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A phase field model for snow crystal growth in three

dimensions

Gilles Demange’, Helena Zapolsky', Renaud Patte’ and Marc Brunel®

Snowflake growth provides a fascinating example of spontaneous pattern formation in nature. Attempts to understand this
phenomenon have led to important insights in non-equilibrium dynamics observed in various active scientific fields, ranging from
pattern formation in physical and chemical systems, to self-assembly problems in biology. Yet, very few models currently succeed in
reproducing the diversity of snowflake forms in three dimensions, and the link between model parameters and thermodynamic
quantities is not established. Here, we report a modified phase field model that describes the subtlety of the ice vapour phase
transition, through anisotropic water molecules attachment and condensation, surface diffusion, and strong anisotropic surface
tension, that guarantee the anisotropy, faceting and dendritic growth of snowflakes. We demonstrate that this model reproduces
the growth dynamics of the most challenging morphologies of snowflakes from the Nakaya diagram. We find that the growth
dynamics of snow crystals matches the selection theory, consistently with previous experimental observations.

npj Computational Materials (2017)3:15; doi:10.1038/541524-017-0015-1

INTRODUCTION

Snowflake growth in supersaturated atmosphere is one of the
most familiar, and at the same time scientifically challenging
physical phenomena.! Beyond aesthetic fascination for their
symmetric shape, snow crystals provide a unique example of
self-patterning systems.? Early experiments on artificial snow
crystals in cold chamber led by Nakaya,® revealed this funda-
mental phase transition resulted in a wide manifold of patterns,
exclusively determined by supersaturation and temperature. This
empirical dependency was later formalized in the meteorological
classification of Magono,* and the snow crystals morphology
diagram of Nakaya.” Despite this clear experimental picture, the
underlying physical rules remain thoroughly debatable® as
evidenced by the numerous models proposed to understand
the variety of snowflake shapes, such as the surface diffusion
model of Mason et al,” the quasi-liquid layer approach of
Lacmann et al.2 and the layer nucleation rates theory by Nelson.’

Alternatively, many simulation methods were developed to
reproduce the growth dynamics of snowflakes. First step toward
the comprehension of ice crystal growth was provided by
molecular dynamics simulations.'®”'? Unfortunately, such simula-
tions are still confined to space and time scales by several orders
inferior to snowflake characteristic scales.* Significant results were
also achieved using the mesoscopic approach, such as the cellular
automata model of Gravner and Griffeath.'®> Though this model
remarkably describes the morphology of snowflakes, the numer-
ous parameters involved can hardly be related to physical
quantities. This shortcoming was partly corrected in ref. 14.
However, it is not perfectly clear how additional physical
mechanisms, such as fluid dynamics can be added to the
procedure. This might indeed be required to simulate the impact
of air flows on the morphology of snowflakes. From this
perspective, a 3D sharp interface model was developed by Barrett
et al.'’. Different snowflake morphologies were simulated.

Nevertheless, the side branching,G' 16 surface markings,”'19 and

coalescence®® of ice crystals could not be reproduced in this
framework. Besides, only small supersaturations were prospected.
Consequently, only the bottom of the Nakaya diagram was
explored. This limitation comes from the Laplacian approximation
framework, and the numerical cost of interface parametrization.?’
The phase field model has the decisive advantage to overcome
explicit tracking of the sharp interface, by spreading it out over a
small layer?' As a matter of fact, it has become standard to
simulate the dendritic growth in alloy solidification.?*">* However,
except a first mathematical study by Barret et al. in ref. 25, the
phase field approach was almost never used to simulate snow
crystal growth in three dimensions. Indeed, until recently, it was
assumed that the phase field approach was unable to reproduce
facet formation and destabilization.?® Yet, Debierre and Karma
suggested in ref. 27, that phase field could mimic faceting using
highly anisotropic surface tension.

In this paper, we report the simulations of snow crystals growth
in three dimensions, using a modified phase field model. More
generally, by addressing the arduous study-case of ice crystal
growth, this work fulfils the need of material science for faceted
dendrite modelling at mesoscopic and macroscopic scale. A new
surface tension anisotropy function accounting for the 6-fold
horizontal and 2-fold vertical symmetry of snowflakes was derived.
Contrary to previous phase field models,>** a supplementary
anisotropy function, and anisotropic diffusion terms were also
included to simulate the vertical anisotropy of snowflakes.® To
mimic faceting in snowflakes, the 2D regularisation algorithm of
Eggleston et al.® was extended to three dimensions. As a result,
the model reproduces the growth of the main snowflake
morphologies of the Nakaya diagram, varying only four phenom-
enological parameters. It is shown that these parameters can be
related to physical quantities. Simulated snowflakes show
excellent agreement with experimental observations.'®™ ' 2° Their
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growth satisfies the microscopic solvability theory, consis-

