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Abstract. Quantitative Structure Activity and Property Relationships
(QSAR and QSPR), aim to predict properties of molecules thanks to
computational techniques. In these fields, graphs provide a natural en-
coding of molecules. However some molecules may have a same graph but
differ by the three dimensional orientation of their atoms in space. These
molecules, called stereoisomers, may have different properties which can-
not be correctly predicted using usual graph encodings. In a previous pa-
per we proposed to encode the stereoisomerism property of each atom by
a local subgraph. A kernel between bags of such subgraphs then provides
a similarity measure incorporating stereoisomerism properties. However,
such an approach does not take into account potential interactions be-
tween these subgrahs. We thus propose in this paper, a method to take
these interactions into account hence providing a global point of view on
molecules’s stereoisomerism properties.

Keywords: Graph kernel, Chemoinformatics, Stereoisomerism.

1 Introduction

QSAR and QSPR methods are based on a basic principle which states that:
“two similar molecules should have similar properties”. An usual way to encode
molecules is to use their molecular graphs. A molecular graph is a simple graph
G = (V,E, µ, ν), where each node v ∈ V encodes an atom, each edge e ∈ E
encodes a bond between two atoms and the labeling functions µ and ν associate
to each vertex and each edge a label encoding respectively the nature of the
atom (carbon, oxygen,. . . ) and the type of the bond (single, double, triple or
aromatic).

However, molecular graphs have a limitation: they do not encode the spatial
configuration of atoms. Indeed, some molecules, called stereoisomers, are asso-
ciated to a same molecular graph but differ by the relative positioning of their
atoms. We can imagine for example, a carbon atom, with four neighbors, each of
them located on a summit of a tetrahedron. If we permute two of the atoms, we
obtain a different spatial configuration (Figure 1a). An atom is called a stere-
ocenter if a permutation of two atoms belonging to its neighborhood produces
a different stereoisomer. Two connected atoms also define a stereocenter if a
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(a) Two different spatial configurations
of the neighbors of a carbon

(b) Two different spatial configura-
tions of two carbons linked by a dou-
ble bond.

Fig. 1: Two types of stereocenters.

permutation of the positions of two atoms belonging to the union of their neigh-
borhoods produces a different stereoisomer (Figure 1b). According to chemical
experts [8], within molecules currently used in chemistry, 98% of stereocenters
correspond either to carbons with four neighbors, called asymmetric carbons
(Figure 1a) or to couples of two carbons adjacent through a double bond (Fig-
ure 1b). We thus restrict the present paper to such cases.

Graph kernels [9–11, 3], allow us to combine a graph encoding of molecules
with usual machine learning methods. Up to now, only few methods have at-
tempted to incorporate stereoisomerism within the graph kernel framework.
Brown et al. [1] have proposed to incorporate this information through an ex-
tension of the tree-pattern kernel [10]. In this last method, similarity between
molecules is deduced from the number of common tree-patterns between two
molecules. When several stereocenters are close to each other, one pattern may
implicitly encode a walk which connect them. However the size of patterns being
limited, in some cases the influence of a permutation around stereocenters is not
detected.

Intuitively, stereoisomerism property is related to the fact that permuting
two neighbors of a stereocenter produces a different spatial configuration. If
those two neighbors have a same label, the influence of the permutation should
be searched beyond the direct neighborhood of this stereocenter. Based on this
ascertainment, we have proposed in [7] to characterized a stereocenter by a sub-
graph, big enough to highlight the influence of each permutation of the neighbors
of this stereocenter but sufficiently small to provide a local characterization of
it. We then proposed a kernel based on those subgraphs.

One drawback of our previous approach is that each subgraph, and thus
each stereocenter, is considered independently. We thus present in this paper
a method based on [7], which explicitly encode all minimal stereo subgraphs
associated to stereocenters together with several types of interactions between
these subgraphs.

In Section 2 we remind the two main points of [7], the encoding of molecules
by ordered graphs, and the construction of minimal stereo subgraphs which
characterize stereocenters. Then in Section 3 we present new graph models taking
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into account relationships between minimal stereo subgraphs. Results obtained
with those graphs are provided in Section 4.

