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THE KK-THEORY OF AMALGAMATED FREE PRODUCTS

PIERRE FIMA AND EMMANUEL GERMAIN

Abstract. In the presence of conditional expectations, we prove a long exact sequence in
KK-theory for both the maximal and the vertex reduced amalgamated free product of unital
C*-algebras that is valid even for non GNS-faithful conditional expectations. However, in the
degenerated case, one has to introduce a new reduced amalgamated free product, that we
call vertex-reduced. In the course of the proof we established the KK-equivalence between
the full amalgamated free product and the vertex-reduced amalgamated free product. This
results generalize and simplify the results obtained before by Germain and Thomsen. When
the conditional expectations are extremely degenerated, i.e. when they are ∗-homomorphisms,
our vertex-reduced amalgamated free product is isomorphic to the fiber direct sum. Hence our
results also generalize a result of Cuntz.

1. Introduction

After the development of KK-theory by Kasparov [Ka80b, Ka88], J. Cuntz obtained in 1982
a very elegant result about the full free product of unital C*-algebras with one-dimensional
representations that leads to a conjectural long exact sequence in KK-theory for amalgamated
free products in a general situation [Cu82]. At about the same time M. Pimsner’s and D.
Voiculescu’s computation of the KK-theory for some group C*-algebras (see [PV82]) culminated
in the computation of full and reduced crossed products by groups acting on trees [Pi86] (or
by the fundamental group of a graph of groups in Serre’s terminology). To go beyond the
group situation has been difficult and it relied heavily on various generalizations of Voiculescu’s
absorption theorem (see [Th03] for the most general results in that direction). Note also that
G. Kasparov and G. Skandalis had another proof of Pimsner long exact sequence when studying
KK-theory for buildings [KS91].

Section 2 is a preliminary section in which we investigate the notion of reduced amalgamated free
products of unital C*-algebras A1∗BA2 in the presence of not necessarily GNS-faithful conditional
expectations. The usual reduced version, due to D. Voiculecscu, which is obtained by looking at
the module over B, is often too small. Indeed, when the conditional expectations onto B are both
∗-homomorphisms, the Voiculescu’s reduced amalgamated free product is isomorphic to B and all
the information about A1 and A2 is lost. This is why we consider another reduced amalgamated
free product, that we call vertex-reduced, which is obtained by looking at the two modules
over A1 and A2 and is an intermediate quotient between the full amalgamated free product
and Voiculescu’s reduced amalgamated free product. When the conditional expectations are
GNS-faithful, these two reduced amalgamated free products coincide and when the conditional
expectations are ∗-homomorphisms the vertex reduced amalgamated free product is isomorphic
to the fiber sum A1⊕B A2. Hence, even in the extreme degenerated case, the information on A1
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2 PIERRE FIMA AND EMMANUEL GERMAIN

and A2 is still contained in the vertex-reduced amalgamated free product. As the vertex-reduced
free product is a new construction, we devote some time to show some of its properties.

Before proving our long exact sequence in KK-theory we start with an auxiliary and easy result in
Section 3. This result states that the full free product is always K-equivalent to the vertex-reduced
free product. In particular, when the conditional expectations are morphisms, we get exactly
Cuntz result [Cu82]. This result also generalizes and simplifies the previous result obtained by
the second author [Ge96]. The proof is very natural, just a rotation trick. While finishing writing
this paper, the authors have been made aware that K. Hasegawa [Ha15] just obtained the same
result in the particular case of GNS-faithful conditional expectations (see also [Ha19]). By a
remark by Ueda ([Ue08]), this result also proves the K-equivalence between full and (vertex)
reduced HNN extensions.

The main part and also the most difficult part of our paper comes in Section 4. Under the
presence of conditional expectations, we show that the full amalgamated free product A1 ∗

B
A2 is

K-equivalent with the algebra D of continuous functions f from ]− 1, 1[ to the full free product
such that f(]− 1, 0]) ⊂ A1, f([0, 1[) ⊂ A2 and f(0) ∈ B. This is done by generalizing a result in
a paper by one of the authors ([Ge97]). Therefore the full amalgamated free product A1 ∗

B
A2 sits

inside a long exact sequence for the computation of its KK-groups. Of course the vertex reduced
free product has the same long exact sequence. Explicitly, if C is any separable C*-algebra, then
we have the two 6-terms exact sequences (see Corollary 4.12),

KK0(C,B) −→ KK0(C,A1)
⊕
KK0(C,A2) −→ KK0(C,A1 ∗B A2)

↑ ↓
KK1(C,A1 ∗B A2) ←− KK1(C,A1)

⊕
KK1(C,A2) ←− KK1(C,B)

and

KK0(B,C) ←− KK0(A1, C)
⊕
KK0(A2, C) ←− KK0(A1 ∗B A2, C)

↓ ↑
KK1(A1 ∗B A2, C) −→ KK1(A1, C)⊕KK1(A2, C) −→ KK1(B,C)

Again the HNN extension case follows using the isomorphism with an amalgamated free product.
Note that this result greatly simplifies and generalizes the results of Thomsen [Th03] about
KK-theory for amalgamated free products which are valid only when the amalgam is finite
dimensional.

Let us mention some applications. As a direct corollary, we obtain that the amalgamated free
product of discrete quantum groups is K-amenable if and only if the initial quantum groups are
K-amenable. This generalizes the result of Vergnioux [Ve04] which was valid only for amenable
discrete quantum groups and this also implies that a graph product of discrete quantum groups
(see [CF14]) is K-amenable if and only if the initial quantum groups are K-amenable. Finally,
let us mention that our results will be applied in a future paper to deduce a long exact sequence
in KK-theory for fundamental C*-algebras of graph of C*-algebras, generalizing and simplifying
the results of Pimsner [Pi86] and, as an application, the results of Fima-Freslon [FF13] (and
those of Julg and Valette [JV84]).
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THE KK-THEORY OF AMALGAMATED FREE PRODUCTS 3

2. Preliminaries

2.1. Notations and conventions. All C*-algebras and Hilbert modules are supposed to be
separable. For a C*-algebra A and a Hilbert A-module H we denote by LA(H) the C*-algebra
of A-linear adjointable operators from H to H and by KA(H) the sub-C*-algebra of LA(H) con-
sisting of A-compact operators. For a ∈ A, we denote by LA(a) ∈ LA(A) the left multiplication
operator by a. We refer the reader to [Bl86] for the basics on KK-theory. In general KK-theory is
a bi-functor in the category of Z/2Z-graded C*-algebras. When the two C*-algebras are trivially
graded, we end up with what is called KK0(A,B). It follows from the standard simplifications
that any element in KK0(A,B) is the homotopy class of a A-B-Kasparov’s module of the form
(H,π, T ), with H a Z/2Z-graded Hilbert B-module, i.e. H = H0⊕H1 is a direct sum of Hilbert
B-modules, π a morphism of graded C*-algebras (LB(H) is a naturally graded C*-algebra). As
A is trivially graded, π = π0 ⊕ π1, where πk : A → LB(Hk) are ∗-homomorphisms. And T a
self-adjoint 1-graded operator in LB(H) with compact commutator with any element of π(A).

Therefore T =

(
0 F ∗

F 0

)
with F ∈ LB(H0, H1) intertwines π0 and π1 up to compact operators.

The operator T also has the additional property that T 2 = 1 modulo compact operator (A uni-
tal) and hence F is unitary up to compact operators in the case A is unital. In part 3 of this
article, we refer to such a Kasparov module as (H,π, F ) to simplify notation.

In part 4 of this article we must deal with KK1 elements. Any element in KK1(A,B) has
a simple description. It is the homotopy class of a triple (H,π0, F ), where H is a Hilbert B-
module, π0 : A → LB(H) is a ∗-homomorphism and F ∈ LB(H) a selfadjoint operator which
is unitary up to compact operators and commutes with π0 up to compact operators. But it
actually fits in the general description of Kasparov module but for the couple (A,B⊗C1) where
C1 is the first non trivial Clifford algebra (see section 17.5.2 of [Bl86]) . As an Z/2Z-graded
algebra, C1 = C⊕C where (1, 1) is 0 graded and (1,−1) is 1-graded. If E is a Hilbert B-module
then E ⊗ C1 naturally becomes a Z/2Z-graded Hilbert module over B ⊗ C1. If π is an action
of the trivially graded C*-algebra A on this module, then compatibility with the grading as well
as C1-linearity imply that π decomposes as π0 ⊕ π0 with π0 an action of A onto E. Now a
self-adjoint 1-graded operator T in LB⊗C1(E ⊗ C1) must be of the form (F,−F ) where F is
a self-adjoint operator of LB(E). So the simple description of a KK1(A,B) element gives a
natural triple (H⊗C1, π0⊕π0, (F,−F )) in KK(A,B⊗C1). It must be noted, although we don’t
use it, that by Kasparov stabilisation any element of KK(A,B ⊗ C1) is in the same class as an
element of this simple form. For the largest part of section 4, we use the first description except
for proposition 4.6 where Connes-Skandalis characterization of the Kasparov product between a
KK0 and a KK1 element forces us to use the general description.

2.2. Conditional expectations. Let A, B be unital C*-algebras and ϕ : A → B be a unital
completely positive map (ucp). A GNS construction of ϕ is a triple (K, ρ, η), whereK is a Hilbert
B-module, η ∈ K and ρ : A→ LB(K) is a unital ∗-homomorphism such thatK = ρ(A)η ·B and
〈η, ρ(a)η〉 = ϕ(a) for all a ∈ A. A GNS construction always exists and is unique, up to a canonical
isomorphism. Note that, if B ⊂ A and E : A→ B is a conditional expectation, then the Hilbert
B-submodule η ·B ofK, where (K, ρ, η) is a GNS construction of E, is complemented. Indeed, we
have K = η ·B⊕K◦, where K◦ = Span{ρ(a)η ·b : a ∈ A◦ and b ∈ B} and A◦ = Ker(E). Since E
is a conditional expectation onto B we have bA◦ ⊂ A◦ for all b ∈ B. It follows that ρ(b)K◦ ⊂ K◦
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4 PIERRE FIMA AND EMMANUEL GERMAIN

for all b ∈ B. Hence, the restriction of ρ to B (and to K◦) gives a unital ∗-homomorphism
ρ : B → LB(K◦).

A conditional expectation is called GNS-faithful (or non-degenerate) if for a given GNS construc-
tion (and hence for all GNS constructions) (K, ρ, η), the homomorphism ρ is faithful. In this
paper we will consider reduced amalgamated free product with respect to non-necessary GNS-
faithful conditional expectations. Actually, the degeneracy of the conditional expectations will
naturally produce different types of reduced amalgamated free products. This is why we include
the next proposition, which is well known to specialists but helps to understand the extreme
degenerated case: when E is a homomorphism. We include a complete proof for the convenience
of the reader.

Proposition 2.1. Let B ⊂ A be a unital inclusion of unital C*-algebras and E : A → B be a
conditional expectation with GNS construction (K, ρ, η). The following are equivalent.

(1) E is a homomorphism.
(2) K = η ·B.
(3) K◦ = {0}.

Proof. Since K = η ·B ⊕K◦ the equivalence between (2) and (3) is obvious.

(1) ⇒ (3). If E is a homomorphism from A to B then, since E is ucp, it is a unital ∗-
homomorphism and we have for all b ∈ B and all a ∈ A◦,

〈ρ(a)η · b, ρ(a)η · b〉K = b∗〈η, ρ(a∗a)η〉Kb = b∗E(a∗a)b = b∗E(a)∗E(a)b = 0.

(3)⇒ (1). If K◦ = {0} then, for all a ∈ A◦, we have E(a∗a) = 〈ρ(a)η, ρ(a)η〉K = 0. Hence

E((a−E(a))∗(a−E(a))) = 0 = E(a∗a)−E(a∗)E(a)−E(a)∗E(a) +E(a)∗E(a) for all a ∈ A.

It follows that, for all a ∈ A, we have E(a∗a) = E(a)∗E(a). Hence, the multiplicative domain of
the ucp map E is equal to A which implies that E is a homomorphism. �

2.3. The full and reduced amalgamated free products. Let A1, A2 be two unital C*-
algebras with a common C*-subalgebra B ⊂ Ak, k = 1, 2 and denote by Af the full amalgamated
free product. To be more precise, we sometimes write Af = A1 ∗

B
A2. It is well known that the

canonical map from Ak to Af is faithful for k = 1, 2. Hence, we will always view A1 and A2 as
subalgebras of Af .

We will now construct, in the presence of conditional expectations, two different reduced amal-
gamated free products. One of them, that we call the edge-reduced amalgamated free product has
been extensively studied and it is called, in the literature, the reduced amalgamated free product.
The other one, that we call the vertex-reduced amalgamated free product, does not seem to be
known, even from specialists. As it will become gradually clear, the vertex-reduced amalgamated
free product is actually much more natural than the edge-reduced amalgamated free product. It
is an intermediate quotient of the full amalgamated free product and it is isomorphic to the edge-
reduced amalgamated free product if the conditional expectations are assumed GNS-faithful .
This is the reason why it has not appeared before in the literature since many authors only con-
sider amalgamated free product in the presence of GNS-faithful conditional expectations. Since
the vertex-reduced and the edge-reduced amalgamated free product are the foundations of our
proofs we will now explain in great detail their constructions.
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THE KK-THEORY OF AMALGAMATED FREE PRODUCTS 5

In the sequel, we always assume that, for k = 1, 2, there exists a conditional expectation Ek :
Ak → B. We write A◦k = {a ∈ Ak : Ek(a) = 0}, we denote by (Kk, ρk, ηk) a GNS construction
of Ek and by K◦k the canonical orthogonal complement of ηk · B in Kk as explained in Section
2.2. Recall that the restriction of ρk to B (and to K◦k) gives a unital ∗-homomorphism ρk : B →
LB(K◦k).

We denote by I the subset of ∪n≥1{1, 2}n defined by

I = {(i1, . . . , in) ∈ {1, 2}n : n ≥ 1 and ik 6= ik+1 for all 1 ≤ k ≤ n− 1},

Recall that an operator x ∈ Af is called reduced if x 6= 0 and x can be written as x = a1 . . . an
with n ≥ 1 and ak ∈ A◦ik − {0} such that i = (i1, . . . in) ∈ I.

