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Abstract. Convolutional neural networks (CNN) have deeply impacted
the field of machine learning. These networks, designed to process ob-
jects with a fixed topology, can readily be applied to images, videos and
sounds but cannot be easily extended to structures with an arbitrary
topology such as graphs. Examples of applications of machine learning
to graphs include the prediction of the properties molecular graphs, or
the classification of 3D meshes. Within the chemical graphs framework,
we propose a method to extend networks based on a fixed topology to
input graphs with an arbitrary topology. We also propose an enriched
feature vector attached to each node of a chemical graph and a new layer
interfacing graphs with arbitrary topologies with a full connected layer.

Keywords: Graph-CNNs, graph classification, graph edit distance.

1 Introduction

Convolutional neural networks(CNN) [13] have deeply impacted machine learn-
ing and related fields such as computer vision. These large breakthrough encour-
aged many researchers [5,10,9,4] to extend the CNN framework to unstructured
data such as graphs, point clouds or manifolds. The main motivation for this
new trend consists in extending the initial successes obtained in computer vi-
sion to other fields such as indexing of textual documents, genomics, computer
chemistry or indexing of 3D models.

The initial convolution operation defined within CNN, uses explicitly the
fact that objects (e.g. pixels) are embedded within a plane and on a regular
grid. These hypothesis do not hold when dealing with convolution on graphs.
A first approach related to the graph signal processing framework uses the link
between convolution and Fourier transform as well as the strong similarities
between the Fourier transform and the spectral decomposition of a graph. For
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Fig. 1: Illustration of our propositions on a graph convolutional network

example, Bruna et al. [5] define the convolution operation from the Laplacian
spectrum of the graph encoding the first layer of the neural network. However this
approach requires a costly decomposition into singular Laplacian values during
the creation of the convolution network as well as costly matrices multiplications
during the test phase. These limitations are partially solved by Defferard et
al. [9] who propose a fast implementation of the convolution based on Chebyshev
polynomials (CGCNN). This implementation allows a recursive and efficient
definition of the filtering operation while avoiding the explicit computation of
the Laplacian. However, both methods are based on a fixed graph structure. Such
networks can process different signals superimposed onto a fixed input layer but
are unable to predict properties of graphs with variable topologies.

Another family of methods is based on a spatial definition of the graph con-
volution operation. Kipf and Welling [12] proposed a model (CGN) which ap-
proximates the local spectral filters from [9]. Using this formulation, filters are
no longer based on the Laplacian but on a weight associated to each component
of the vertices’ features for each filter. The learning process of such weights is
independent of the graph topology. Therefore graph neural networks based on
this convolution scheme can predict properties of graphs with various topologies.
The model proposed by Duvenaud et al. [10] for fingerprint extraction is similar
to [12], but considers a set of filters for each possible degree of vertices. These
last two methods both weight each components of the vertices’ feature vectors.
Verma et al. [17] propose to attach a weight to edges through the learning of
a parametric similarity measure between the features of adjacent vertices. Sim-
ilarly, Simonovsky and Komodakis [15] learn a weight associated to each edge
label. Finally, Atwood and Towsley [1] (with DCNN) remove the limitation of
the convolution to the direct neighborhood of each vertex by considering powers
of a transition matrix defined as a normalization of the adjacency matrix by
vertices’ degrees. A main drawback of this non-spectral approach is that there
exist intrinsically no best way to match the learned convolution weights with
the elements of the receptive field, hence this variety of recent models.

In this paper, we propose to unify both spatial and spectral approaches by
using as input layer a super-graph deduced from a graph train set. In addition,
we propose an enriched feature vector within the framework of chemical graphs.
Finally, we propose a new bottleneck layer at the end of our neural network which
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Fig. 2: Frequency of patterns associated to the central node (C).

is able to cope with the variable size of the previous layer. These contributions are
described in Section 2 and evaluated in Section 3 through several experiments.

2 Contributions

2.1 From symbolic to feature graphs for convolution

Convolution cannot be directly applied to symbolic graphs. So symbols are usu-
ally transformed into unit vectors of {0, 1}|L|, where L is a set of symbols, as
done in [1,10,15] to encode atom’s type in chemical graphs. This encoding has
a main drawback, the size of convolution kernels is usually much smaller than
|L|. Combined with the sparsity of vectors, this produces meaningless means
for dimensionality reduction. Moreover, information attached to edges is usually
unused.