tently with experiments.>*

MODEL

Snowflakes growth in supersaturated water vapour was simulated
using a phase field approach in three dimensions, based on a
methodology developed in.?? In this model, two coupled variables
¢ and u are considered. ¢ is an order parameter referring to the
ice (+1) and vapour (-1) phases. The ice/vapour interface is
described by a continuous variation of ¢, connecting —1 and +1.
u=(c—cl,)/c, is the reduced supersaturation of water vapour,
where ¢ (T) is the saturation number density of vapour above
ice, at temperature T. At initial time, the reduced supersaturation
Uo is homogeneous. The growth kinetics of snowflakes is governed
by two non conservative phase field equations. Their adimensio-
nalized form is given by:

A(n)*orp = —f (¢) + AB(n)g (h)u

2 1
v <v¢|2%+/4<nfvr¢> W
oiu = DVr - (q(¢)Vr)u — %B(n)drah @)

where space and time are scaled by the interface width W,, and
the relaxation time 1o, respectively. In the Eq. (1), the double well
potential f(¢) = —¢*/2 + ¢*/4 is the free energy density fi(c,T,¢) of
the ice/vapour system, at temperature T, and saturation concen-
tration ¢ = cl: f(¢) = fy(c = cl,, 7' = T, ). The second term in
the Eqg. (1) accounts for the coupling between u and ¢, and
promotes ice phase growth in supersaturated atmosphere, where
c>cl,,. Formally, it corresponds to the first order term in the Taylor
expansion of the bulk potential, for ¢ in the neighbourhood of c,.
The coupling constant A can thus be computed by
A= Csat/(30H)achV|csalr where H is the free energy barrier. g'(¢)) =
(1-¢%? is an interpolation function introduced in.** Its form
allows to keep the bulk potential minima at ¢» =+1 for any u. To
describe the strong anisotropy of snowflakes growth along the
vertical axis,® we propose to introduce the kinetic anisotropy

function B(n) = |/n2 4 nZ + T°n2, where n=-V¢/|V| is the unit

normal vector of ¢. This anisotropic contribution may be justified
by the premelted layer growth theory, stating that the primary
habit results from different attachment rates of water molecules
between prismatic and basal facets.® The parameter "> 0 governs
the preference between horizontal and vertical growth, called the
primary habit of snowflakes. It can be empirically related to the
temperature.®® The addition of the first two terms in the Eq. (1)
corresponds to the anisotropic thermodynamic driving force.
The last two terms in the Eq. (1) describe the ice/vapour
interface formation and propagation,”> where A(n) is the
surface tension anisotropy function. In this work, a new
expression of the anisotropy function was derived:
A(n) =1+ & cos (66) + &, cos (2¢), where 6 = arctan(n,/ny)

and ¢ = arctan(,/nZ + nZ/n;) are the polar and azimuthal angles,

respectively. It accounts for both the horizontal 6-fold symmetry,
and the vertical planar symmetry of snowflakes. ¢,, and ¢, are
anisotropy constants.

The Eq. (2) describes one-sided diffusion of water molecules in
vapour, and vapour condensation on ice. Diffusion is controlled by
two quantities: the function g(¢) = 1 — ¢, which prohibits diffusion
within ice, and the reduced diffusion coefficient D = Dro/W3,
where D is the diffusion coefficient. The second term in the Eq. (2)
accounts for conversion of vapour into ice. Lg;; can thus be
interpreted as the rate of water depletion in vapour, via molecule
attachment at the interface. In this study, Ls,, was treated as a
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numerical parameter, and its setting was conditioned by the
choice of A. Here, Lg,;; ~ 1, to allow a sufficiently fast crystal growth.
Obviously, attachment kinetics limited growth enabling snow-
flakes faceting is lost. Faceting is yet recovered through the highly
anisotropic interface, as suggested by Debierre and Karma in ref.
27. One may argue that no experimental argument alleges for the
predominance of surface tension over attachment kinetics in the
faceting process.®® However, it was numerically evidenced in ref.
15, that attachment kinetics played only a minor role in ice crystal
faceting compared to surface tension, at least in the continuum
model. To account for the anisotropy of the water molecule
attachment kinetics on snow crystals,® ° the anisotropy function B
(n) is introduced in the second term of Eq. (2) as well. The vertical/
horizontal preference is also considered through anisotropic
surface diffusion,'’ V= (0,,0,,/0,).