2.3.1. The vertex-reduced amalgamated free products. For i = (i1, . . . , in) ∈ I, we define a Ai1-
Ain-bimodule Hi. As Hilbert Ain-module we have:

Hi =


Ki1 ⊗

B
K◦i2 ⊗

B
. . .⊗

B
K◦in−1

⊗
B
Ain if n ≥ 3,

Ki1 ⊗
B
Ai2 if n = 2,

Ai1 if n = 1.

The left action of Ai1 on Hi is given by the unital ∗-homomorphism defined by

λi : Ai1 → LAin (Hi); λi =

{
ρi1 ⊗

B
id if n ≥ 2,

LAi1 if n = 1.

We consider, for k, l ∈ {1, 2}, the subset Ik,l = {i = (i1, . . . , in) ∈ I : i1 = k and in = l} and the
Ak-Al-bimodule defined by

Hk,l =
⊕
i∈Ik,l

Hi and λk,l =
⊕
i∈Ik,l

λi : Ak → LAl(Hk,l).

For k ∈ {1, 2} we denote by k the unique element in {1, 2} \ {k}.

Example 2.2. If, for k ∈ {1, 2}, Ek is a homomorphism from Ak to B it follows from Proposition
2.1 that K◦k = {0}. Hence, Hk,k = Ak ⊕Kk ⊗

B
K◦
k
⊗
B
Ak and Hk,k = Kk ⊗

B
Ak. Note that, since

Kk ' B, we have Hk,k ' Ak ⊕ K◦k ⊗B
Ak ' Kk ⊗

B
Ak = Hk,k. Also we have Hk,k = Kk ⊗

B
Ak

and Hk,k = Ak. Again, Hk,k ' Ak = Hk,k. Actually the isomorphism of Hilbert Al-modules
Hk,l ' Hk,l is true in full generality as explained below.

For k, l ∈ {1, 2} we define a unitary uk,l ∈ LAl(Hk,l, Hk,l), by the following formula. Let i =

(i1, . . . , in) ∈ I, with i1 = k and in = l. For ξ ∈ Hi we define uk,lξ ∈ Hk,l in the following way.

• If n ≥ 2, write i = (k, i′), where i′ = (i2, . . . , in) ∈ Ik,l. For ξ = ρk(a)ηk⊗ ξ′, with a ∈ Ak

and ξ′ ∈ Hi′ , we define uk,lξ :=

{
ηk ⊗ ξ if Ek(a) = 0,
λi′(a)ξ′ if a ∈ B.

• If n = 1 then k = l, i = (l) and ξ ∈ Al = Hi. We define uk,lξ := ηk ⊗ ξ.
Since ρk(b)ηk = ηk · b for all b ∈ B, the operators uk,l are well defined and it is easy to check
that, for all k, l ∈ {1, 2}, the operators uk,l commute with the right actions of Al on Hk,l and
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6 PIERRE FIMA AND EMMANUEL GERMAIN

Hk,l and extend to a unitary operators, still denoted uk,l, in LAl(Hk,l, Hk,l) such that u∗k,l = uk,l.
Moreover, the definition of uk,l implies that,

(1) u∗k,lλk,l(b)uk,l = λk,l(b) for all b ∈ B.

Definition 2.3. Let k ∈ {1, 2}. The k-vertex-reduced amalgamated free product is the C*-sub-
algebra Av,k ⊂ LAk(Hk,k) generated by λk,k(Ak) ∪ u∗k,kλk,k(Ak)uk,k ⊂ LAk(Hk,k). To be more

precise, we use sometimes the notation Av,k = A1
k∗
B
A2.

For a fixed k ∈ {1, 2} the relations (1) imply the existence of a unique unital ∗-homomorphism

πk : Af → Av,k such that πk(a) =

{
λk,k(a) if a ∈ Ak,
u∗k,kλk,k(a)uk,k if a ∈ Ak.

In the sequel we will denote by ξk the vector ξk := 1Ak ∈ Ak ⊂ Hk,k. We summarize the main
properties of Av,k in the following proposition.

Proposition 2.4. Fix k ∈ {1, 2}. The following facts hold.
(1) The morphism πk is faithful on Ak.
(2) If Ek is GNS-faithful then πk is faithful on Ak.
(3) There exists a unique ucp map Ek : Av,k → Ak such that Ek(πk(a)) = a ∀a ∈ Ak and

Ek(πk(a1 . . . an)) = 0 for all a = a1 . . . an ∈ Af reduced with n ≥ 2 or n = 1 and a = a1 ∈ A◦k.
Moreover, Ek is GNS-faithful.

(4) For any unital C*-algebra C with two unital ∗-homomorphisms νj : Aj → C, j = 1, 2,
such that
• ν1(b) = ν2(b) for all b ∈ B,
• C is generated, as a C*-algebra, by ν1(A1) ∪ ν2(A2),
• νk is faithful and there exists a GNS-faithful ucp map E : C → Ak such that
E(νk(a)) = a for all a ∈ Ak and

E(νi1(a1) . . . νin(an)) = 0 for all a = a1 . . . an ∈ Af reduced with n ≥ 2 or n = 1 and a = a1 ∈ A◦k,

there exists a unique unital ∗-isomorphism ν : Av,k → C such that ν ◦ πk(a) = νk(a) for
all a ∈ A1 ∪A2. Moreover, ν satisfies E ◦ ν = Ek.

Proof. Fix k ∈ {1, 2}. By definition of πk we have, if a ∈ Ak, 〈ξk, πk(a)ξk〉 = a. It follows
directly that πk is faithful on Ak. Moreover, the map Ek : Av,k → Ak, x 7→ 〈ξk, xξk〉 satisfies
Ek(πk(a)) = a ∀a ∈ Ak. By definition we have, for all reduced operators x = a1 . . . an with
i = (i1, . . . , in) ∈ I and as ∈ A◦is for all s ∈ {1, . . . , n},

(2) πk(a1 . . . an)ξk =


ρi1(a1)ηi1 ⊗ . . .⊗ ρin−1(an−1)ηin−1 ⊗ an if i1 = k and in = k,
ηk ⊗ ρi1(a1)ηi1 ⊗ . . .⊗ ρin−1(an−1)ηin−1 ⊗ an if i1 6= k and in = k,
ρi1(a1)ηi1 ⊗ . . .⊗ ρin(an)ηin ⊗ 1Ak if i1 = k and in 6= k,
ηk ⊗ ρi1(a1)ηi1 ⊗ . . .⊗ ρin(an)ηin ⊗ 1Ak if i1 6= k and in 6= k.

Hence we have Ek(πk(a1 . . . an)) = 0 for all a = a1 . . . an ∈ Af reduced with n ≥ 2 or n = 1 and
a = a1 ∈ A◦k. It also follows easily from the previous set of equations that πk(Af )ξk ·Ak = Hk,k.
Hence the triple (Hk,k, id, ξk) is a GNS construction for Ek. This shows that Ek is GNS-faithful.
Note that the uniqueness statement of the third assertion is obvious since Af is the linear span
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THE KK-THEORY OF AMALGAMATED FREE PRODUCTS 7

of B and the reduced operators. Also, the second statement becomes now obvious since, by the
properties of Ek we have, for all x ∈ Ak, Ek(πk(x)) = Ek(πk(x − Ek(x))) + Ek(πk(Ek(x))) =
πk(Ek(x)). It follows easily from this equation that πk is faithful on Ak whenever Ek is GNS-
faithful. Indeed, let x ∈ Ak such that πk(x) = 0. Then, for all y ∈ Ak we have πk(y∗x∗xy) = 0.
Hence, πk ◦Ek(y

∗x∗xy) = Ek ◦ πk(y∗x∗xy) = 0 for all y ∈ Ak. Since πk is faithful on Ak we find
Ek(y

∗x∗xy) = 0, for all y ∈ Ak. Since Ek is GNS-faithful we conclude that x = 0.

(4). The proof is a routine. We write the argument for the convenience of the reader. Let
(K, ρ, η) be the GNS construction of E. Since E is GNS-faithful we may and will assume that
ρ = id and C ⊂ LAk(K). By the properties of Ek and E, the map U : Hk,k → K defined by, for
x = a1 . . . an ∈ Af reduced with ak ∈ A◦ik , U(πk(x)ξk) := νi1(a1) . . . νin(an)η and, for x = b ∈ B,
U(πk(b)ξk) = ν1(b)η = ν2(b)η, is well defined and extends to a unitary U ∈ LAk(Hk,k,K).
By construction, the map ν(x) := UxU∗, for x ∈ Av,k, satisfies the claimed properties. The
uniqueness is obvious. �

Remark 2.5. It is known that the canonical homomorphism from Ak to Af is faithful for k ∈ {1, 2}
without assuming the existence of conditional expectations from Ak to B. However, assertion
(1) of Proposition 2.4 gives a very simple proof of this fact, since it shows that the composition
of the canonical homomorphism from Ak to Af with the homomorphism πk is faithful, which
implies that the canonical homomorphism from Ak to Af itself is faithful.

Example 2.6. Suppose that, for a given k ∈ {1, 2}, Ek is a homomorphism. Then, as observed
in Example 2.2, we have Hk,k = Ak (and λk,k = LAk). It follows from the definition of πk that

πk(a) =

{
LAk(a) if a ∈ Ak,
0 if a ∈ A◦k.

Hence, since Af the closed linear span of Ak and the reduced operators and πk : Af → Av,k is
surjective, we find that Av,k = πk(Ak). Moreover, since πk is faithful on Ak we conclude that
the restriction of πk to Ak gives an isomorphism Ak ' Av,k.

Definition 2.7. The vertex-reduced amalgamated free product is the C*-algebra obtained by
separation and completion of Af with respect to the C*-semi-norm ‖ · ‖v on Af defined by

‖x‖v := Max{‖π1(x)‖, ‖π2(x)‖} for all x ∈ Af .

By separation and completion we mean the completion of the pre-C*-algebra obtained by con-
sidering the quotient by the null ideal of the C* semi-norm.
We will note it A1

v∗
B
A2 or Av for simplicity in the rest of this section and let π : Af → Av

be the canonical surjective unital ∗-homomorphism. Note that, by construction of Av, for all
k ∈ {1, 2}, there exists a unique unital (surjective) ∗-homomorphism πv,k : Av → Av,k such that
πv,k ◦ π = πk. We describe the fundamental properties of the vertex-reduced amalgamated free
product in the following proposition. We call a family of ucp maps {ϕi}i∈I , ϕi : A→ Bi GNS-
faithful if ∩i∈IKer(πi) = {0}, where (Hi, πi, ξi) is a GNS-construction for ϕi. From Proposition
2.4 and the definition of Av we deduce the following result.

Proposition 2.8. The following facts hold.
(1) π is faithful on Ak for all k ∈ {1, 2}.
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8 PIERRE FIMA AND EMMANUEL GERMAIN

(2) For all k ∈ {1, 2}, there is a unique ucp map EAk : Av → Ak such that EAk ◦ π(a) = a
for all a ∈ Ak and all k ∈ {1, 2} and,

EAk(π(a1 . . . an)) = 0 for all a = a1 . . . an ∈ Af reduced with n ≥ 2 or n = 1 and a = a1 ∈ A◦k.

Moreover, the family {EA1 ,EA2} is GNS-faithful.
(3) Suppose that C is a unital C*-algebra with ∗-homomorphisms νk : Ak → C such that

• ν1(b) = ν2(b) for all b ∈ B,
• C is generated, as a C*-algebra, by ν1(A1) ∪ ν2(A2),
• ν1 and ν2 are faithful and, for all k ∈ {1, 2}, there exists a ucp map EAk : C → Ak
such that EAk ◦ νk(a) = a for all a ∈ Ak and all k ∈ {1, 2} and,

EAk(νi1(a1) . . . νin(an)) = 0 for all a = a1 . . . an ∈ Af reduced with n ≥ 2 or n = 1 and a = a1 ∈ A◦k,

and the family {EA1 , EA2} is GNS-faithful.
Then, there exists a unique unital ∗-isomorphism ν : Av → C such that ν ◦π(a) = νk(a)
for all a ∈ Ak and all k ∈ {1, 2}. Moreover, ν satisfies EAk ◦ ν = EAk , k ∈ {1, 2}.

Proof. (1). It is obvious since, by Proposition 2.4, πk is faithful on Ak for k = 1, 2.

(2). By Proposition 2.4, the maps EAk = Ek ◦ πv,k satisfy the desired properties and it suffices
to check that the family {EA1 ,EA2} is GNS-faithful. Let x0 ∈ Af be such that x = π(x0) ∈ Av
satisfies EAk(y∗x∗xy) = 0 for all y ∈ Av and all k ∈ {1, 2}. Then, for all k ∈ {1, 2} we have
Ek(y∗πv,k(x∗x)y) = 0 for all y ∈ Av,k. Since Ek is GNS-faithful, this implies that πv,k(x) =
πk(x0) = 0 for all k ∈ {1, 2}. Hence, ‖x‖Av = Max(‖π1(x0)‖, ‖π2(x0)‖) = 0.

(3). The proof is a routine. We include it for the convenience of the reader. Let (Lk,mk, fk) be the
GNS construction of EAk . By the universal property of Av,k, the C*-algebra mk(C) ⊂ LAk(Lk)
is canonically isomorphic to Av,k. Hence, in the remainder of the proof we suppose that mk(C) =
Av,k. By the universal property of Af , we have a unital surjective ∗-homomorphism νf : Af → C
such that νf |Ak = νk. Note that, by the identification we made, mk ◦ νf = πk. Hence, by
construction of Av, there exists a unique unital (surjective) ∗-homomorphism ν0 : C → Av such
that πv,k ◦ ν0 = mk for all k ∈ {1, 2}. Note that ν0 is faithful since the identity πv,k ◦ ν0 = mk,
k = 1, 2, implies that Ker(ν0) ⊂ Ker(m1)∩Ker(m2) = {0} (because the pair (EA1 , EA2) is GNS-
faithful). Hence ν0 is a unital ∗-isomorphism and ν := ν−1

0 satisfies the required properties. �

Corollary 2.9. If both E1 and E2 are homomorphisms then there is a canonical isomorphism
Av ' A1 ⊕

B
A2, where A1 ⊕

B
A2 := {(a1, a2) ∈ A1 ⊕A2 : E1(a1) = E2(a2)}.

