,,yn) = +oo. It describes a compact space 9l
whose definition is independent of the choice of a. Or we can consider the set
of all geodesic rays starting from some point a, and endows it with the uniform
topology on compact sets. We prescribe an equivalence relation by identifying
two rays ry and ry if n — d(r1(n),r2(n)) is a bounded map on N. What we get is
a compact and metrizable space dI',. Because the hyperbolic space I' is proper,
the map from rays r to sequences (r(n)),>o is a homeomorphism and identifies
all the spaces dI',.

For any group element g, the left translation by ¢ induces a homemorphism
between 0I'. and JI';, and through the above identification an action of I' on JI'
that we will denote by x — ¢.z for = in dT.

Given (a,z) € I' x 9T, [[a, z[[ will denote the set of all geodesics from a to
z, i.e. the isometries from N* to I' starting in @ and such that it defines the
boundary point z. By the above definition of the action, it is clear that given a
geodesic ray r in [[a, z[[ and a group element g, the left translated geodesic ray
g.r is a geodesic in [[ga, g.z[.

Hyperbolicity of the group has some consequences for the set I' U 9I'. For
example we get that any geodesic triangle (with the extension explained above)
is 244-thin for the metric of the group (excluding the end points) or that any two
geodesics between the same two points are in a 8-neighborhood of each other.

2 A geometric property

Lemma 2.1 Let K be an integer, there exists an 0 < M < K + 489 such that
for all points a,b in I and x € I'UIT" with d(a,b) < K we have that for all points
p in a geodesic from a to x and q in a geodesic from b to x with d(a,p) = d(b,q)
the relation d(p,q) < M.

Since all triangles are 244-thin and due to the symmetry in p and ¢, we have
that either p is at distance at most 244 from a point gy on a geodesic from b to
x containing ¢ or that both p and ¢ are at distance 246 from a geodesic between



a and b. In the latter case we obviously have d(p,¢) < 485 + d(a,b), hence the
result. Whereas in the former case, we have

d(b, o) — d(a,p)| < K +245

using the triangle inequality. Hence d(q,q0) < K + 246, using d(a,p) = d(b, q).
Thus d(p,q) < K + 486.

Lemma 2.2 Let K, L be integers, with L greater than 3K + 6, a,b, e, f be four
points in I' such that d(a,b) < K, d(e, f) < K, assume furthermore that d(a,e) >
3L and d(b, f) > 3L then for all geodesic gy between a and e and all geodesic g
between b and f, any point p of the segment g([L,2L]) is at a distance at most

40 of a point q in go([L — K,2L + K1) such that d(b,p) = d(b, q).

Having chosen our 6 points a, b, €, f, p, g according to the assumptions, we will
repeatedly use the hyperbolic inequality.

Let’s prove first that d(p,q) < 26 + 4K.

Considering the 4 points b, p, g, f, we have

d(b, ) + d(p,q) < 26 + max(d(b, p) + d(q, f),d(b, q) + d(p, f))

hence d(p,q) < 26 + d(q, f) — d(p, [))

Obviously d(q, f) < K + d(q, e) and d(a,q) < d(b,q) + K , now d(p, f) =
d(b, f) — d(b,p) = d(b, f) — d(b,q), so d(p, f) > d(b, f) — d(a,q) — K. Therefore
d(q, f)—d(p, f) < 2K+(d(a,e)—d(b, f)). But we also have |d(a, e)—d(b, )| < 2K,
and as a consequence d(p, q) < 26 + 4K.

So far we know that d(p, ¢) < 26 + max(d(b, q) — d(b,p),d(q, f) —d(p, f)), but
using the symetry between the letters, we also have d(p, q) < 26 + max(d(a,p) —
d(a, q),d(p, €) — d(q,¢)).

Let’s consider now the points a, p, b, ¢:
d(a,p) + d(b, p) < 26 + max(d(a, q) + d(b, p), d(a,b) + d(p, q)).

The first term of the max is greater than 2L — K and the second is at most
20 + 5K. Since L > § + 3K, the first term is greater than the second, so

d(a,p) + d(b,q) < 26 + d(a,q) + d(b,p)

or d(a,p) —d(a,q) < 20.
Writing the same inequality for the points p. e, g, f, and for the same reason

we get d(p,e) —d(q,e) <26 +d(p, f) —d(q, f)).
So d(p,q) < 26 + max(26,26 + d(p, f) — d(q, f)) Hence either d(p, q) < 26 by
our first inequality or d(p, ¢) < 40 depending on the sign of d(p, f) — d(q, f).



Lemma 2.3 Let K be an integer and assume L > 3K + 1500 then for any two
points a,b in I' with d(a,b) < K and x in I and for all geodesic gy from a to
x and g from b to x, any point p of g([L,2L]) is at distance at most 46 from a
point q in go([L — K,2L + K]J).

It follows easily from the previous two lemmas. By hypothesis L is greater
than 6 + 3sup(K, M) since we can take M = K +48¢ by lemma 2.1. Then apply
lemma 2.2 with e = go(3L) and f = ¢g(3L).

3 An averaging construction

Let a € I' and = € JI', and consider for any positive integer k I(a,z,k) = {g €
[[a1, z[[, d(a1,a) < k} the set of all geodesics pointing to the direction = and
starting not to far from the point a. Choosing a length [ > 0, we define

F(a,z,k,l) = characteristic function of [ J  g¢([l,20])
g€l(a,xz,k)

to be large portions of these geodesics, far enough from our reference point.
Finally we set

H(a,z,l) = % > Fla,x,k,l)
k<1

to be our ad hoc average.