Let us consider a graph G = (V,E, σ, φ), where V is a set of nodes, E ⊆ V ×V
a set of edges, and σ and φ functions labeling respectively G’s nodes and edges.
To avoid these drawbacks, we consider for each node u of V a vector representing
the distribution of small subgraphs covering this node. Let Nu denotes its 1-hop
neighbors. For any subset S ⊆ Nu, the subgraph MS

u = ({u}∪S,E∩ ({u}∪S)×
({u} ∪ S), σ, φ) is connected (through u) and defines a local pattern of u. The
enumerations of all subsets of Nu provides all local patterns of u that can be
organized as a feature vector counting the number of occurrences of each local
pattern. Figure 2 illustrates the computation of such a feature vector. Note that
the node’s degree of chemical graphs is bounded and usually smaller than 4.

During the training phase, the patterns found for the nodes of the training
graphs determine a dictionary as well as the dimension of the feature vector
attached to each node. During the testing phase, we compute for each node of
an input graph, the number of occurrences of its local patterns also present in
the dictionary. A local pattern of the test set not present in the train set is thus
discarded. In order to further enforce the compactness of our feature space, we
apply a PCA on the whole set of feature vectors and project each vector onto a
subspace containing 95% (fixed threshold) of the initial information.

2.2 Supergraph as input layer

As mentioned in section 1, methods based on spectral analysis [5,9] require a
fixed input layer. Hence, these methods can only process functions defined on a
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fixed graph topology (e.g. node’s classification or regression tasks) and cannot
be used to predict global properties of topologically variable graphs. We propose
to remove this restriction by using as an input layer a supergraph deduced from
graphs of a training set.

A common supergraph of two graphs G1 and G2 is a graph S so that both G1

and G2 are isomorphic to a subgraph of S. More generally, a common supergraph
of a set of graphs G = {Gk = (Vk, Ek, σk, φk)}k=nk=1 is a graph S = (VS , ES , σS , φS)
so that any graph of G is isomorphic to a subgraph of S. So, given any two
complementary subsets G1,G2 ⊆ G, with G1 ∪G2 = G, it holds that a supergraph
of a supergraph of G1 and a supergraph of G2 is a supergraph of G. The latter
can thus be defined by applying this property recursively on the subsets. This
describes a tree hierarchy of supergraphs, rooted at a supergraph of G, with
the graphs of G as leaves. We present a method to construct hierarchically a
supergraph so that it is formed of a minimum number of elements.

A common supergraph S of two graphs, or more generally of G, is a minimum
common supergraph (MCS) if there is no other supergraph S′ of G with |VS′ | <
|VS | or (|VS′ | = |VS |)∧(|ES′ | < |ES |). Constructing such a supergraph is difficult
and can be linked to the following notion. A maximum common subgraph (mcs)
of two graphs Gk and Gl is a graph Gk,l that is isomorphic to a subgraph

Ĝk of Gk and to a subgraph Ĝl of Gl, and so that there is no other common
subgraph G′ of both Gk and Gl with |VG′ | > |VGk,l

| or (|VG′ | = |VGk,l
|) ∧

(|EG′ | > |EGk,l
|). Then, given a maximum common subgraph Gk,l, the graph S

obtained from Gk,l by adding the elements of Gk not in Ĝk and the elements

of Gl not in Ĝl is a minimum common supergraph of Gk and Gl. This property
shows that a minimum common supergraph can thus be constructed from a
maximum common subgraph. These notions are both related to the notion of
error-correcting graph matching and graph edit distance [6].

The graph edit distance (GED) captures the minimal amount of distortion
needed to transform an attributed graph Gk into an attributed graph Gl by
iteratively editing both the structure and the attributes of Gk, until Gl is ob-
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tained. The resulting sequence of edit operations γ, called edit path, transforms
Gk into Gl. Its cost (the strength of the global distortion) is measured by
Lc(γ) =

∑
o∈γ c(o), where c(o) is the cost of the edit operation o. Among all

edit paths from Gk to Gl, denoted by the set Γ (Gk, Gl), a minimal-cost edit
path is a path having a minimal cost. The GED from Gk to Gl is defined as the
cost of a minimal-cost edit path: d(Gk, Gl) = minγ∈Γ (Gk,Gl) Lc(γ).