Proof. We use the universal property of Av described in Proposition 2.8. Define νk : Ak →
A1⊕

B
A2 by ν1(x) = (x,E1(x)) and ν2(y) = (E2(y), y). It is clear that ν1 and ν2 are both faithful

unital ∗-homomorphisms such that ν1(b) = ν2(b) for all b ∈ B. Define EAk : A1 ⊕
B
A2 → Ak by

EA1(a1, a2) = a1 and EA2(a1, a2) = a2. Then, for all k ∈ {1, 2}, Ek is a unital ∗-homomorphism
such that EAk ◦ νk(a) = a for all a ∈ Ak. In particular, both E1 and E2 are conditional
expectations and, since Ker(EA1) ∩ Ker(EA2) = {0}, the family {EA1 , EA2} is GNS-faithful.
Hence, it suffices to check the condition on the reduced operators. Since ν1(A◦1) = {(x, 0) : x ∈
A◦1} and ν2(A◦2) = {(0, y) : y ∈ A◦2}, we have ν1(A◦1)ν2(A◦2) = ν2(A◦2)ν1(A◦1) = {0}. Hence, it
suffices to check the condition on elements (a1, a2) ∈ ν1(A◦1) ∪ ν2(A◦2) which is obvious. �
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2.3.2. The edge-reduced amalgamated free product. In this section we show how the construction
of the edge-reduced (or, in the literature, the reduced) amalgamated free product in full generality
is related to the vertex-reduced free product we just defined.

For i ∈ I, we consider the B-B-module K◦i = K◦i1 ⊗
B
. . .⊗

B
K◦in as Hilbert B-module with the left

action of B given by the unital ∗-homomorphism ρi : B → LB(K◦i ), ρi(b) = ρi1(b) ⊗
B
id for all

b ∈ B and we define the Hilbert B-bimodule K = B ⊕
(⊕

i∈I K
◦
i

)
.

Example 2.10. If, for some k ∈ {1, 2}, Ek is a homomorphism then K = B⊕K◦
k
' Kk. Hence,

if both E1 and E2 are homomorphisms then K = B.

For l ∈ {1, 2} define K(l) = B⊕

( ⊕
i∈I, i1 6=l

K◦i

)
and note that we have a unital ∗-homomorphism

ρl : B → LB(K(l)) defined by ρl = LB ⊕
⊕

i∈I, i1 6=l
ρi. Let Ul ∈ LB(Kl ⊗

ρl
K(l),K) be the unitary

operator defined by

Ul : Kl ⊗
ρl
K(l) −→ K

ηl ⊗
ρl
B

'−→ B

K◦l ⊗
ρl
B

'−→ K◦l

ηl ⊗
ρl
Hi

'−→ K◦i

K◦l ⊗
ρl
Hi

'−→ K◦(l,i)

where (l, i) = (l, i1, . . . , in) ∈ I if i = (i1, . . . , in) ∈ I with i1 6= l. We define the unital
∗-homomorphisms λl : LB(Kl) → LB(K) by λl(x) = Ul(x ⊗ 1)U∗l . By definition we have
λ1(ρ1(b)) = λ2(ρ2(b)) for all b ∈ B. It follows that there exists a unique unital ∗-homomorphism
ρ : Af → LB(K) such that ρ(a) = λk(ρk(a)) for a ∈ Ak, for all k ∈ {1, 2}.

Proposition 2.11. There are canonical unitaries Vk ∈ LB(Hk,k ⊗
Ek
B,K) for k = 1, 2 satisfying

Vk(πk(a)⊗ 1)V ∗k = ρ(a) for all a ∈ Ak and all k ∈ {1, 2}.

Proof. Note that, for i = (i1, . . . , in) ∈ I with i1 = in = k (hence n is odd) we have, if n = 1,

Hi ⊗
Ek
B = Ak ⊗

Ek
B ' Kk ' K◦k ⊕ B, and, if n ≥ 3, Hi ⊗

Ek
B = Kk ⊗

B

(
K◦
k
⊗
B
. . .⊗

B
K◦
k

)
⊗
B
Kk '

K◦i ⊕K◦i′ ⊕K
◦
i′′ ⊕K

◦
i′′′ , where i

′ = (i2, . . . , in), i′′ = (i1, . . . , in−1) and i′′′ = (i2, . . . , in−1). Hence
the existence of Vk : Hk,k ⊗

Ek
B → K. It is easy to check that Vk satisfies Vk(πk(a)⊗1)V ∗k = ρ(a)

for all a ∈ Ak and all k ∈ {1, 2}. �

Definition 2.12. The edge-reduced amalgamated free product is the C*-subalgebra Ae ⊂ LB(K)
generated by λ1(A1) ∪ λ2(A2) ⊂ LB(K). To be more precise, we use sometimes the notation
Ae = A1

e∗
B
A2.

The edge-reduced amalgamated free product has been constructed by Voiculescu in [Vo83] and
is known in the literature as the Voiculescu’s reduced amalgamated free product.
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10 PIERRE FIMA AND EMMANUEL GERMAIN

Example 2.13. If, for some k ∈ {1, 2}, Ek is a homomorphism then Ae is the C*-algebra
ρk(Ak) ⊂ LB(Kk). If both E1 and E2 are homomorphisms then Ae ' B.

The preceding example shows that the edge reduced amalgamated free product may forget every-
thing about the initial C*-algebras A1 and A2 in the extreme degenerated case: it only remembers
B. This shows that, in general, one should consider instead the vertex-reduced amalgamated
free product. Indeed, even in the extreme degenerated case, the vertex reduced amalgamated
free product correctly remembers the C*-algebras A1 and A2, as shown in Corollary 2.9.

In the following proposition we recall the properties of Ae. The results below are well known
when E1 and E2 are GNS-faithful. The proof is similar to the proof of Proposition 2.4 and we
leave it to the reader.

Proposition 2.14. The following facts hold.
(1) ρ is faithful on B.
(2) For any k ∈ {1, 2}, if Ek is GNS-faithful then ρ is faithful on Ak.
(3) There exists a unique ucp map E : Ae → B such that E ◦ ρ(b) = b for all b ∈ B and,

E(ρ(a1, . . . an)) = 0 for all a = a1 . . . an ∈ Af reduced.

Moreover, E is GNS-faithful.
(4) For any unital C*-algebra C with two unital ∗-homomorphisms νk : Ak → C, k = 1, 2,

such that
• ν1(b) = ν2(b) for all b ∈ B,
• C is generated, as a C*-algebra, by ν1(A1) ∪ ν2(A2),
• ν1|B = ν2|B is faithful and there exists a GNS-faithful ucp map E : C → B such
that E ◦ νk(b) = b for all b ∈ B, k = 1, 2, and,

E(νi1(a1) . . . νin(an)) = 0 for all a = a1 . . . an ∈ Af reduced,

there exists a unique unital ∗-isomorphism ν : Ae → C such that ν ◦ ρ(a) = νk(a) for all
a ∈ Ak, k ∈ {1, 2}. Moreover, ν satisfies E ◦ ν = E.

Proposition 2.15. For all k ∈ {1, 2} there exists a unique unital ∗-homomorphism

λv,k : Av,k → Ae such that λv,k ◦ πk = ρ.

Moreover, λv,k is faithful on πk(Ak) and, if Ek is GNS-faithful, λv,k is an isomorphism.

Proof. The formulae λv,k(x) = Vk(x⊗ 1)V ∗k defines a unital ∗-homomorphism λv,k : Av,k → Ae
satisfying λv,k ◦ πk = ρ. The uniqueness of λv,k is obvious. Let us check that λv,k is faithful on
πk(Ak). Suppose that x ∈ Ak and λv,k(πk(x)) = 0. Then, for all y ∈ Ak, we have ρ(y∗x∗xy) =
λv,k(πk(y

∗x∗xy)) = 0. Hence, 0 = E ◦ ρ(y∗x∗xy) = E ◦ ρ(Ek(y
∗x∗xy)) = Ek(y

∗x∗xy). It
follows that x ∈ Ker(ρk) hence, λk,k(x) = ⊕i∈Ik,kρk(x) ⊗ 1 = 0 which implies that πk(x) =

u∗k,kλk,k(x)uk,k = 0. The last statement follows from the universal property of Ae since the ucp
map Ek ◦ Ek : Av,k → B is GNS-faithful whenever Ek is GNS-faithful. �

In the next proposition, we study some associativity properties between the edge-reduced and
the vertex-reduced amalgamated free product. The result is interesting in itself and it will be
used to easily obtain ucp radial multipliers on the vertex-reduced amalgamated free product.

30 Jan 2020 23:48:48 PST

170719-PierreFima Version 3 - Submitted to Adv. Math.



THE KK-THEORY OF AMALGAMATED FREE PRODUCTS 11

Proposition 2.16. Let A1, A2, A3 be unital C*-algebras with a common unital C*-subalgebra B
and conditional expectations Ek : Ak → B. After identification of A1 with a C*-subalgebra of
both A1

1∗
B
A2 and A1

1∗
B
A3, the canonical GNS-faithful ucp maps A1

1∗
B
A2 → A1 and A1

1∗
B
A3 → A1

become conditional expectations and, with respect to these GNS-faithful conditional expectations,
we have canonical isomorphisms

•
(
A1

1∗
B
A2

)
e∗
A1

(
A1

1∗
B
A3

)
' A1

1∗
B

(
A2

e∗
B
A3

)
.

•
(
A1

2∗
B
A2

)
e∗
A2

(
A3

2∗
B
A2

)
'
(
A1

e∗
B
A3

)
2∗
B
A2.

Proof. We prove the first point. The proof of the second point is similar. We write Ã = A1
1∗
B(

A2
e∗
B
A3

)
. Let ρ : A2∗

B
A3 → A2

e∗
B
A3 and π̃ : A1∗

B

(
A2

e∗
B
A3

)
→ Ã be the canonical surjections

and Ẽ : Ã → A1 the canonical GNS-faithful ucp map. Define, for k = 1, 2, νk : Ak → Ã by
ν1 = π̃|A1 and ν2 = π̃ ◦ ρ|A2 . By definition, ν1(b) = ν2(b) for all b ∈ B and ν1 is faithful.
Let C be the C*-subalgebra of Ã generated by ν1(A1) ∪ ν2(A2). We claim that there exists
a (unique) unital faithful ∗-homomorphism ν : A1

1∗
B
A2 → Ã such that ν ◦ π1|Ak = νk for

k = 1, 2, where π1 : A1 ∗
B
A2 → A1

1∗
B
A2 is the canonical surjection. By the universal property

of the 1-vertex-reduced amalgamated free product, it suffices to show the following claim, where
E = Ẽ|C : C → A1.

Claim. The ucp map E is GNS-faithful and satisfies E◦ν1 = idA1 and, for all a = a1 . . . an ∈ Af
reduced with ak ∈ A◦ik , E(νi1(a1) . . . νin(an)) = 0 whenever n ≥ 2 or n = 1 and a = a1 ∈ A◦2.

Proof of the Claim. The fact the E vanishes on the reduced operators (not in A◦1) is obvious,
since Ẽ satisfies the same property. The only non-trivial property to check is the fact that E is
GNS-faithful: indeed, it is not true, in general, that the restriction of a GNS-faithful ucp map to
a subalgebra is again GNS-faithful. So suppose that there exists x ∈ C such that E(y∗x∗xy) = 0

for all y ∈ C and let us show that x is equal to zero. Since Ẽ : Ã → A1 is GNS-faithful, it
suffices to show that Ẽ(y∗x∗xy) = 0 for all y ∈ Ã. By hypothesis, we know that it is true for all

y ∈ C. Since Ã is the closed linear span of π̃(A1) and π̃(z), for z ∈ A1 ∗
B

(
A2

e∗
B
A3

)
a reduced

operator not in A◦1 and since π̃(A1) ∪ π̃ ◦ ρ(A2) ⊂ C, it suffices to show that Ẽ(y∗x∗xy) = 0

for y = π̃(z) and z = z1 . . . zn ∈ A1 ∗
B

(
A2

e∗
B
A3

)
a reduced operator with letters zk alternating

from A◦1, ρ(A◦2) and ρ(A◦3) and containing at least one letter in ρ(A◦3). Since one of the zk
is in ρ(A◦3) and x ∈ C we have, by the property of Ẽ, Ẽ(y∗(x∗x − Ẽ(x∗x))y) = 0. Hence,
Ẽ(y∗x∗xy) = Ẽ(y∗Ẽ(x∗x)y) = Ẽ(y∗E(x∗x)y) = 0, since E(x∗x) = 0.

End of the proof of the Proposition. Define, for k = 1, 3, the unital ∗-homomorphism ηk : Ak → Ã
by η1 = π̃|A1 = ν1 and η3 = π̃ ◦ ρ|A3 . Using the universal property of the 1-vertex-reduced
amalgamated free product one can show, using exactly the same arguments we used to construct
the homomorphism ν, that there exists a (necessarily unique) unital faithful ∗-homomorphism
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η : A1
1∗
B
A3 → Ã such that η ◦ π′1|Ak = ηk for k = 1, 3, where π′1 : A1 ∗

B
A3 → A1

1∗
B
A3 is the

canonical surjection. Note that ν(a) = η(a) for all a ∈ A1 and Ã is generated, as a C*-algebra,
by ν(A1

1∗
B
A2) ∪ η(A1

1∗
B
A3). Since the GNS-faithful ucp map Ẽ : Ã → A1 obviously satisfies

the condition on the reduced operators we may use the universal property of the edge-reduced
amalgamated free product to conclude that there exists a canonical ∗-isomorphism(

A1
1∗
B
A2

)
e∗
A1

(
A1

1∗
B
A3

)
→ Ã.

�

Using the previous identifications one can prove the following result about completely positive
radial multipliers. For i = (i1, . . . , in) ∈ I and l ∈ {1, 2} we define the number

n(i, l) = |{s ∈ {1, . . . , n} : is = l}|.

Proposition 2.17. For all k, l ∈ {1, 2} and all 0 < r ≤ 1 there exists a unique ucp map
ϕr : Av,k → Av,k such that ϕr(πk(b)) = πk(b) for all b ∈ B and,

ϕr(πk(a1 . . . an)) = rn(i,l)πk(a1 . . . an) for all a1 . . . an ∈ Af reduced with ak ∈ A◦ik and i = (i1, . . . , in).

Proof. We first prove the proposition for k = 1. We separate the proof in two cases.