For F' a compactly supported function on I', we will note ||F|| its norm in

().
Proposition 3.1 We have the following

L. ||H(a,z,l)|| > Vael,Yeedl

2. (x,t) = H(a,z,l)(t) is upper continuous, a and | fized

3. sup ||H(ga,z,l)— H(a,z,l)|| =o(l) for g,a € I fized.
zedl

The first property is obvious for F(a,z,k,[) is always greater than the char-
acteristic function of a geodesic of length [, therefore ||H (a,z,l)|| > [.
And the third follows from the lemma:

Lemma 3.2 For all positive integer ¢ and a € I', we have

sup (Z ||F(a,x,k‘—|—c,l)—F(a,x,k‘,l)H) = 0(I)



First note that & — F(a,z,k,[) is increasing, so

S (k4 o) — Flaa, kDl = Y [1F(aa k4 e 0l - 1F(a, 2, k.1)|
k<1 k<1
and is therefore less that 3- ., /7, |[F(a, 2.k, 1)]].

For [ large enough we have 3(\/Z—|— ¢)+ 1500 < [, hence lemma 2.3 applies and
F(a,z,k, 1) is in a 45-neighborhood of a geodesic of length [ 4 2(v/1 + ¢).

Then Y= /1o cvige 1F(a, 2,k D] < el + 2(V1 4 ¢))B where B is the number
of points in (any) ball of radius 44.

Going back to point 3, let ¢ = d(ga, a). We certainly have

||H(gavxvl)_H(a7$7l)||L1(F) < % E ||F(a7I7k+cvl)_F(ga7$7k7l)||+

—

k<1
% E ||F(a7$7k+c7l)_F(aaxakvl)H
k<1

But we know by the preceding lemma that the second term is O(l%) uniformly
in x whereas the first term splits into

1
5 Z ||F(a,:r:,k+c,l)—F(ga,:ﬁ,k,l)H
\/Zogkgc

which is bounded by

%(HF(a,x,zc,on +[|F(ga, ¢ 1))

and |
W Z ||F(G’7I7k+c7l) - F(ga,x,k,l)H
e<k</1
which is not greater than

1
W Z ||F(CL,JZ,]€—}—C,Z) —F(a,x,k—c,l)H
c<k<V/1

since for k > ¢, one has F(a,z,k —¢,l) < F(ga,z,k, 1) < F(a,z,k + ¢,1).

By lemma 2.1 for K = 2¢, there exists M, independent from x, such that
F(a,x,2¢,1) is less than the characteristic function of a tube of radius M along
a geodesic of length [, therefore there exists a constant C' such that, for any
(a,z) € I' x 9, |F(a,z,2¢,1)| < C.1.

Hence %53£(||F(a,$,2c,l)|| + || F(ga, z,c,1)||) is o(l) as well as

1
—7= sup Z ||F(a7$7k+cvl)_F(a7$7k_cvl)||
\/erarc<k<\/i



by lemma 3.2.

Finally for point 2 of proposition 3.1, it suffices to prove that for k,, a fixed,
(z,t) = F(a,z,k,[)(t) has a local maximum everywhere. This follows easily,
since I' is discrete, from

Lemma 3.3 Let ry,ry be integers and a in I', x in OU then there exists a neigh-

borhood V' of x, such that for all ' € V

( U g([rwz])) C( U g([ﬁ,rz]))
gella,sl gellaell

Since we are considering geodesics, we only need to prove that for all & < r,
there exists a neighborhood V' of z, such that for all ' € V

( U g<k>) c( U g<k>)
9€[[a,z'[[ g€[[a,z[[

By contradiction, assuming the opposite, we have a sequence g, of geodesics
(the topology of JI' is metrizable) with end points converging to @ and such that
gn(k) is not contained in Uyep, 9(k), which is finite since it is contained in
B(a,r), thus open and compact since I' is discrete.

By Arzela-Ascoli there exists a subsequence that converges uniformly on com-
pact sets to a geodesic g, from a to z, and go. (k) is not in e, . 9(k). Hence
a contradiction.

We have now all the elements for the theorem:

Theorem 3.4 Let I be a discrete hyperbolic group and 9T its (Gromov) bound-
ary. Then T' acts in a amenable way on OT.

Let f.(g,x) = H(e,x,n)(g), then f, is positive, compactly supported (the
support is contained in B(e,3n) x dI' ), Borel and
Ve e dl', ||H(e,z,n)|[pyr)y > n

therefore

Vz € T, ¥n > 0 /F|fn(g,:s)|dg > 0.

Finally h.f(g,z) = H(e,h '.z,n)(h™'g) = H(h,z,n)(g). Then Proposition
3.1 gives

lim
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sup

o ( 1H (e, 2,m) ~ H(h,x,nm(r)) .

N0\ £edl ||H(€a$an)||L1(F)
< lim (0(”)) — 0
n—>00 n

Corollary 3.5 Let I' be an hyperbolic group. Then CH(I') is exact.

Indeed since JI" is compact, we have an imbedding of C*(I') into the reduced
cross product of C(91') by I' and this algebra is nuclear since I' acts in an amenable

way.

Corollary 3.6 (See [8] TH 1.X) Let T' be an hyperbolic group, then the boundary
action is weakly contained in the reqular representation.

The boundary action yields a representation of the (full) cross product of
C(0l') by I', but this algebra is isomorphic to the reduced cross product by
theorem 3.4. Therefore we get by composition a representation of C*(T').
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