Constants A, Wy, 7o and D are entangled by the asymptotic
analysis mapping the phase field model to Stefan sharp interface
model, as shown in ref. 22 This sets D= 0.6267A, and W, = do)/
0.8839, where d, is the isotropic capillarity length. This analysis
also links the anisotropic interface width WyA(n) to the character-
istic time of interface propagation ToA(n)?, where To= 0.6267AW3.

The coupling constant was set to A= 3.0 as in.2> The horizontal
anisotropy constant was set to &, = 0.1 for vertical growth (M> 1),
and &,,=0.2 for horizontal growth (/"< 1). To reproduce different
snowflakes morphologies, parameters I, ug, Lsar and g, were varied.
All study case parameters are gathered in Table 1.

RESULTS

Two limit cases of snowflake growth are displayed in Fig. 1.
Figure 1a shows the different stages of the growth of a fernlike
dendrite 1 (p. 59 of ref. 16), and Fig. 1b details the formation of a
hollow prism 1 (p 64-66 of ref. 16).

For both cases, the growth stages are very similar to the
experimental growth kinetics obtained by Libbrecht:*” the
snowflake first aligns on the equilibrium Wulff shape, until the
Mullins-Sekerka instability*® occurs for a critical crystal radius. This
instability is related to the Berg effect®® stating that the
supersaturation field around a faceted snow crystal is largest at
facet edges. Destabilization thus occurs when the snowflake
reaches a critical radius,*® and kinetic effects at corners overcome
the highly anisotropic surface tension.® Two examples of
snowflake growth are provided at npj computational material’s
website (supplementary video 1 and 2).

Table 1. Parameters for different morphologies of snowflakes

r Uo Lsat &
stellar dendrite 0.5 0.7 1.0 0.05
fern dendrite 0.5 0.8 1.6 0.05
dendritic arms plate 0.4 0.6 1.0 0.1
stellar plate 0.5 0.5 1.8 0.3
& stars 0.5 0.5 1.0 0.3
double plate 04 0.5 1.6 0.1
sectored plate 0.4 0.5(0.8) 1.0 0.25(0.1)
solid plate 0.25 0.4 2.0 0.2
scrolls on plate 0.4(0.2) 0.5(0.8) 1.0 0.25(0.4)
& needles 3.0 0.8 1.0 0.5
hollow prism 3.0 0.3 3.0 0.5
- capped column 5.0(0.2) 0.8 1.0(2.0/1.0) 0.5(0.4)
Note: Parenthesis correspond to the case where parameter were changed
during simulations

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences
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(b) Hollow prism 13

Fig. 1

Isosurface representation (¢ =0) of snowflakes growth, using the software Blender for visual rendering. Top: fern dendrite 2. The

growth mechanism is essentially two dimensional.® First, the initial disc grows into a transient flat faceted hexagon. Then, the branching
instability occurs in the horizontal plane (t=50), for a critical crystal radius. The resulting faceted dendrites are equipped with developed
faceted side branches. Bottom: prism 13. The seed grows vertically into a prism aligned on the Wulff shape. Then the basal facet breaks, and a

hollow is formed at t=10. Time in 1 unit

In Fig. 1a, the simulated fernlike dendrite morphology differs
from the non axisymmetric shape predicted by the the0|;y of
Brener,* usually used for dendrites with cubic symmetry.®* *' We
suggest this is due to the strong vertical anisotropy flattening, and
to faceting, which limits the formation of a horizontal lacuna at the
tail of dendrites. The obtained feathery shape with transversally
sharp tip rather resembles Furukawa experimental ice crystals.'’
Besides, experimental snowflakes display characteristic surface
patterns such as ridges,'® and flat basal planes forming steps.'”
Such patterns are also reproduced by our model in Fig. 1a. At low
temperatures, surface nucleation and spiral growth are the leading

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

growth processes on the basal faces for horizontal growth.’
Though such mechanisms are not explicitly included in our model,
the presence of surface steps in our simulations evokes the terrace
growth resulting from nucleation, experimentally observed on ice
crystals.” It can be underlined that the succession of flat basal
planes on both real and simulated snowflakes, reflects the main
stages of snowflake history. For instance, the hexagonal Wullf
shape before branching instability is clearly memorised in Fig. 1b.
Comparison with real snowflakes is provided in the supplementary
material 1 at npj computational material’'s website.

npj Computational Materials (2017) 15
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Fig.2 Snowflakes size L (W, unit) vs. time t (1o unit) (marks), for up =
0.6. Two growth regimes appear, with a transition at t=50 for
vertical growth, and t =80 for horizontal growth (dots). First regime:
L(t) e t* (0 =0.99), with a =0.62 for horizontal growth (line), and a=
0.63 for vertical growth (dashes). Second regime: L(t) « At (p =0.99),
with A=0.12 for horizontal growth (line), and A=0.41 for vertical
growth (dashes). Insert: tip velocity V (Wo/1o unit) vs. reduced
supersaturation ug (marks). V=A'uy (0=0.99) with A’=0.62 for
horizontal growth (line), and A’ =0.62 for vertical growth (dashes).
Blue: horizontal growth (parameters 2 except uq varied). Red: vertical
growth (parameters 11 except uq varied)

Figure 2 displays the time evolution of snowflake size L, defined
as arm length for horizontal growth (blue), and column length for
vertical growth (red).