Case 1: l = 2. Since π1 is faithful on A1, we may and will view A1 ⊂ Av,1. After this
identification, the canonical GNS-faithful ucp map E1 : Av,1 → A1 becomes a conditional
expectation. Consider the conditional expectation τ ⊗ id : C([0, 1]) ⊗ B → B, where τ is the
integral with respect to the normalized Lebesgue measure on [0, 1]. We will also view A1 ⊂
A1

1∗
B

(C([0, 1])⊗B) so that the canonical GNS-faithful ucp map Ẽ1 : A1
1∗
B

(C([0, 1])⊗B)→ A1

is a conditional expectation. Define Ã = Av,1
e∗
A1

(
A1

1∗
B

(C([0, 1])⊗B)

)
with respect to the

conditional expectations E1 and Ẽ1. Since E1 and Ẽ1 are GNS-faithful, the edge-reduced and the
k-vertex-reduced amalgamated free products coincide for k = 1, 2. Hence, we may and will view
Av,1 ⊂ Ã and we have a canonical GNS-faithful conditional expectation Ẽ : Ã → Av,1. Also,

by the first assertion of Proposition 2.16 we have a canonical identification Ã = A1
1∗
B
Ã2, where

Ã2 = A2
e∗
B

(C([0, 1]) ⊗ B). Let ρ̃2 : A2 ∗
B
C([0, 1]) ⊗ B → Ã2 be the canonical surjection from

the full to the edge-reduced amalgamated free product and π̃ : A1 ∗
B
Ã2 → A1

1∗
B
Ã2 = Ã be the

canonical surjection from the full to the vertex-reduced amalgamated free product. Fix t ∈ R and
define the unitary vt ∈ C([0, 1]) by vt(x) = e2iπtx. Let ρt = |τ(vt)|2 and ut = π̃ ◦ ρ̃2(vt⊗1B) ∈ Ã.
Define the unital ∗-homomorphisms ν1 = π̃|A1 : A1 → Ã and ν2 : Ã2 → Ã by ν2(x) = utπ̃(x)u∗t .
Note that ν1 is faithful. To simplify the notations we put Ã1 := A1.

Claim. For all x = x1 . . . xn ∈ A1 ∗
B
Ã2 reduced with xk ∈ Ã◦ik and i = (i1, . . . , in) ∈ I one has:

Ẽ(νi1(x1) . . . νin(xn)) =

{
ρ
n(i,l)
t π̃(x1 . . . xn) if π̃(x) ∈ Av,1,

0 if Ẽ(π̃(x)) = 0.
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Proof of the Claim. To prove the formula of the claim, we may and will assume that each
letter xk of x coming from Ã◦2 is a reduced word, in the edge reduced amalgamated free product
Ã2 = A2

e∗
B

(C([0, 1]) ⊗ B) with letters alternating from ρ̃2(A◦2) and ρ̃2((B ⊗ C([0, 1]))◦). Now

for such x, by the property of the conditional expectation Ẽ and the canonical identification

A1
1∗
B
Ã2 = Av,1

e∗
A1

(
A1

1∗
B

(C([0, 1])⊗B)

)
, we have π̃(x) ∈ Av,1 if and only if all the letters xk of

x for which xk ∈ Ã◦2 we actually have xk ∈ ρ̃2(A◦2). Note that we also have Ẽ(π̃(x)) = 0 if and
only if there is at least one letter xk of x coming from Ã◦2 which, itself viewed as a reduced word
in Ã2 = A2

e∗
B

(C([0, 1])⊗B, contains a letter which comes from ρ̃2((C([0, 1])⊗B)◦). We prove the

formula by induction on n. If n = 1 we have either x ∈ A◦1 in that case Ẽ(ν1(x)) = Ẽ(π̃(x)) = π̃(x)

or x ∈ ρ̃2(Ã◦2) and

Ẽ(ν2(x)) = Ẽ(utπ̃(x)u∗t )

= Ẽ((ut − τ(vt))π̃(x)(u∗t − τ(vt))) + τ(vt)Ẽ(π̃(x)(u∗t − τ(vt)))

+τ(vt)Ẽ((ut − τ(vt))π̃(x)) + |τ(vt)|2Ẽ(π̃(x))

= |τ(vt)|2Ẽ(π̃(x)) = ρtẼ(π̃(x)).

Hence, Ẽ(ν2(x)) =

{
ρtπ̃(x) if π̃(x) ∈ Av,1,
0 if Ẽ(π̃(x)) = 0.

This proves the formula for n = 1. Suppose that the formula holds for a given n ≥ 1. Let
x = x1 . . . xn+1 be reduced with xk ∈ Ã◦ik and define x′ = x1 . . . xn and z = νi1(x1) . . . νin(xn).
Let i = (i1, . . . , in+1) and i′ = (i1, . . . , in).

Suppose that xn+1 ∈ A◦1. Then n(i, 2) = n(i′, 2) and,

Ẽ(νi1(x1) . . . νin(xn)νin+1(xn+1)) = Ẽ(νi1(x1) . . . νin(xn)π̃(xn+1)) = Ẽ(z)π̃(xn+1).

Hence, if π̃(x) ∈ Av,1 then also π̃(x′) ∈ Av,1 and we have, by the induction hypothesis,

Ẽ(νi1(x1) . . . νin(xn)νin+1(xn+1)) = ρ
n(i′,2)
t π̃(x′)π̃(xn+1) = ρ

n(i,2)
t π̃(x).

If Ẽ(π̃(x)) = 0 then also Ẽ(π̃(x′)) = 0 and we have, by the induction hypothesis, Ẽ(z) = 0 so
Ẽ(νi1(x1) . . . νin(xn)νin+1(xn+1)) = 0.

Suppose now that xn+1 ∈ Ã◦2 then xn ∈ A◦1 and we have,

Ẽ(zνin+1(xn+1)) = Ẽ(zutπ̃(xn+1)u∗t )

= Ẽ(z(ut − τ(vt))π̃(xn+1)(u∗t − τ(vt))) + τ(vt)Ẽ(zπ̃(xn+1)(u∗t − τ(vt)))

+τ(vt)Ẽ(z(ut − τ(vt))π̃(xn+1)) + |τ(vt)|2Ẽ(zπ̃(xn+1))

= |τ(vt)|2Ẽ(zπ̃(xn+1)) = ρtẼ(zπ̃(xn+1)).

Hence, if π̃(x) ∈ Av,1 then also π̃(x′) ∈ Av,1 and xn+1 ∈ A◦2 so π̃(xn+1) ∈ Av,1 and n(i, 2) =
n(i′, 2) + 1. By the preceding computation and the induction hypothesis we find:

Ẽ(zνin+1(xn+1)) = ρtẼ(zπ̃(xn+1)) = ρtẼ(z)π̃(xn+1) = ρtρ
n(i′,2)
t π̃(x′)π̃(xn+1) = ρ

n(i,2)
t π̃(x).
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14 PIERRE FIMA AND EMMANUEL GERMAIN

Finally, if Ẽ(π̃(x)) = 0, we need to prove that Ẽ(zπ̃(xn+1)) = 0. Note that, since xn ∈ A◦1, we
have z = νi1(x1) . . . νin−1(xn−1)xn. Hence, if Ẽ(π̃(x′)) = 0 so by the induction hypothesis we
have Ẽ(z) = 0, z may be written as a sum of reduced operators, containing at least one letter
from ρ̃2((C([0, 1]) ⊗ B)◦) and ending with a letter from A◦1. It follows that zπ̃(xn+1) may be
written as a sum of reduced operators, containing at least one letter from ρ̃2((C([0, 1]) ⊗ B)◦).
Hence, Ẽ(zπ̃(xn+1)) = 0. If Ẽ(π̃(x)) = 0 and Ẽ(π̃(x′)) ∈ Av,1 then, x1, . . . xn ∈ A◦1 ∪ A◦2 but
Ẽ(π̃(xn+1)) = 0. It follows that z = νi1(x1) . . . νin−1(xn−1)xn may be written as a sum of reduced
operators ending with a letter from A◦1. Hence, zπ̃(xn+1) be be written as a sum of reduced
operators containing at least one letter from ρ̃2((C([0, 1])⊗B)◦). Hence, Ẽ(zπ̃(xn+1)) = 0.

End of the proof of the Proposition. By the Claim, E1 ◦ Ẽ(νi1(x1) . . . νin(xn)) = 0 for all reduced
operators x = x1 . . . xn ∈ A1 ∗

B
Ã2 which are not in A1 and, we obviously have, E1 ◦ Ẽ◦ν1 = idA1 .

Viewing Ã = A1
1∗
B
Ã2 and using the universal property of the vertex-reduced amalgamated free

product, there exists, for all t ∈ R, a unique unital ∗-isomorphism αt : Ã → Ã such that
αt(π̃(a)) = π̃(a) if a ∈ A1 and αt((π̃(x)) = utπ̃(x)u∗t if x ∈ A2

e∗
B

(C([0, 1]) ⊗ B). In particular,

it follows from the Claim that Ẽ ◦ αt|Av,1 : Av,1 → Av,1, which is a ucp map, satisfies the

properties of the map ϕr described in the statement of the proposition, with r = ρt =
∣∣∣ sin(πt)

πt

∣∣∣2.
This concludes the proof.

Case 2: l = 1. The proof is similar. This time, the automorphism αt : Ã → Ã is defined,
by the universal property, starting with the maps ν1 : A1 → Ã and ν2 : Ã2 → Ã defined by
ν1(a) = utπ̃(a)u∗t and ν2(x) = π̃(x). The remainder of the proof is the same.

The proof for k = 2 is the same, using the second assertion of Proposition 2.16. �

3. K-equivalence between the full and reduced amalgamated free products

Let A1, A2 be two unital C*-algebras with a common C*-subalgebra B ⊂ Ak, k = 1, 2 and
denote by Af the full amalgamated free product.

Let A := A1
v∗
B
A2 be the vertex-reduced amalgamated free product. For k = 1, 2, let EAk (resp.

EB) be the canonical conditional expectation from A to Ak (resp. from A to B). We will denote
by the same symbol A the set of reduced operators viewed in A or in Af . Recall that the linear
span of A and B is a dense unital ∗-subalgebra of A (resp. Af ).

We denote by λ : Af → A the canonical surjective unital ∗-homomorphism which is the identity
on A. In this section we prove the following result.

Theorem 3.1. [λ] ∈ KK(Af , A) is invertible.

The following lemma is well known (see [Ve04, Lemma 3.1]). We include a proof for the conve-
nience of the reader.

Lemma 3.2. Let n ≥ 1, ak ∈ A◦lk for 1 ≤ k ≤ n, and a = a1 . . . an ∈ A a reduced word. For
i = 1 or 2, one has

EAi(a
∗a) = EB(a∗a) whenever ln 6= i.
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THE KK-THEORY OF AMALGAMATED FREE PRODUCTS 15

Proof. We prove it for i = 1 by induction on n. The proof for i = 2 is the same.

It’s obvious for n = 1. Suppose that n ≥ 2, define b = EB(a∗1a1)
1
2 , x = (ba2) . . . an. One has:

EA1(a∗a) = EA1(a∗n . . . a
∗
1a1 . . . an) = EA1(a∗n . . . a

∗
2EB(a∗1a1)a2 . . . an) = EA1(x∗x) = EB(x∗x),

where we applied the induction hypothesis to get the last equality. Since the same computation
gives EB(a∗a) = EB(x∗x), this concludes the proof. �

We denote by (Hk, πk, ξk) (resp. (K, ρ, η)) the GNS construction of EAk (resp. EB). We may
and will assume that A ⊂ LAk(Hk) and πk = id.

Observe that the Hilbert Ak-module ξk.Ak ⊂ Hk is orthogonally complemented i.e. Hk =
ξk.Ak ⊕H◦k , as Hilbert Ak-modules, where H◦k is the closure of {aξk : a ∈ A, EAk(a) = 0}.
We now define a partial isometry Fk ∈ LAk(Hk,K ⊗

B
Ak) in the following way. First we put

Fk(ξk.a) = 0 for all a ∈ Ak. Then, it follows from Lemma 3.2 that we can define an isometry
Fk : H◦k → K ⊗

B
Ak by the following formula:

Fk(a1 . . . anξk) =

 ρ(a1 . . . an)η ⊗
B

1 if ln 6= k

ρ(a1 . . . an−1)η ⊗
B
an if ln = k

for all a1 . . . an ∈ A a reduced operator.

Let qk ∈ LB(K) be the orthogonal projection onto words which do not end with k i.e. onto the
complemented B submodule

⊕
i=(i1,...,in)∈I,in 6=kK

◦
i and note that Fk defines a bounded linear

map from Hk to K ⊗
B
Ak with image the complemented sub Ak-module (qk ⊗ 1)K ⊗

B
Ak. Hence,

Fk ∈ LAk(Hk,K ⊗
B
Ak) is a well defined partial isometry such that 1 − F ∗kFk is the orthogonal

projection onto ξk.Ak, and FkF ∗k = qk ⊗B 1. Note also that the image of 1− FkF ∗k is

((1−qk)⊗1)K⊗
B
Ak = (η⊗1).Ak⊕Span{ρ(a1 . . . an)η⊗1 : a = a1 . . . an ∈ A reduced with ln = k}.Ak.

We will denote in the sequel q0 the orthogonal projection of K onto η.B. It is clear that
1 = q1+q2+q0 and that these projections are pairwise orthogonal. Define also F k = Fk+θη⊗B1,ξk .
It is again clear that F k is an isometry and F kF

∗
k = qk + q0 = 1− ql for k 6= l.

Lemma 3.3. For k = 1, 2 the following facts hold.
(1) ρ(a)Fk = Fka ∈ LAk(Hk,K ⊗

B
Ak) for all a ∈ Ak.

(2) ρ(a)F k = F ka ∀a ∈ Al with l 6= k.
(3) For all x ∈ A, ρ(x)F k−F kx ∈ KAk(Hk,K⊗

B
Ak) and ρ(x)Fk−Fkx ∈ KAk(Hk,K⊗

B
Ak).

Proof. We prove the lemma for k = 1. The proof for k = 2 is the same.