Under mild constraints on the costs [3], an edit path can be organized into a
succession of removals, followed by a sequence of substitutions and ended by a
sequence of insertions. This reordered sequence allows to consider the subgraphs
Ĝk of Gk and Ĝl of Gl. The subgraph Ĝk is deduced from Gk by a sequence of
node and edge removals, and the subgraph Ĝl is deduced from Ĝk by a sequence
of substitutions (Figure 3a). By construction, Ĝk and Ĝl are structurally iso-
morphic, and an error-correcting graph matching (ECGM) between Gk and Gl
is a bijective function f : V̂k → V̂l matching the nodes of Ĝk onto the ones of Ĝl
(correspondences between edges are induced by f).

Then ECGM, mcs and MCS are related as follows. For specific edit cost
values [6] (not detailed here), if f corresponds to an optimal edit sequence, then
Ĝk and Ĝl are mcs of Gk and Gl. Moreover, adding to a mcs of Gk and Gl the
missing elements from Gk and Gl leads to an MCS of these two graphs. We use
this property to build the global supergraph of a set of graphs.

Supergraph construction The proposed hierarchical construction of a com-
mon supergraph of a set of graphs G = {Gi}i is illustrated by Fig. 3b. Each
level k of the hierarchy contains Nk graphs. They are merged by pairs to pro-
duce bNk/2c supergraphs. In order to restrain the size of the final supergraph,
a natural heuristic consists in merging close graphs according to the graph edit
distance. This can be formalized as the computation of a maximum matching
M?, in the complete graph over the graphs of G, minimizing:

M? = arg min
M

∑
(gi,gj)∈M

d(gi, gj) (1)

where d(·, ·) denotes the graph edit distance. An advantage of this kind of con-
struction is that it is highly parallelizable. Nevertheless, computing the graph
edit distance is NP-hard. Algorithms that solve the exact problem cannot be rea-
sonably used here. So we considered a bipartite approximation of the GED [14]
to compute d(·, ·) and solve (1), while supergraphs are computed using a more
precise but more computationally expansive algorithm [7].

2.3 Projections as input data

The supergraph computed in the previous section can be used as an input layer
of a graph convolutional neural network based on spectral graph theory [5,9]
(Section 1). Indeed, the fixed input layer allows to consider convolution opera-
tions based on the Laplacian of the input layer. However, each input graph for
which a property has to be predicted, must be transformed into a signal on the
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supergraph. This last operation is allowed by the notion of projection, a side
notion of the graph edit distance.

Definition 1 (Projection). Let f be an ECGM between two graphs G and S
and let (V̂S , ÊS) be the subgraph of S defined by f (Fig. 3). A projection of G =

(V,E, σ, φ) onto S = (VS , ES , σS , φS) is a graph P fS (G) = (VS , ES , σP , φP ) where

σP (u) = (σ ◦ f−1)(u) for any u ∈ V̂S and 0 otherwise. Similarly, φP ({u, v}) =
φ({f−1(u), f−1(v)}) for any {u, v} in ÊS and 0 otherwise.

Let {G1, . . . , Gn} be a graph training set and S its the associated supergraph.

The projection P fS (Gi) of a graph Gi induces a signal on S associated to a value
to be predicted. For each node of S belonging to the projection of Gi, this signal
is equal to the feature vector of this node in Gi. This signal is null outside the pro-
jection of Gi. Moreover, if the edit distance between Gi and S can be computed
through several edit paths with a same cost (i.e., several ECGM f1, . . . , fm), the

graph Gi will be associated to these projections P f1S (Gi), . . . , P
fm
S (Gi). Remark

that a graph belonging to a test dataset may also have several projections. In this
case, it is mapped onto the majority class among its projections. A natural data
augmentation can thus be obtained by learning m equivalent representations of
a same graph on the supergraph, associated to the same value to be predicted.
Note that this data augmentation can also be increased by considering µm non-
minimal ECGM, where µ is a parameter. To this end, we use [7] to compute a set
of non-minimal ECGM between an input graph Gi and the supergraph S and
we sort this set increasingly according to the cost of the associated edit paths.