It can be seen that two growth regimes appear. After a first
growth regime, when both dynamics are similar, the needle
growth accelerates, while plate-like growth slows down. In the
case of horizontal growth, Libbrecht experimentally noted in ref.
42, that this change of regime coincides with full faceting
occurrence on the prismatic face, causing growth to decelerate.
In the case of vertical growth, it was also observed in ref. 42, that
the growth acceleration was related to the formation of a vicinal
surface at the needle tip, which enhances water attachment at the
tip. During the first regime, the crystal growth is slower than
diffusion, and the system satisfies the Laplacian approximation.
Within this framework, Algrem et al. found in ref. 43, that arm
growth should display the self similar scaling behaviour L(f)et>.
This is confirmed by our simulations. It is interesting to note that
the disparity of our simulations with the t'/2 diffusive law of Zener
et al. for spherical precipitates,** is due to surface tension.

In the second regime, the growth kinetics is linear (line and
dashes in Fig. 2), consistently with the selection theory.'® 32 The
associated tip velocity V is thus the slope of this linear function.
Using the same procedure for different ug, V vs. ug could be
plotted in the insert. It appears that V is proportional to up.
Therefore, the growth velocity of both faceted and non-faceted
dendrites satisfies the universal law.3° It is consistent with previous
experimental,®* and numerical observations.' %’ A similar relation
was observed during faceted growth in other materials, including
silicon.*> For further discussion, we refer to ref. 46. Langer et al.
argued in ref. 30. that the frontmost tip of dendrites was
molecularly rough for both non-faceted and faceted dendrites.
The attachment kinetics can thus be considered isotropic with
circular symmetry.

DISCUSSION

Figure 3 compiles equilibrium shapes of simulated snowflakes,
using the parameters in Table 1. An achievement of our model is

npj Computational Materials (2017) 15

to recover the principal snowflakes morphologies of the Nakaya
diagram,’ depending exclusively on four parameters: I, U, L, and
&
The first parameter I fully determines the primary habit in our
model. We suggest this parameter may be fitted on the
dimensionless attachment coefficient a“™(T,ug,), encompassing
the molecular kinetics at the solid/vapour interface.*” Here, ugs is
the supersaturation at the surface of the snowflake. Recent
developments suggest a“" can be parametrised by
A(T) exp(—Ux(T)/Usus), Where the relation between A and u,,
and the temperature is empirically known.>®> The coefficient a*"
accounts for the alternation of dominating growth mechanisms
with the temperature. However, the physical interpretation of this
dependence is still unclear® To explain this behaviour, two
theories are proposed: surface nucleation rates for low tempera-
tures,” and quasi-liquid layer growth with different wettability for
basal and prismatic facets*® near the melting point. In this work,
the link between I and atmospheric parameters was simplified.
First, the variation of a“" with the surface supersaturation was
neglected, as fitting I to the temperature only was sufficient to
match the Nakaya diagram in a first approximation. Second, only
two values of I were used: I~ 0.4 for horizontal growth, and =
3.0 for vertical growth. This rough phenomenological setting of I
reduces to <1 or >1 depending on temperature. Then,
Hertz-Knudsen relation for facet normal velocity'® makes super-
saturation ug the priming parameter in facet destabilization and
growth velocity.® In the phase field model, it is reinterpreted as the
thermodynamic driving force, and higher values also favour
branching instability and faster growth.>’ The parameter L.,
controls the compactness of branching for non faceted growth.?
Here, low values foster branching instability, while raising Lg,;
drives the system toward quasistatic diffusion, and fosters a
stronger faceting. As for the parameter ¢, it mainly influences the
formation of surface patterns for horizontal growth.