(1). When a ∈ B the commutation is obvious hence we may and will assume that a ∈ A◦1. One
has F1aξ1 = 0 = ρ(a)F1ξ1. Let now n ≥ 1 and x = a1 . . . an ∈ A, ak ∈ A◦lk , be a reduced
operator with EA1(x) = 0. It suffices to show that F1axξ1 = ρ(a)F1xξ1. If n = 1 we must have
x ∈ A◦2 and F1axξ1 = ρ(ax)η⊗ 1 = ρ(a)F1xξ1. Suppose that n ≥ 2. If l1 = 2 then ax is reduced
and ends with a letter from A◦ln . It follows that F1axξ2 = ρ(a)F1xξ2. If l1 = 1 then we can write
ax = (aa1)◦a2 . . . an+EB(aa1)a2 . . . an. Since a2 . . . an is reduced and ends with ln we find again
that F1axξ1 = ρ(a)F1xξ1.
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16 PIERRE FIMA AND EMMANUEL GERMAIN

(2). Let a ∈ A◦2. Clearly F 1aξ1 = F1aξ1 = ρ(a)η ⊗ 1 and ρ(a)F 1ξ1 = ρ(a)η ⊗ 1. Let now n ≥ 1
and x = a1 . . . an ∈ A, ak ∈ A◦lk , be a reduced operator with EA1(x) = 0. If n = 1 we must have
x ∈ A◦2. It follows that F 1axξ1 = F1(ax)◦ξ1 + θη⊗1,ξ1EB(ax)ξ1 = ρ((ax)◦)η ⊗ 1 + EB(ax)η ⊗ 1

and ρ(a)F 1xξ1 = ρ(a)F1xξ1 = ρ(ax)η ⊗ 1. If n ≥ 2, arguing as in the proof of (1), we see that
F 1axξ1 = F1axξ1 = ρ(a)F1xξ1 = ρ(a)F 1xξ1.

(3). We only prove the first statement of (3), the proof of the second statement is the same. By
statement (2), it suffices to prove that ρ(x)F 1 − F 1x ∈ KA1(Hk,K ⊗

B
Ak) for x ∈ A1. Note that

F 1 is a compact perturbation of F1 and denote by θ the compact operator θ := F 1 − F1 then,
using statement (1) we get, for x ∈ A1, ρ(x)F 1 − F 1x = ρ(x)(F1 + θ)− (F1 + θ)x = ρ(x)θ− θx,
which is compact since θ is. �

We define the following Hilbert Af -modules:

Hm = H1 ⊗
A1

Af ⊕H2 ⊗
A2

Af and Km = K ⊗
B
Af =

(
K ⊗

B
Ak

)
⊗
Ak
Af ,

with the canonical representations π : A→ LAf (Hm), π(x) = x ⊗
A1

1Af ⊕ x ⊗
A2

1Af and ρ̄ : A→

LAf (Km), ρ̄(x) = ρ(x)⊗
B

1Af . We consider, for k = 1, 2, the partial isometry

Fk ⊗
Ak

1Af ∈ LAf (Hk ⊗
Ak
Af , (K ⊗

B
Ak) ⊗

Ak
Af ).

Observe that F1⊗
A1

1Af and F2⊗
A2

1Af have orthogonal images. Indeed, the image of Fk ⊗
Ak

1Af is the

closed linear span of {ρ(a1 . . . an)η⊗
B
y : y ∈ Af and a1 . . . an ∈ A reduced with an /∈ A◦k}. Hence

the operator F ∈ LAf (Hm,Km) defined by F = F1⊗
A1

1Af⊕F2⊗
A2

1Af is a partial isometry such that

1−FF ∗ is the orthogonal projection onto (η⊗
B

1Af ).Af and 1−F ∗F is the orthogonal projection

onto (ξ1 ⊗
A1

1Af ).Af ⊕(ξ2 ⊗
A2

1Af ).Af . In particular 1−F ∗F and 1−FF ∗ belongs to KAf (Hm) and

KAf (Km) respectively. Moreover, it follows from lemma 3.3 that Fπ(x)−ρ̄(x)F ∈ KAf (Hm,Km)
for all x ∈ A. Hence, we get an element α = [(Hm ⊕Km, π ⊕ ρ̄, F )] ∈ KK(A,Af ).

To prove Theorem 3.1 it suffices to prove that α ⊗
Af

[λ] = [idA] in KK(A,A) and [λ]⊗
A
α = [idAf ]

in KK(Af , Af ). We prove the easy part in the next proposition.

Proposition 3.4. One has [λ]⊗
A
α = [idAf ] in KK(Af , Af ).

Proof. Observe that [λ]⊗
A
α = [(Hm⊕Km, πm⊕ρm, F )] where πm = π ◦λ : Af → LAf (Hm) and

ρm = ρ̄ ◦ λ : Af → LAf (Km). Hence, by compact perturbation, [λ] ⊗
A
α − [idAf ] is represented

by the Kasparov triple (Hm⊕ K̃m, πm⊕ ρ̃m, F̃ ), where K̃m = Km⊕Af and ρ̃m(x) = ρm(x)⊕ x,
where we view Af = LAf (Af ) by left multiplication. Finally, F̃ ∈ LAf (Hm, K̃m) is the unitary
defined by

F̃ (ξ1 ⊗
A1

1Af ) = η ⊗
B

1Af , F̃ (ξ2 ⊗
A2

1Af ) = 1Af and,

F̃ (ξ) = F (ξ) for all ξ ∈ Hm 	
(

(ξ1 ⊗
A1

1Af ).Af ⊕ (ξ2 ⊗
A2

1Af ).Af

)
.
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THE KK-THEORY OF AMALGAMATED FREE PRODUCTS 17

We collect some computations in the following claim.

Claim. Let v ∈ LAf (Hm) be the self-adjoint unitary defined by the identity on Hm 	 ((ξ1 ⊗
A1

1Af ).Af ⊕ (ξ2 ⊗
A2

1Af ).Af ) and v(ξ1 ⊗
A1

1Af ) = ξ2 ⊗
A2

1Af , v(ξ2 ⊗
A2

1Af ) = ξ1 ⊗
A1

1Af . One has:

(1) F̃ ∗ρ̃m(b)F̃ = πm(b) and v∗πm(b)v = πm(b) for all b ∈ B.
(2) F̃ ∗ρ̃m(a)F̃ = v∗πm(a)v for all a ∈ A1.
(3) F̃ ∗ρ̃m(a)F̃ = πm(a) for all a ∈ A2.

Proof of the claim.The proof of (1) is obvious and we leave it to the reader.

(2). By (1), it suffices to prove (2) for a ∈ A◦1. Let a ∈ A◦1. On the one hand:

F̃ ∗ρ̃m(a)F̃ ξ1 ⊗
A1

1Af = F̃ ∗(ρ(a)η⊗
B

1Af ) = aξ2 ⊗
A2

1Af and F̃ ∗ρ̃m(a)F̃ ξ2 ⊗
A2

1Af = F̃ ∗(a) = ξ2 ⊗
A2

a.

On the other hand:

v∗πm(a)vξ1⊗
A1

1Af = v∗(aξ2⊗
A2

1Af ) = aξ2⊗
A2

1Af and v∗πm(a)vξ2⊗
A2

1Af = v∗(aξ1⊗
A1

1Af ) = ξ2⊗
A2

a.

Let now x = a1 . . . an ∈ A be a reduced operator with ak ∈ A◦lk . We prove by induction on n that
F̃ ∗ρ̃m(a)F̃ xξk ⊗

Ak
1Af = v∗πm(a)vxξk ⊗

Ak
1Af for all k ∈ {1, 2}. Suppose that n = 1 so x ∈ A◦1∪A◦2

and let k ∈ {1, 2} such that x /∈ A◦k (the case x ∈ A◦k has been done before). We have:

F̃ ∗ρ̃m(a)F̃ xξk ⊗
Ak

1Af = F̃ ∗(ρ(ax)η ⊗
B

1Af ) =

 (ax)◦ξ2 ⊗
A2

1Af + ξ1 ⊗
A1

EB(ax) if x ∈ A◦1,

axξ1 ⊗
A1

1Af if x ∈ A◦2.

On the other hand we have:

v∗πm(a)vxξk ⊗
Ak

1Af = v∗(axξk ⊗
Ak

1Af ) =

 (ax)◦ξ2 ⊗
A2

1Af + ξ1 ⊗
A1

EB(ax) if x ∈ A◦1 (k = 2),

axξ1 ⊗
A1

1Af if x ∈ A◦2 (k = 1).

Finally, suppose that n ≥ 2 and the formula holds for n− 1. Write ax = y + z, where, if l1 = 1,
y = (aa1)◦a2 . . . an and z = EB(aa1)a2 . . . an and, if l1 = 2, y = ax and z = 0. Observe that, in
both cases, y is a reduced operator ending with a letter from A◦ln and z is either 0 or a reduced
operator ending with a letter from A◦ln . By the induction hypothesis, we may and will assume
that k 6= ln. We have:

F̃ ∗ρ̃m(a)F̃ xξk ⊗
Ak

1Af = F̃ ∗(ρ(ax)η ⊗
B

1Af ) = F̃ ∗(ρ(y)η ⊗
B

1Af ) + F̃ ∗(ρ(z)η ⊗
B

1Af )

= yξk ⊗
Ak

1Af + zξk ⊗
Ak

1Af = axξk ⊗
Ak

1Af .

Moreover,

v∗πm(a)vxξk ⊗
Ak

1Af = v∗(axξk ⊗
Ak

1Af ) = v∗(yξk ⊗
Ak

1Af ) + v∗(zξk ⊗
Ak

1Af )

= yξk ⊗
Ak

1Af + zξk ⊗
Ak

1Af = axξk ⊗
Ak

1Af .

The proof of (3) is similar. �
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18 PIERRE FIMA AND EMMANUEL GERMAIN

End of the proof of Proposition 3.4. Let t ∈ R and define vt = cos(t) + iv sin(t) ∈ LAf (Hm).
Since v = v∗ is unitary, vt is a unitary for all t ∈ R. Moreover, assertion (1) of the Claim implies
that vtπm(b)v∗t = πm(b) for all b ∈ B. It follows from the universal property of Af that there
exists a unique unital ∗-homomorphism πt : Af → LAf (Hm) such that:

πt(a) =

{
v∗t πm(a)vt if a ∈ A1,
πm(a) if a ∈ A2.

Then the triple αt = (Hm ⊕ K̃m, πt ⊕ ρ̃m, F̃ ) gives a homotopy between α0 which represents
[λ]⊗

A
α− [idAf ] and απ

2
which is degenerated by the claim. �

We finish the proof of Theorem 3.1 in the next proposition.

Proposition 3.5. One has α ⊗
Af

[λ] = [idA] in KK(A,A).

Proof. Observe that α ⊗
Af

[λ] = [(Hr ⊕Kr, πr ⊕ ρr, Fr)] where

Hr = Hm ⊗
λ
A = H1 ⊗

A1

A⊕H2 ⊗
A2

A and Kr = Km ⊗
λ
A = K ⊗

B
A =

(
K ⊗

B
Ak

)
⊗
Ak
A,

with the canonical representations πr : A→ LA(Hr), πr(x) = π(x)⊗
λ

1 = x ⊗
A1

1A ⊕ x ⊗
A2

1A and

ρr : A→ LA(Kr), ρr(x) = ρ̄(x)⊗
λ

1 = ρ(x)⊗
B

1A and with the operator Fr = F⊗
λ

1 ∈ LA(Hr,Kr).

Hence, α ⊗
Af

[λ] − [idA] is represented by the Kasparov triple (Hr ⊕ K̃r, πr ⊕ ρ̃r, F̃r), where

K̃r = Kr ⊕ A and ρ̃r(x) = ρr(x)⊕ x, where we view A = LA(A) by left multiplication. Finally,
F̃r ∈ LA(Hr, K̃r) is the unitary defined by

F̃r(ξ1 ⊗
A1

1A) = η ⊗
B

1A, F̃r(ξ2 ⊗
A2

1A) = 1A and,

F̃ (ξ) = F (ξ) for all ξ ∈ Hr 	
(

(ξ1 ⊗
A1

1A).A⊕ (ξ2 ⊗
A2

1A).A

)
.

The claim in the proof of Proposition 3.4 implies the following claim.

Claim. Let u ∈ LA(Hr) be the self-adjoint unitary defined by the identity on Hr	((ξ1 ⊗
A1

1A).A⊕

(ξ2 ⊗
A2

1A).A) and u(ξ1 ⊗
A1

1A) = ξ2 ⊗
A2

1A, u(ξ2 ⊗
A2

1A) = ξ1 ⊗
A1

1A. One has:

(1) F̃ ∗ρ̃r(b)F̃ = πr(b) and u∗πr(b)u = πr(b) for all b ∈ B.
(2) F̃ ∗ρ̃r(a)F̃ = u∗πr(a)u for all a ∈ A1.
(3) F̃ ∗ρ̃r(a)F̃ = πr(a) for all a ∈ A2.

Let t ∈ R and define the unitary ut = cos(t) + iu sin(t) ∈ LA(Hr). Assertion (1) of the Claim
implies that u∗tπr(b)ut = πr(b) for all b ∈ B. By the universal property of full amalgamated free
products, for all t ∈ R, there exists a unique unital ∗-homomorphism πt : Af → LA(Hr) such
that:

πt(a) =

{
u∗tπr(a)ut if a ∈ A1,
πr(a) if a ∈ A2.
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Arguing as in the end of the proof of Proposition 3.4, we see that it suffices to show that, for all
t ∈ [0, π2 ], πt factorizes through A i.e. ker(λ) ⊂ ker(πt). Since it is obvious for t = 0, we only
need to show that ker(λ) ⊂ ker(πt) for all t ∈]0, π2 ]. To do that, we need the following claim.

Claim. For all t ∈ R and all a = a1 . . . an ∈ A a reduced operator with ak ∈ A◦lk one has

(1) πt(a)u∗t (ξ2 ⊗
A2

1A) = e−it(aξ2 ⊗
A2

1A) if ln = 1 and πt(a)(ξ1 ⊗
A1

1A) = aξ1 ⊗
A1

1A if ln = 2.

(2) 〈u∗t (ξ1 ⊗
A1

1A), πt(a)u∗t (ξ1 ⊗
A1

1A)〉 = sin2k(t)a where k =


n
2 if n is even,
n−1

2 if n is odd and ln = 1,
n+1

2 if n is odd and ln = 2.

(3) 〈ξ2 ⊗
A2

1A, πt(a)ξ2 ⊗
A2

1A〉 = sin2k(t)a where k =


n
2 if n is even,
n+1

2 if n is odd and ln = 1,
n−1

2 if n is odd and ln = 2.