2.4 Bottleneck layer with variable input size

A multilayer perceptron (MLP), commonly used in the last part of multilayer
networks, requires that the previous layer has a fixed size and topology. Without
the notion of supergraph, this last condition is usually not satisfied. Indeed, the
size and topology of intermediate layers are determined by those of the input
graphs, which generally vary. Most of graph neural networks avoid this drawback
by performing a global pooling step through a bottleneck layer. This usually
consists in averaging the components of the feature vectors across the nodes of
the current graph, the so-called global average pooling (GAP). If for each node
v ∈ V of the previous layer, the feature vector h(v) ∈ RD has a dimension
D, GAP produces a mean vector ( 1

|V |
∑
v∈V hc(v))c=1,...,D describing the graph

globally in the feature space.
We propose to improve the pooling step by considering the distribution of

feature activations across the graph. A simple histogram can not be used here,
due to its non-differentiability, differentiability being necessary for backpropaga-
tion. To guarantee this property holds, we propose to interpolate the histogram
by using averages of Gaussian activations. For each component c of a given a
feature vector h(v), the height of a bin k of this pseudo-histogram is computed
as follows:

bck(h) =
1

|V |
∑
v∈V

exp

(
−(hc(v)− µck)2

σ2
ck

)
(2)
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The size of the layer is equal to D ×K, where K is the number of bins defined
for each component.

In this work, the parameters µck and σck are fixed and not learned by the
network. To choose them properly, the model is trained with a GAP layer for
few iterations (10 in our experiments), then it is replaced by the proposed layer.
The weights of the network are preserved, and the parameters µck are uniformly
spread between the minimum and the maximum values of hc(v). The parameters
σck are fixed to σck = δµ/3 with δµ = µci+1 − µci, ∀1 ≤ i < K, to ensure an
overlap of the Gaussian activations.

Since this layer has no learnable parameters, the weights αc(i) of the previous
layer h are adjusted during the backpropagation for every node i ∈ V , according

to the partial derivatives of the loss function L: ∂L
∂αc(i)

= ∂L
∂bck(h)

∂bck(h)
∂hc(i)

∂hc(i)
∂αc(i)

.

The derivative of the bottleneck layer w.r.t. its input is given by:

∀i ∈ V, ∂bck(h)

∂hc(i)
=
−2(hc(i)− µck)

|V |σ2
ck

exp

(
−(hc(i)− µck)2

σ2
ck

)
. (3)

It lies between −
√
2

|V |σck
e−1/2 and

√
2

|V |σck
e−1/2.

3 Experiments

We compared the behavior of several graph convolutional networks, with and
without the layers presented in the previous section, for the classification of
chemical data encoded by graphs. The following datasets were used: NCI1, MU-
TAG, ENZYMES, PTC, and PAH. Table 1 summarizes their main character-
istics. NCI1 [18] contains 4110 chemical compounds, labeled according to their
capacity to inhibit the growth of certain cancerous cells. MUTAG [8] contains
188 aromatic and heteroaromatic nitrocompounds, the mutagenicity of which
has to be predicted. ENZYMES [2] contains 600 proteins divided into 6 classes
of enzymes (100 per class). PTC [16] contains 344 compounds labeled as carcino-
genic or not for rats and mice. PAH3 contains non-labeled cyclic carcinogenic
and non-carcinogenic molecules.

3.1 Baseline for classification

We considered three kinds of graph convolutional networks. They differ by the
definition of their convolutional layer. CGCNN [9] is a deep network based on
a pyramid of reduced graphs. Each reduced graph corresponds to a layer of
the network. The convolution is realized by spectral analysis and requires the
computation of the Laplacian of each reduced graph. The last reduced graph is
followed by a fully connected layer. GCN [12] and DCNN [1] networks do not use
spectral analysis and are referred to as spatial networks. GCN can be seen as an
approximation of [9]. Each convolutional layer is based on F filtering operations

3 PAH is available at: https://iapr-tc15.greyc.fr/links.html

https://iapr-tc15.greyc.fr/links.html
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Table 1: Characteristics of datasets. V and E denotes resp. nodes and edges sets
of the datasets’ graphs, while VS and ES denotes nodes and edges sets of the
datasets’ supergraphs

NCI1 MUTAG ENZYMES PTC PAH

#graphs 4110 188 600 344 94
mean |V |, mean |E| (29.9, 32.3) (17.9, 19.8) (32.6, 62.1) (14.3, 14.7) (20.7, 24,4)
mean |VS | 192.8 42.6 177.1 102.6 26.8
mean |ES | 4665 146 1404 377 79
#labels, #patterns (37, 424) (7, 84) (3, 240) (19, 269) (1, 4)

#classes 2 2 6 2 2
#positive, #negative (2057, 2053) (125, 63) – (152, 192) (59, 35)

associating a weight to each component of the feature vectors attached to nodes.
These weighted vectors are then combined through a local averaging. DCNN [1]
is a nonlocal model in which a weight on each feature is associated to a hop
h < H and hence to a distance to a central node (H is thus the radius of a ball
centered on this central node). The averaging of the weighted feature vectors is
then performed on several hops for each node.