Especially interesting are two model examples. First, the double
plate 1 (p. 75 in ref. 16), results from the sandwich instability of a
flat snowflake, and the twelve arms 1 was simulated by the
aggregation of two simple stars, with a 30° tilt.*°

Finally, simulated snowflakes morphology dependence on
temperature and density excess over vapour/water equilibrium
ol o =p—pY (gm), is quantitatively consistent with the
Nakaya diagram (see ref. 49). Using to = (Olper + Peat — Prat)/Piats
where is the vapour/ice equilibrium density, and fitting I on ref.
47, (Libbrecht, K. G. Physical dynamics of ice crystal growth. Annu.
Rev. Mater. Res. (2017), Unpublished), our simulations predict plate
formation near (T, psV{/Jper) =(—19,0.15) and (-12, 04), vs. (=19,
0.15), (=12, 0.4), but also (=10, 0.18) in the Nakaya diagram.
Simulated dendrites occur near (—16, 0.4), vs. (-15, 0.4) and (-15,
0.25) for experiments. Finally, hollow columns are formed at (-8,
0.6) in our simulations, vs. (-8, 0.6) and (-8, 0.3) in the Nakaya
diagram. However, small supersaturations pl, <p<p¥ are
beyond reach for our model. This shortcoming is complementary
to the model of Barrett et al.'®. Indeed, the latter is bound to
p < p¥ or T->0°C, due to the Laplacian approximation for small
supersaturations.® Our model on the contrary requires larger
values for Ly, and greater computational resources to reach such
supersaturations.

CONCLUSION

In this paper, we have shown that the proposed modified phase
field model is able to reproduce the complex dynamics of
snowflake growth. Benefiting from the modularity and versatility
of the phase field model, this approach can be extended to
describe the growth of snowflakes in real atmospheric conditions.
It can notably be equipped with stochastic effects, for the
asymmetric growth of more exotic morphologies of snowflakes in
the Nakaya diagram. Continuum fluid dynamics can also be easily

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Phase field model for snow crystal growth in 3D 1
G Demange et al. an

r>1

1 - stellar dendrite 2 - fern dendrite 11 - needle

12 needles cluster

7 - double plate

9 - solid plate 10 - scrolls on plate 15 - capped col. b

Fig. 3 Simulated snowflakes classification, using the software Blender for visual rendering. ' < 1 gives the flat snow crystals 1 to 9. > 1 gives
columns 11 & 13. Primary habit switch is achieved by shifting I during simulations. I from 3.0 to 0.2 at t = 70, gives capped columns 14 and 15.T
from 0.4 to 3.0 gives scrolls on plate 10. For ' < 1, no facet breaking happens when up < 0.4 (solid plate 9). Branching instability appears for uy =
0.5 (snowflakes 3 to 8), and side branching requires ug > 0.7 (dendrites 1 and 2). For > 1, ug = 0.3 gives a prism 13, and u, = 0.8 induces vertical
branching with needles 11 and 12. Lg,; = 1.0 gives a thick side branching for the stellar dendrite 1. Rising Lgat to Lsae = 1.6 refines side branches
with the fern dendrite 1. Higher values of L, destroy side branching, and lead to branches maximum faceting with the stellar plate 4 (Ls,. = 1.8),
(*): see Method
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introduced in Eq. (1) and Eq. (2), to simulate the air flow around
the snowflake during its fall from clouds.>® This could notably
answer the need expressed by meteorology and aircraft safety for
new metrologies, able to estimate ice water content in clouds.”’ >2
Besides, the developed approach is not restricted to snowflake
growth. It opens a new way to answer numerous outstanding
questions concerning the general issue of faceted dendritic
growth in a wide range of materials. We can cite, for instance,
the faceted dendritic growth observed in pure isotactic polystyr-
ene films, or the snowflake-like growth of graphene
monocrystal.>?

METHODS

Phase field simulations were performed using the Fourier-spectral semi-
implicit scheme with periodic boundary conditions. For horizontal growth,
simulations were performed with grid spacing Ax=Ay=Az=0.8, and time
step At=0057 on a 400x400x64 simulation box (800 x 800 x 96
for (*) in Fig. 3). Vertical growth simulations required a more precise
discretization. Grid spacing was thus reduced to Ax=Ay=Az=04, and
At=0.01 as in ref. 23, on a 128 x 128 x 256 simulation box. Snow crystal
growth was initiated by a circular-disc shape germ (¢ = 1) of radius R=8Ax,
within water vapour (¢ =-1) of homogeneous reduced supersaturation
Uo>0. A new regularisation method for high interfacial energy leading to
crystal missing orientations was also adapted from two dimensions,” to three
dimensions. This allowed to overcome the restriction for the critical values of
the anisotropy constants and choose &,,>1/35 and &, > 1/3, as required to
achieve faceting.?' Additional information on the method is provided in the
supplementary material 2 at npj computational material’'s website.
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