Proof of the Claim. (1) is obvious by induction on n once observed that utξ = eitξ (and u∗t ξ =
e−itξ) for all ξ ∈ Hr 	 (ξ1 ⊗

A1

1A.A⊕ ξ2 ⊗
A2

1A.A).

(2). Define, for a1 . . . an ∈ A, F (a1, . . . , an) = 〈u∗t (ξ1 ⊗
A1

1A), πt(a)u∗t (ξ1 ⊗
A1

1A)〉. First suppose

that a ∈ A◦1 then F (a) = 〈u∗t (ξ1 ⊗
A1

1A), u∗tπr(a)(ξ1 ⊗
A1

1A)〉 = 〈ξ1 ⊗
A1

1A, ξ1 ⊗
A1

a〉 = a. Now, let

a = a1 . . . an ∈ A with n ≥ 2 and ln = 1. We have:

F (a1, . . . , an) = 〈u∗t (ξ1 ⊗
A1

1A), πt(a1 . . . an−1)u∗t (ξ1 ⊗
A1

an)〉 = F (a1, . . . , an−1)an.

Hence, it suffices to show the formula for ln = 2. Suppose a ∈ A◦2, we have:

F (a) = 〈u∗t (ξ1 ⊗
A1

1A), πr(a)u∗t (ξ1 ⊗
A1

1A)〉

= 〈cos(t)ξ1 ⊗
A1

1A − i sin(t)ξ2 ⊗
A2

1A, cos(t)aξ1 ⊗
A1

1A − i sin(t)ξ2 ⊗
A2

a〉 = sin2(t)a.

Now suppose a1a2 ∈ A, with l2 = 2, l1 = 1. We have:

F (a1, a2) = 〈ξ1 ⊗
A1

1A, πr(a1)utπr(a2)u∗t (ξ1 ⊗
A1

1A)〉

= 〈ξ1 ⊗
A1

1A, πr(a1)ut(cos(t)a2ξ1 ⊗
A1

1A − i sin(t)ξ2 ⊗
A2

a2)〉

= 〈ξ1 ⊗
A1

1A, cos(t)eita1a2ξ1 ⊗
A1

1A − i cos(t) sin(t)a1ξ2 ⊗
A2

a2 + sin2(t)ξ1 ⊗
A1

a1a2〉

= sin2(t)a1a2.

Finally, suppose that n ≥ 3 and a1 . . . an ∈ A with ln = 2. Define x = a1 . . . an−2. We have

F (a1, . . . , an) = 〈u∗t (ξ1 ⊗
A1

1A), πt(x)u∗tπr(an−1)utπr(an)u∗t (ξ1 ⊗
A1

1A)〉

= 〈u∗t (ξ1 ⊗
A1

1A), πt(x)u∗tπr(an−1)ut(cos(t)anξ1 ⊗
A1

1A − i sin(t)ξ2 ⊗
A2

an)〉

= 〈u∗t (ξ1 ⊗
A1

1A), πt(x)u∗t (cos(t)eitan−1anξ1 ⊗
A1

1A−i cos(t) sin(t)an−1ξ2 ⊗
A2

an+sin2(t)ξ1 ⊗
A1

an−1an)〉

= 〈u∗t (ξ1 ⊗
A1

1A), cos(t)a1 . . . anξ1 ⊗
A1

1A − ie−it cos(t) sin(t)a1 . . . an−1ξ2 ⊗
A2

an〉

+〈u∗t (ξ1 ⊗
A1

1A), sin2(t)πt(x)u∗t ξ1 ⊗
A1

an−1an)〉.
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20 PIERRE FIMA AND EMMANUEL GERMAIN

Hence we find:

F (a1, . . . , an) = sin2(t)〈u∗t (ξ1 ⊗
A1

1A), πt(x)u∗t ξ1 ⊗
A1

an−1an)〉 = sin2(t)F (a1, . . . , an−2)an−1an.

The result now follows by an obvious induction on n. The proof of (3) is similar. �

End of the proof of Proposition 3.5. Fix t ∈]0, π2 ] and let At be the C*-subalgebra of LA(Hr)
generated by πt(A1) ∪ πt(A2). Hence, πt : Af → At is surjective. Consider the ucp map

ϕt : At → A defined by ϕt(x) = 1
2

(
〈u∗t (ξ1 ⊗

A1

1A), xu∗t (ξ1 ⊗
A1

1A)〉+ 〈ξ2 ⊗
A2

1A, xξ2 ⊗
A2

1A〉
)

and

note that ϕt is GNS faithful. Indeed, let x ∈ At such that ϕt(y∗x∗xy) = 0 for all y ∈ At. Then
L ⊂ ker(x) where,

L = Span
(
Atu

∗
t (ξ1 ⊗

A1

1A).A ∪At(ξ2 ⊗
A2

1A).A

)
= Span

(
At(ξ1 ⊗

A1

1A).A ∪At(ξ2 ⊗
A2

1A).A

)
= Span

(
At(ξ1 ⊗

A1

1A).A ∪Atu∗t (ξ2 ⊗
A2

1A).A

)
= Hr,

where we used Assertion (1) of the Claim for the last equality. Hence x = 0. Let Av,k for
k = 1, 2 be the k-vertex-reduced free product and call ik the natural inclusion of A in Av,k
and πk = ik ◦ λ the natural map from Af to Av,k. Clearly ||x||A = max(||i1(x)||, ||, i2(x)||) for
any x in the vertex-reduced free product A. From the Assertions (2) and (3) of the Claim and
Proposition 2.17 with r = sin2(t) > 0 we deduced that for any k = 1, 2 there exists two ucp
maps ψk1 and ψk2 from Av,k to itself such that ik(ϕt(πt(a))) = 1

2(ψk1 (πk(a)) + ψk2 (πk(a))) for all
a ∈ Af . Therefore ||ϕt(πt(a))||A ≤ max(||π1(a)||, ||π2(a)||) = ||λ(a)|| for all a ∈ Af . Let us show
that ker(λ) ⊂ ker(πt). Let x ∈ ker(λ). Then, for all y ∈ Af we have λ(y∗x∗xy) = 0. Therefore
ϕt ◦ πt(y∗x∗xy) = 0 for all y ∈ Af . Since πt is surjective we deduce that ϕt(y∗πt(x)∗πt(x)y) = 0
for all y ∈ At. Using that ϕt is GNS faithful we deduce that πt(x) = 0. �

We obtain the following obvious Corollary of Theorem 3.1 and Corollary 2.9.

Corollary 3.6 ([Cu82]). If we have conditional expectations Ek : Ak → B which are also unital
∗-homomorphism, then the canonical surjection A1 ∗

B
A2 → A1 ⊕B A2 is K-invertible.

4. A six term exact sequence in KK-theory for full amalgamated free
products

Let A1 and A2 two unital C*-algebras with a common unital C*-subalgebra B. We will denote
by il the inclusion of B in Al for l = 1, 2. The algebra Af is the full amalgamated free product.
To simplify notation we will denote by S the algebra C0(]− 1, 1[).

Let D be the subalgebra of S⊗Af consisting of functions f such that f(]−1, 0[) ⊂ A1, f(]0, 1[) ⊂
A2 and f(0) ∈ B. This algebra is of course isomorphic to the cone of i1⊕ i2 from B to A1⊕A2.
We call j the inclusion of D in the suspension of Af .

Theorem 4.1. Suppose that there exist unital conditional expectations from Al to B for l = 1, 2,
then the map j, seen as an element [j] of KK0(D,S ⊗Af ), is invertible.

The proof of this result will be done in several steps. We will start with the construction of an
element x of KK1(Af , D). As KK1(Af , D) is isomorphic to KK0(S⊗Af , D) this will produce a
candidate y for the inverse of j. The proof that y⊗D [j] is the identity of the suspension of Af in
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THE KK-THEORY OF AMALGAMATED FREE PRODUCTS 21

KK0(Af , Af ) will use 3.4. Finally the proof that [j]⊗S⊗Af y is the identity of D in KK0(D,D)
will be done indirectly by using a short exact sequence for D.

4.1. An inverse in KK-theory. In order to present the inverse, we need some additional
notations and preliminaries. Let κ1 be the inclusion of C0(]−1, 0[;A1) in D and κ2 the inclusion
of C0(]0, 1[;A2) in D. There is also κ0 the obvious map from S⊗B in D. As K of the preceding
section is a B-module, we can define

K0 = (K⊗S)⊗κ0D, K1 = (K⊗i1A1⊗C0(]−1, 0[))⊗κ1D and K2 = (K⊗i2A2⊗C0(]0, 1[))⊗κ2D.
If one defines Il as the images of κl in D for l = 1, 2, it is clear that these are ideals in D.

Lemma 4.2. Kl is canonically isomorphic to K0.Il for l = 1, 2 as D Hilbert module.

Proof. We will show the statement for l = 1. Indeed as I1 = C0(]− 1, 0[).I1 because an
approximate unit for C0(] − 1, 0[) is also one for I1, it is easy to see that K0.I1 is isomor-
phic to (K ⊗ S).C0(]− 1, 0[) ⊗κ0 D.I1, i.e. (K ⊗ C0(] − 1, 0[)) ⊗κ0 D.I1. Considering that
C0(]− 1, 0[;A1)⊗κ1 D is D.I1, one gets that K0.I1 is nothing but (K ⊗C0(]− 1, 0[))⊗κ̃0 C0(]−
1, 0[;A1) ⊗κ1 D where κ̃0 is the natural inclusion of C0(] − 1, 0[;B) in C0(] − 1, 0[;A1), i.e.
i1 ⊗ IdC0(]−1,0[). Therefore (K ⊗i1 A1) ⊗ C0(] − 1, 0[) is (K ⊗ C0(] − 1, 0[)) ⊗κ̃0 C0(] − 1, 0[;A1)

and K0.I1 is K1. �

We will also need the following lemmas :

Lemma 4.3. (1) If f ∈ C([−1, 1];R), then f is a self-adjoint element in Z(M(D)) and more
generally for any D-Hilbert module E the right multiplication by f induces an element
f̂ ∈ Z(LD(E)) such that the map f 7→ f̂ is an algebra homomorphism.

(2) Let f in C0(]− 1, 0[;R). Then f ∈ I1 ∩Z(D) and the right multiplication by f induces a
morphism f̂ of LD(K0,K1) such that f̂∗f̂ = f̂2 in LD(K0) and f̂ f̂∗ = f̂2 in LD(K1).

(3) Let f in C0(]0, 1[;R). Then f ∈ I2 ∩ Z(D) and the right multiplication by f induces a
morphism f̂ of LD(K0,K2) such that f̂∗f̂ = f̂2 in LD(K0) and f̂ f̂∗ = f̂2 in LD(K2).

The first point is pretty obvious and (2) and (3) are also clear in view of Lemma 4.2.

Lemma 4.4. (1) If f ∈ C0(] − 1, 1[;R) then for any B-module E and F ∈ KB(E), we have
((F ⊗ 1S)⊗κ0 1D)f̂ is a compact operator of (E ⊗ S)⊗κ0 D.

(2) If f ∈ C0(] − 1, 0[;R) then for any A1-module E and F ∈ KA1(E), we have (F ⊗
1C0(]−1,0[) ⊗κ1 1D)f̂ is a compact operator of (E ⊗ C0(]− 1, 0[))⊗κ1 D.

(3) Similarily for f ∈ C0(]0, 1[;R) and A2-modules.

Proof. Point (2) and (3) are similar to (1). To show (1), let F be the rank one operator θξ,η for
ξ and η vectors in E which is defined as θξ,η(x) = ξ < η, x > for all x in E . Then (F ⊗ 1S)⊗κ0
1Df̂ is θξ⊗f2⊗f2,η⊗f2⊗f2 f̂1 and therefore compact for any function f = f1f

4
2 with f1 and f2 in

C0(] − 1, 1[;R). As any function can be written like that, for example by polar decomposition,
we get our result. �

Define now two functions in C([−1, 1];R) : C+(t) is cos(πt) if t ≥ 0 and 1 if t ≤ 0, the function
C−(t) is cos(πt) if t ≤ 0 and 1 if t ≥ 0. Similarly, we have two functions in S ; S+ is sin(πt) if
t ≥ 0 and 0 if t ≤ 0, the function S−(t) is sin(πt) if t ≤ 0 and 0 if t ≥ 0. And finally T is the
identity function of C([−1, 1];R).
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22 PIERRE FIMA AND EMMANUEL GERMAIN

With the notation of the first part, we have a natural D-module

H = (H1 ⊗ C0(]− 1, 0[))⊗κ1 D ⊕ (H2 ⊗ C0(]0, 1[))⊗κ2 D ⊕ (K ⊗ S)⊗κ0 D.

It is also clear that H is endowed with a natural (left) action of Af as H1, H2 and K have it.

Let G be the operator of LD(H) defined in matrix form by

G =

 Ĉ− 0 −((F1 ⊗ 1C0(]−1,0[))
∗ ⊗κ1 1)Ŝ−

0 −Ĉ+ ((F2 ⊗ 1C0(]0,1[))
∗ ⊗κ2 1)Ŝ+

−Ŝ−
∗
((F1 ⊗ 1C0(]−1,0[))⊗κ1 1) Ŝ+

∗
((F2 ⊗ 1C0(]0,1[))⊗κ2 1) Z


where Z = −Ĉ−((q1⊗ 1S)⊗κ0 1) + Ĉ+((q2⊗ 1S)⊗κ0 1)− T̂ ((q0⊗ 1S)⊗κ0 1). Thanks to Lemma
4.3, G is well-defined. Moreover the following facts hold.

Proposition 4.5. The operator G satisfies that G2 − 1 is a compact operator of H and G
commutes modulo compact operators with the action of Af .

Proof. To make reading easier, we will note, in this proof only, F1 for (F1⊗ 1C0(]−1,0[))⊗κ1 1 and
F2 for (F2 ⊗ 1C0(]0,1[))⊗κ2 1. Computing G2 one gets as upper left 2× 2 corner :(

Ĉ−
2

+ F1
∗
Ŝ−Ŝ−

∗
F1 −F1

∗
Ŝ−Ŝ+

∗
F2

−F2
∗
Ŝ−
∗
Ŝ+F1 Ĉ+

2
+ F2

∗
Ŝ+Ŝ+

∗
F2

)

As F ∗1F1 is the identity modulo compact operators, using Lemma 4.4 ( the function (S−)2 is in
C0(]− 1, 1[) ) one has that F1

∗
(̂S−)2F1 is (̂S−)2 modulo compact operators. Recalling also that

F ∗1F2 = 0, one gets that this matrix is then the identity modulo compact operators.