To measure the effects of our contributions when added to the two spatial
networks (DCNN and GCN), we considered several versions obtained as follows
(Table 2). We used two types of characteristics attached to the nodes of the
graphs (input layer): characteristics based on the canonical vectors of {0, 1}|L|
as in [1,10,15], and those based on the patterns proposed in Section 1. Note that
PAH has few different patterns (Table 1), PCA was therefore not applied to this
data to reduce the size of features. Since spatial networks can handle arbitrary
topology graphs, the use of a supergraph is not necessary. However, since some
nodes have a null feature in a supergraph (Definition 1), a convolution performed
on a graph gives results different from those obtained by a similar convolution
performed on the projection of the graph on a supergraph. We hence decided to
test spatial networks with a supergraph. For the other network (CGCNN), we
used the features based on patterns and a supergraph.

For the architecture of spatial networks, we followed the one proposed by [1],
with a single convolutional layer. For CGCNN we used two convolutional layers
to take advantage of the coarsening as it is part of this method. For DCNN,
H = 4. For CGCNN and GCN, F = 32 filters were used. The optimization
was achieved by Adam [11], with at most 500 epochs and early stopping. The
experiments were done in 10 fold cross-validation which required to compute the
supergraphs of all training graphs. Datasets were augmented by 20% of non-
minimal cost projections with the method described in Section 2.3.

3.2 Discussion

As illustrated in Table 2, the features proposed in Section 2.1 improve the clas-
sification rate in most cases. For some datasets, the gain is higher than 10 per-
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Table 2: Mean accuracy (10-fold cross validation) of graph classification by three
networks (GConv), with the features proposed in Section 2.1 (feat.) and the
supergraph (s-g). Global pooling (gpool) is done using global average pooling
(GAP) or with histogram bottleneck layer (hist).

GConv feat. s-g gpool NCI1 MUTAG ENZYMES PTC PAH

DCNN

– – GAP 62.61 66.98 18.10 56.60 57.18
� – GAP 67.81 81.74 31.25 59.04 54.70
� – hist 71.47 82.22 38.55 60.43 66.90
� � hist 73.95 83.57 40.83 56.04 71.35

GCN

– – GAP 55.44 70.79 16.60 52.17 63.12
� – GAP 66.39 82.22 32.36 58.43 57.80
� – hist 74.76 82.86 37.90 62.78 72.80
� � hist 73.02 80.44 46.23 61.60 71.50

CGCNN � � – 68.36 75.87 33.27 60.78 63.73

centage points. The behavior of the two spatial models (DCNN and GCN) is
also improved, for every dataset, by replacing global average pooling by the his-
togram bottleneck layer described in Section 2.4. These observations point out
the importance of the global pooling step for these kind of networks

Using a supergraph as an input layer (column s-g) opens the field of action of
spectral graph convolutional networks to graphs with different topologies, which
is an interesting result in itself. Results are comparable to the ones obtained with
the other methods (improve the baseline models with no histogram layer), but
this is a first result for these networks for the classification of graphs. The sizes
of supergraphs reported in Table 1 remain reasonable regarding the number of
graphs and the maximum size in each dataset. Nevertheless, this strategy only
enlarge each data up to the supergraph size.

4 Conclusions

We proposed features based on patterns to improve the performances of graph
neural networks on chemical graphs. We also proposed to use a supergraph as
input layer in order to extend graph neural networks based on spectral theory to
the prediction of graph properties for arbitrary topology graphs. The supergraph
can be combined with any graph neural network, and for some datasets the per-
formances of graph neural networks not based on spectral theory were improved.
Finally, we proposed an alternative to the global average pooling commonly used
as bottleneck layer in the final part of these networks.
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10 Évariste Daller et al.

2. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(suppl 1), i47–i56 (2005). https://doi.org/10.1093/bioinformatics/bti1007

3. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gazre, B., Vento, M.: Graph edit
distance as a quadratic assignment problem. Pattern Recognition Letters 87, 38–46
(2017). https://doi.org/10.1016/j.patrec.2016.10.001

4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

5. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and deep locally
connected networks on graphs. Tech. rep. (2014), arXiv:1312.6203v2 [cs.LG]

6. Bunke, H., Jiang, X., Kandel, A.: On the minimum common supergraph of two
graphs. Computing 65(1), 13–25 (2000). https://doi.org/10.1007/PL00021410
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