Let’s focus now on the last row of G2. We get first −Ĉ−F1
∗
Ŝ− − F1

∗
Ŝ−Z. As F ∗1 q1 ⊗i1 1 = F ∗1

and F ∗1 q2 ⊗i1 1 = 0 along with F ∗1 q0 ⊗i1 1 = 0, F1
∗
Ŝ−Z is −F1

∗
Ŝ−Ĉ−. The second component

of that row is treated in the same way. Finally the last component is Ŝ−
2
F1 F1

∗
+ Ŝ+

2
F2 F2

∗
+

Ĉ−
2
((q1 ⊗ 1S) ⊗κ0 1) + Ĉ+

2
((q2 ⊗ 1S) ⊗κ0 1) + T̂ 2((q0 ⊗ 1S) ⊗κ0 1) as q0, q1, q2 are commuting

projections. But FlF ∗l is ql⊗il 1 so Ŝ−
2
F1 F1

∗ is Ŝ−
2
((q1⊗1S)⊗κ0 1). Hence, as q1 + q2 + q0 = 1,

the last component is 1 + T̂ 2 − 1((q0⊗ 1S)⊗κ0 1). As T 2− 1 is in C0(]− 1, 1[) and q0 is compact,
this component is then 1 modulo compact operators.

Addressing now the compact commutation with the left action of Af , it is very obvious using
Lemma 4.4 and Lemma 3.3 (3) for every component of G except Z as it contains multiplica-
tion with functions not in C0(] − 1, 1[). So let a be in A1. We need to compute [Z, ρ(a) ⊗κ0
1]. But we know that [q1, ρ(a)] = 0. As q2 = 1 − q1 − q0 we get that [Z, ρ(a) ⊗κ0 1] =

−(Ĉ+ + T )(([q0, ρ(a)]) ⊗κ0 1) which is compact as C+ + T is a function that vanishes on −1
and 1. The case when a is in A2 is treated in a similar way, hence the compact commutation
property is proved for all a in Af . �

As a consequence, the couple (H,G) defines an element of KK1(Af , D) which we will call x in
the sequel.
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4.2. K-equivalence. In all the following proofs we will very often use the external tensor
product of Kasparov elements. Instead of the traditional notation τC(x) for the tensorisation
with the algebra C of an element x in KK∗(A,B), we will write 1C ⊗ x for the element in
KK∗(C ⊗A,C ⊗B) or x⊗ 1C for the element in KK∗(A⊗C,B⊗C). Of course B⊗C is (non
canonically) isomorphic to C ⊗B, but as we will perform several times this operation, the order
will matter. Note that we do not specify the tensor norm as the algebra C we will be using is
always nuclear. Also when π is a morphism between A and B, we will write [π] for the canonical
element in KK0(A,B).

We will denote by b the element of KK1(C, S) which is defined on the S-Hilbert module S itself
by the operator T̂ . It is well known that b is invertible. Indeed let’s describe its form as an
extension. The projection associated to the orthogonal symmetry T̂ is the multiplication by
the function p(t) = (1 + t)/2 on Cb(] − 1, 1[)/C0(] − 1, 1[). Now in Cb(] − 1, 1[), the C*-algebra
generated by C0(]− 1, 1[) and p is obviously C0(]− 1, 1]). So the extension we have to consider
is given by the map from C to C0(]− 1, 1])/C0(]− 1, 1[) that sends λ to λp. Using the evaluation
at 1, one gets the standard extension

0→ C0(]− 1, 1[)→ C0(]− 1, 1])→ C→ 0.

Using UCT for example, as all K-groups appearing here are torsion-free, we deduce that b is
invertible. The interested reader can also check section 19.2 of [Bl86].

Proposition 4.6. With the hypothesis of Theorem 4.1, one has in KK1(Af , Af⊗S) that x⊗D [j]
is homotopic to 1Af ⊗ b.

Proof. We will actually show that x ⊗D [j] is homotopic to [IdAf ] ⊗Af (1Af ⊗ b). To prove
that, we will choose the representant of [IdAf ] that appear in 3.4 and show that its Kasparov
product with 1Af ⊗ b is homotopic to x ⊗D [j]. Call jl for l = 1, 2 the inclusions of Al in Af
and j0 = j1 ◦ i1 = j2 ◦ i2 the inclusion of B in Af . First it is obvious that H ⊗j (Af ⊗ S) is
H1 ⊗j1 Af ⊗ C0(] − 1, 0[) ⊕H2 ⊗j2 Af ⊗ C0(]0, 1[) ⊕K ⊗j0 Af ⊗ S which is not quite the same
as (H1 ⊗j1 Af ⊕H2 ⊗j2 Af ⊕K ⊗j0 Af )⊗ S. So we will realize now a homotopy to fix that.

Lemma 4.7. Consider the following two spaces : ∆1 = {(t, s) ∈ R2 : 0 ≤ s ≤ 1, −1 < t < s}
and ∆2 = {(t, s) ∈ R2 : 0 ≤ s ≤ 1, −s < t < 1}. The Hilbert module H = H1 ⊗j1 Af ⊗
C0(∆1)⊕H2 ⊗j2 Af ⊗C0(∆2)⊕K ⊗j0 Af ⊗ S ⊗C([0, 1]) is endowed with a natural structure of
Af ⊗ S ⊗C([0, 1]) Hilbert module, as C0(∆1) and C0(∆2) naturally embed in C0(]− 1, 1[×[0, 1])
(with inclusion maps d1 and d2), and Af left action. Moreover the operator

G =

 Ĉ− ⊗ 1C([0,1]) 0 −(F1 ⊗j1 1⊗ d1)∗(Ŝ− ⊗ 1C([0,1]))

0 −Ĉ+ ⊗ 1C([0,1]) (F2 ⊗j2 1⊗ d2)∗(Ŝ+ ⊗ 1C([0,1]))

−(Ŝ−
∗
⊗ 1C([0,1]))(F1 ⊗j1 1⊗ d1) (Ŝ+

∗
⊗ 1C([0,1]))(F2 ⊗j2 1⊗ d2) Z


with Z = Z̃ ⊗ 1C([0,1]) where Z̃ = −Ĉ−(q1 ⊗j0 1 ⊗ 1S) + Ĉ+(q2 ⊗j0 1 ⊗ 1S) − T̂ (q0 ⊗j0 1 ⊗ 1S)

makes the pair (H,G) into an element of KK1(Af , Af ⊗ S ⊗C([0, 1])) for which the evaluation
at s = 0 is x⊗D [j] and the evaluation at s = 1 has (H1 ⊗j1 Af ⊕H2 ⊗j2 Af ⊕K ⊗j0 Af )⊗ S as

module and G̃ =

 Ĉ− 0 −(F ∗1 ⊗j1 1⊗ 1S)Ŝ−

0 −Ĉ+ (F ∗2 ⊗j2 1⊗ 1S)Ŝ+

−Ŝ−
∗
(F1 ⊗j1 1⊗ 1S) Ŝ+

∗
(F2 ⊗j2 1S) Z̃

 as operator.
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Proof. As it is a straightforward check, details will be omitted. �

Using Connes- Skandalis characterization of the Kasparov product, we will now establish that G̃
is a representant of the Fredholm operator for the product [IdAf ]⊗Af (1Af ⊗ b) by checking the
connection and positivity properties (see [Bl86] Chap 18.4). But to do that we of course need to
revert to the general presentation of KK1 elements as graded KK elements (see preliminairies).
Let’s denote e0 = (1, 1) and e1 = (1,−1) the basis of C1. The element of graded KK-theory that
we have now for x⊗D [j] is given by the module (H1 ⊗j1 Af ⊕H2 ⊗j2 Af ⊕K ⊗j0 Af )⊗ S ⊗C1

and operator R such that if ξ is in H1⊗j1Af ⊕H2⊗j2Af ⊕K⊗j0Af and f in S, R(ξ⊗f ⊗e0) =

G̃(ξ ⊗ f)⊗ e1. As R is C1-linear, that completely characterizes R. There is a similar statement
for b as an element of KK(C, S ⊗ C1). We will call T the 1-graded operator that appears.

Looking first at the module for [IdAf ] ⊗Af (1Af ⊗ b), we obtain (H1 ⊗j1 Af ⊕ H2 ⊗j2 Af ⊕
K ⊗j0 Af )⊗̂(S ⊗ C1). Note that we used the graded tensor product. Of course when one
term is trivially graded the graded tensor product is the usual tensor product. At first look,
it is the same as (H1 ⊗j1 Af ⊕ H2 ⊗j2 Af ⊕ K ⊗j0 Af ) ⊗ S ⊗ C1 except that the grading is
not the same. But of course there is a Af ⊗ S ⊗ C1-isomorphism U that corrects that, sending
(H1⊗j1Af⊕H2⊗j2Af )⊗S⊗̂e0⊕(K⊗j0Af )⊗S⊗̂e1 to (H1⊗j1Af⊕H2⊗j2Af⊕K⊗j0Af )⊗S⊗e0.
Through this isomorphism, R becomes R.

Let’s look now at the connection condition (see [Bl86] Definition 18.3.1 p 170). As R and T are
self-adjoint, there is only one condition to test. For ξ in H1⊗j1 Af ⊕H2⊗j2 Af , one should look
at the Af ⊗S⊗C1-linear map from Af ⊗S⊗C1 to (H1⊗j1Af ⊕H2⊗j2Af ⊕K⊗j0Af )⊗̂(S⊗C1)

defined for f in S and a in Af as a⊗ f ⊗ e0 7→ (−1)0×1R(ξ.a⊗̂(f ⊗ e0))− ξ.a⊗̂T (f ⊗ e0) (as we
do the Kasparov product with 1Af ⊗ b )and prove that it is compact. Observe that the operator
leaves in C([−1, 1]) ⊗ L(Af ⊗ C1, (H1 ⊗j1 Af ⊕ H2 ⊗j2 Af ⊕ K ⊗j0 Af )⊗̂C1). As Af is unital
and therefore IdAf compact, this is C([−1, 1]) tensored by compact operators. Hence we simply
need proving that the evaluation at −1 and 1 of the operator is 0. On both ends G̃ is diagonal,

equals to

−1 0 0
0 −1 0
0 0 1

 or the opposite matrix as q1 + q2 + q0 = 1. So the evaluation at −1

of (−1)0×1R will send (ξ⊗̂e0) to −ξ⊗̂e1 which is what the evaluation at −1 of T does. For the
evaluation at 1, the two operators are also identical.

Similarly if ξ in K⊗j0Af , one looks at (−1)1×1R(ξ.a⊗̂(f ⊗e0))−ξ.a⊗̂T (f ⊗e0). The evaluation
at −1 of (−1)1×1R will send (ξ⊗̂e0) to ξ⊗̂e1 which is again what the evaluation at −1 of T does
and similarly for the evaluation at 1.

We now concentrate on the commutator condition (see [Bl86] Definition 18.4.1 p 172). One
needs to compute the anti-commutator of R with F ⊗̂1, using the operator F that appeared
before Proposition 3.4. We will call G0 and G1 the diagonal and anti-diagonal part of G̃.

For ξ in H1 ⊗j1 Af ⊕ H2 ⊗j2 Af and f in S, one has that F ⊗̂1(ξ ⊗ f ⊗ e0) = F (ξ)⊗̂(f ⊗ e0).
As F (ξ) is then of degree 1, R(F (ξ)⊗̂(f ⊗ e0)) = R(F (ξ) ⊗ f ⊗ e1) = U∗G̃(F (ξ) ⊗ f) ⊗ e0 =
G0(F (ξ)⊗f)⊗̂e1 +G1(F (ξ)⊗f)⊗̂e0. On the other hand (F ⊗̂1).R(ξ⊗̂(f⊗e0)) = (F⊗1S).G0(ξ⊗
f)⊗̂e1 + (F ⊗ 1S).G1(ξ ⊗ f)⊗̂e0. As the same is true for ξ in K ⊗j0 Af , we will be done once
the following Lemma is proved.
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Lemma 4.8. The anti-commutator of G0 and F ⊗ 1S is 0 modulo compact operators and the
anti-commutator of G1 and F ⊗ 1S is positive modulo compact operators.

Proof. It is clear that

Ĉ− 0 0

0 −Ĉ+ 0

0 0 Z̃

 and

 0 0 F ∗1 ⊗i1 1⊗ 1S
0 0 F ∗2 ⊗i2 1⊗ 1S

F1 ⊗i1 1⊗ 1S F2 ⊗i2 1⊗ 1S 0


anti-commutes modulo compact operator as we have (modulo compact operator) q1F1 = F1 and
q2F1 = q0F1 = 0. On the other hand the anti-commutator with the anti-diagonal part is−2((F ∗1F1)⊗j1 1⊗ 1S)Ŝ− 0 0

0 2((F ∗2F2)⊗j2 1⊗ 1S)Ŝ+ 0

0 0 −2(q1 ⊗j0 1⊗ 1S)Ŝ− + 2(q2 ⊗j2 1⊗ 1S)Ŝ+


As −S− and S+ are positive functions and q1 and q2 are orthogonal projections, the previous
matrix is a diagonal matrix of positive operators hence positive. �

End of the proof of Proposition 4.6. Having checked the two conditions that characterize the
Kasparov product we have our proposition. Note that as [IdAf ] is a Kasparov cycle given by a
homomorphism, we obviously have [IdAf ]⊗Af (1Af ⊗ b) = (1Af ⊗ b)⊗Af⊗S ([IdAf ]⊗ 1S). Hence
x ⊗D [j] is also equal to (1Af ⊗ b) ⊗Af⊗S ([IdAf ] ⊗ 1S). This is the form we need in the final
stage of our proof of the theorem. �

We need now the following two lemmas to get some information about [j]⊗Af⊗S (x⊗ 1S) as an
element of KK1(D,D ⊗ S).

Lemma 4.9. Call ev0 the morphism from D to B that evaluates a function at 0. Then we have
in KK1(D,B ⊗ S) that [j]⊗Af⊗S ((x⊗D [ev0])⊗ 1S) = −[ev0]⊗B (1B ⊗ b).

Proof. Let’s first describe the left hand side. The Hilbert module is K ⊗ S as the module
(H1⊗C0(]− 1, 0[))⊗κ1 D⊗ev0 B is 0. The left D action is given by (ρ⊗ 1S) ◦ j and the operator
is just (−q1 + q2) ⊗ 1S . We can replace this operator with G0 = (−q1 + q2) ⊗ 1S − T̂ (q0 ⊗ 1S)

as for any f in D, (ρ ⊗ 1S) ◦ j(f) T̂ (q0 ⊗ 1S) is compact. Observe that G0 is an operator of
C([−1, 1]) ⊗ L(K). Note now that the evaluation at −1 of G0 is −q1 + q2 + q0 = (1 − 2q1)
and at 1 is −q1 + q2 − q0 = 2q2 − 1 as q1 + q2 + q0 = 1. It then enables us to do a homotopy.
Consider the pair (K ⊗ S ⊗ C([0, 1]), G0 ⊗ 1C([0,1])) where the left action of D is defined now
for any f in D and k ∈ C(]− 1, 1[×[0, 1];K) as (f.k)(t, s) = ρ(f(t(1− s)))k(t, s). This is still a
Kasparov element as (G2

0 − 1) ⊗ 1C([0,1]) = ( ̂(T 2 − 1)(q0 ⊗ 1S)) ⊗ 1C([0,1]) hence compact. Also
the commutator of the left action with the operator G0 ⊗ 1 is compact. Indeed, as the qi have
compact commutators with the left action, any commutator of G0⊗ 1 with a left-acting element
lives in C([−1, 1]) ⊗ K(K). It is then only necessary to check that the evaluation at −1 or 1
of any commutator is 0. But this is true as [q1, ρ(A1)] = 0 and [q2, ρ(A2)] = 0. Therefore
[j]⊗Af⊗S ((x⊗D [ev0])⊗ 1S) is homotopic to an element of KK1(D,B ⊗ S) which is described
with the pair (K ⊗ S,G0) where D acts on K ⊗ S as the constant morphism ρ ◦ ev0. So it is
[ev0]⊗B z with z an element of KK1(B,B ⊗ S) which is only non trivial on q0K ⊗ S ' B ⊗ S
where G0 acts as −T̂ . Thus z = −1B ⊗ b. �

Recall that for l = 1, 2, κl is the inclusion of Al ⊗C(]− 1, 0[) in D. To be precise we will use κ̄l
for the induced map from Al ⊗ S to D via the isomorphism of C(]− 1, 0[) with S.
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Lemma 4.10. For all l = 1, 2, one has [jl]⊗Af x = ([IdAl ]⊗ b)⊗Al⊗S [κ̄l] ∈ KK1(Al, D).

Proof. We will do the lemma for l = 1. The element [j1]⊗Af x has the same module and operator
as x, the only change is that we only consider a left action of A1. We first perform a compact
perturbation of the operator G. With the operators F l defined before Lemma 3.3, consider

G1 =

 Ĉ− 0 −((F1 ⊗ 1C0(]−1,0[))
∗ ⊗κ1 1)Ŝ−

0 −Ĉ+ ((F 2 ⊗ 1C0(]0,1[))
∗ ⊗κ2 1)Ŝ+

−Ŝ−
∗
((F1 ⊗ 1C0(]−1,0[))⊗κ1 1) Ŝ+

∗
((F 2 ⊗ 1C0(]0,1[))⊗κ2 1) Z

 ,

where Z = −Ĉ−((q1 ⊗ 1S)⊗κ0 1) + Ĉ+(((1− q1)⊗ 1S)⊗κ0 1).
As F2 − F 2 is compact (see Lemma 3.3 ) and Z − Z = Ĉ+ + T ((q0 ⊗ 1S) ⊗κ0 1) is compact as
C+ + T is in S, we get the same element of KK1(A1, D). Observe now that G2

1 is the identity
because F 2 is an isometry and Ŝ−((F1⊗1C0(]−1,0[))⊗κ1 1) vanishes and that G1 commutes exactly
with the left action of A1 as F1 and F 2 does.

We will now construct a homotopy to remove the [0, 1[ part of our module. Consider the space
∆3 = {(t, s) ∈ R : 0 ≤ s ≤ 1, 0 < t < s} and ∆4 = {(t, s) ∈ R : 0 ≤ s ≤ 1, −1 < t < s}
which are open in ] − 1, 1[×[0, 1]. Hence we also have a natural imbedding δ4 of C0(∆4;B) in
D ⊗ C([0, 1]) and δ3 of C0(∆3;A2) in D ⊗ C([0, 1]). Then H̃ = (H1 ⊗ C0(] − 1, 0[)) ⊗κ1 D ⊗
C([0, 1])⊕ (H2 ⊗C0(∆3))⊗δ3 D ⊗C([0, 1])⊕ (K ⊗C0(∆4)⊗δ4 D ⊗C([0, 1]) is well defined and
the pair (H̃,G1 ⊗ 1C([0,1])) is a Kasparov element in KK1(A1, D ⊗ C([0, 1])). Indeed the only
thing to check is whether G2

1⊗ 1C([0,1]) is the identity modulo compact operator as G1⊗ 1C([0,1])

has exact commutation with the action of A1. But this is true by the previous observation.

Therefore [jl] ⊗Af x can be represented by the evaluation at 0 of this Kasparov element. Let’s
describe it: the module part is (H1⊕K⊗i1A1)⊗C0(]−1, 0[)⊗κ1D with obvious left A1 action as
(K⊗C0(]−1, 0[))⊗κ0D is isomorphic to (K⊗i1A1)⊗C0(]−1, 0[)⊗κ1D. With this identification,
the operator is

E1 =

(
Ĉ− −((F ∗1 ⊗ 1C0(]−1,0[))⊗κ1 1)Ŝ−

−Ŝ−
∗
((F1 ⊗ 1C0(]−1,0[))⊗κ1 1) Z1

)
where Z1 = −Ĉ−((q1 ⊗i1 1)⊗ 1C0(]−1,0[))⊗κ1 1 + (((1− q1)⊗i1 1)⊗ 1C0(]−1,0[))⊗κ1 1.
It is then clear, after identifying C0(] − 1, 0[) with S, that [j1] ⊗Af x is z ⊗A1⊗S [κ̄1] with z in
KK1(A1, A1⊗S). By recalling that 1−q1 commutes with the left action of A1, it is obvious that z

is represented by the pair ((H1⊕q1K⊗i1A1)⊗S,E1) withE1 =

(
Ĉ1 −(F ∗1 ⊗ 1S)Ŝ1

−Ŝ1
∗
(F1 ⊗ 1S) −Ĉ1(q1 ⊗i1 1⊗ 1S)

)
where C1 is the function cos(π(t/2− 1/2)) and S1 the function sin(π(t/2− 1/2)).

Following the proof of Proposition 4.6, z is obviously the product z′⊗b where z′ is the element of
KK0(A1, A1) given by the module H1 ⊕ q1K ⊗i1 A1 with H1 positively graded and the obvious

left action of A1 and the operator
(

0 F ∗1
F1 0

)
. Now the action of A1 stabilizes H◦1 and commutes

with F1 by 3.3 (1) and moreover F1 is a unitary between H◦1 and q1K ⊗i1 A1. Hence this part
is degenerated and can be removed from the Kasparov element. What remains is the graded
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module ξ1.A1⊕0 with left action of A1 by multiplication and 0 as operator. This is a description
of [IdA1 ].

�

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Call a ∈ KK1(S,C) the inverse of b. The element y = (1Af ⊗ a)⊗Af x
is an element of KK0(Af ⊗ S,D). We claim that this is the inverse of [j]. Indeed thanks to 4.6
we have that

y ⊗D [j] = (1Af ⊗ a)⊗Af x⊗D [j] = (1Af ⊗ a)⊗Af (1Af ⊗ b)⊗Af⊗S ([IdAf ]⊗ 1S).

As a⊗C b = [IdS ] we get that y⊗D [j] = (1Af ⊗ [IdS ])⊗Af⊗S ([IdAf ]⊗1S) is [IdAf⊗S ]. To prove
the reverse equality, we will need a trick that can be found already in [Pi86]. Observe first that
for any l = 1, 2 and using Lemma 4.10,

[κ̄l]⊗D [j]⊗Af⊗S y = [j ◦ κ̄l]⊗Af⊗S y = ([jl]⊗ 1S)⊗Af⊗S (1Af ⊗ a)⊗Af x
= (1Al ⊗ a)⊗Al [jl]⊗Af x
= (1Al ⊗ a)⊗Al (1Al ⊗ b)⊗Al ([IdAl ]⊗ 1S)⊗Al⊗S [κ̄l]

= [κ̄l].

Now we need to compute [j]⊗Af⊗S y ⊗D [ev0]. To do this we will use the following lemma.

Lemma 4.11. In KK1(D⊗S,Af ⊗S), one has ([j]⊗Af⊗S (1Af ⊗ a))⊗ 1S = −(1D ⊗ a)⊗D [j].

Proof. Indeed,

(1D ⊗ b)⊗D⊗S ([j]⊗Af⊗S (1Af ⊗ a))⊗ 1S = [j]⊗Af⊗S (1Af ⊗ (1S ⊗ b)⊗S⊗S (a⊗ 1S)).

If Σ is the flip automorphism of S ⊗ S then clearly [Σ] = −[IdS⊗S ] in KK0(S ⊗ S, S ⊗ S). As a
consequence (1S ⊗ b)⊗S⊗S (a⊗ 1S) = −1S ⊗ (b⊗C a) = −[IdS ]. Hence

(1D ⊗ b)⊗D⊗S ([j]⊗Af⊗S (1Af ⊗ a))⊗ 1S) = −[j].

Multiplying both sides by 1D ⊗ a gives the result. �

In view of Lemmas 4.11 and 4.9 one has:

([j]⊗Af⊗S y ⊗D [ev0])⊗ 1S = −(1D ⊗ a)⊗D ([j]⊗Af⊗S (x⊗D [ev0])⊗ 1S)

= +(1D ⊗ a)⊗D [ev0]⊗B (1B ⊗ b)
= (1D ⊗ a)⊗D (1D ⊗ b)⊗D⊗S ([ev0]⊗ 1S)

= [ev0]⊗ 1S

As −⊗ 1S from KK(B1, B2) to KK(B1 ⊗ S,B2 ⊗ S) is an isomorphism for any B1 and B2, we
get [j]⊗Af⊗S y⊗D [ev0] = [ev0]. Denote now q = [IdD]− [j]⊗Af⊗S y. As y⊗D [j] = [IdAf⊗S ], q
is an idempotent in the ring KK0(D,D). On the other hand, D fits into a short exact sequence

0→ A1 ⊗ S ⊕A2 ⊗ S
κ̄1⊕κ̄2−→ D

ev0−→ B → 0.

The induced six term exact sequence for the functor KK0(D,−) then shows that, as q⊗D [ev0] =
0, there exist ql in KK0(D,Al) for l = 1, 2 such that q = (q1 ⊕ q2) ⊗A1⊕A2 ([κ̄1] ⊕ [κ̄2]). So
q = q⊗D q = (q1⊕q2)⊗A1⊕A2 ([κ̄1]⊕ [κ̄2])⊗D q = 0 because [κ̄l]⊗D q = 0 for l = 1, 2 as observed
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before Lemma 4.11. Therefore [IdD] = [j]⊗Af⊗S y and the K-equivalence between Af and D is
established. �

We obtain the following immediate corollaries.

Corollary 4.12. Let C be any separable C*-algebra. Recall that il is the inclusion of B in Al
and jl is the inclusion of Al in A1 ∗B A2 for l = 1 or 2. Then we have the two 6-terms exact
sequences,

KK0(C,B)
i∗1⊕i∗2−→ KK0(C,A1)

⊕
KK0(C,A2)

j∗1+j∗2−→ KK0(C,A1 ∗B A2)
↑ ↓

KK1(C,A1 ∗B A2)
j∗1+j∗2←− KK1(C,A1)

⊕
KK1(C,A2)

i∗1⊕i∗2←− KK1(C,B)

and

KK0(B,C)
i∗1+i∗2←− KK0(A1, C)

⊕
KK0(A2, C)

j∗1⊕j∗2←− KK0(A1 ∗B A2, C)
↓ ↑

KK1(A1 ∗B A2, C)
j∗1⊕j∗2−→ KK1(A1, C)⊕KK1(A2, C)

i∗1+i∗2−→ KK1(B,C)

Proof. The proof can be found in [Ge97] or [Th03]. It is simply the application of the six-term
exact sequence to the short exact sequence for D that has been used just above. Identification
of the horizontal maps as well as the connecting maps can also be found there. �

The following is a generalization of a similar statement in [FF13].

Corollary 4.13. Let G1, G2, H be compact quantum groups and suppose that Ĥ is a common
discrete quantum subgroup of both Ĝ1, Ĝ2 and Ĝk is K-amenable for k = 1, 2. Then the amalga-
mated free product of the two discrete quantum groups is K-amenable.

Proof. Write, for k = 1, 2, Cm(Gk), Cm(H) the full C*-algebras and C(Gk), C(H) the reduced
C*-algebra and view Cm(H) ⊂ Cm(Gk), C(H) ⊂ C(Gk), for k = 1, 2. Let Ĝ be the amalgamated
free product discrete quantum group. One has Cm(G) = Cm(G1) ∗

Cm(H)
Cm(G2) and C(G) =

C(G1)
e∗

C(H)
C(G2), where the edge-reduced amalgamated free product is done with respect to

the faithful Haar states on C(Gk), for k = 1, 2. Let λGk : Cm(Gk) → C(Gk) be the canonical
surjection. By assumption, λGk isK-invertible for k = 1, 2. Observe that the canonical surjection
λG : Cm(G)→ C(G) is given by λG = π ◦ λ, where

λ : Cm(G1) ∗
Cm(H)

Cm(G2)→ C(G1) ∗
C(H)

C(G2)

is the free product of the maps λG1 and λG2 and π : C(G1) ∗
C(H)

C(G2)→ C(G1)
e∗

C(H)
C(G2) is

the canonical quotient map. By Theorem 3.1 π is K-invertible and using the exact sequence of
the full free product and the five Lemma, λ is K-invertible. �
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