2 Ordered graphs and minimal stereo subgraphs

2.1 Encoding of molecules by ordered graphs

The spatial configuration of the neighbors of each atom may be encoded through
an ordering of its neighborhood [7]. In order to encode this information, we
introduce the notion of ordered graph. An ordered graph G = (V,E, µ, ν, ord)
is a molecular graph Gm = (V,E, µ, ν) together with a function ord : V → V ∗

which maps each vertex to an ordered list of its neighbors. Two ordered graphs G
and G′ are isomorphic (G '

o
G′) if there exists an isomorphism f between their

respective molecular graphs Gm and G′m such that ord′(f(v)) = (f(v1) . . . f(vn))
with ord(v) = (v1 . . . vn) (where N(v) = {v1, . . . , vn} denotes the neighborhood
of v). In this case f is called an ordered isomorphism between G and G′.

However, different ordered graphs may encode a same molecule. We thus
have to define an equivalence relationship between ordered graphs, such that two
ordered graphs are equivalent if they represent a same molecular configuration.

To do so, we introduce the notion of re-ordering function σ, which associates
to each vertex v ∈ V of degree n a permutation σ(v) on {1, . . . , n}, which allows
to re-order its neighborhood. The graph with re-ordered neighborhoods σ(G)
is obtained by mapping for each vertex v its order ord(v) = v1 . . . .vn onto the
sequence vσ(v)(1) . . . .vσ(v)(n) where σ(v) is the permutation applied on v.

The set of re-ordering functions, transforming an ordered graph into another
one representing the same configuration is called a valid family of re-ordering
functions Σ [4]. We say that it exists an equivalent ordered isomorphism f be-
tween G and G′ according to Σ if it exists σ ∈ Σ such that f is an ordered
isomorphism between σ(G) and G′ (σ(G) '

o
G′). The equivalent order relation-

ship defines an equivalence relationship [4] and two different stereoisomers are
encoded by non equivalent ordered graphs. We denote by IsomEqOrd(G,G′) the
set of equivalent ordered isomorphism between G and G′.

Carbons with four neighbors, and double bonds between carbons, are not
necessarily stereocenters. If they are not stereocenters, any permutation in their
neighbourhood would lead to an equivalent ordered graph. We thus define for
an ordred graph G = (Ĝ = (V,E, µ, ν), ord) and one of its vertex v ∈ V a set of
ordrered isomorphism FvG:

FvG =
⋃

(i,j)∈{1,...,|N(v)|}2
i 6=j

{f | f ∈ IsomEqOrd(G, τvi,j(G)) with f(v) = v}

where τvi,j is a re-ordering function equals to the identity on all vertices except
v for which it permutes the vertices of index i and j in ord(v).

We then define a stereo vertex as a vertex for which any permutation of two
of its neighbors produces a non-equivalent ordered graph:
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Definition 1 (Stereo vertex). Let G = (V,E, µ, ν, ord) be an ordered graph. A
vertex v ∈ V is called a stereo vertex iff FvG = ∅.

Two carbons linked by a double bond form a stereocenter and we have proved
in [6] that if a carbon of a double bond is a stereo vertex then the other one is also
a stereo vertex. Therefore we denote by kernel(s) the set of stereo vertices cor-
responding to a stereocenter (kernel(s) = {s} if s is an asymmetric carbon and
kernel(s) = {s, u} if s is a carbon of a double bond, where u is the other carbon
of the double bond). We further denote by StereoStar(s) the set composed of a
stereocenter and its neighbourhood: StereoStar(s) = kernel(s)∪N(kernel(s)).

2.2 Minimal stereo subgraphs

Definition 1 is based on the whole graph G to test if a vertex v is a stereo vertex.
However, given a stereo vertex s, one can observe that on some configurations,
the removal of some vertices far from s should not change its stereo property.
In order to obtain a more local characterization of a stereo vertex, we should
thus determine a vertex induced subgraph H of G, including s, large enough to
characterize the stereo property of s, but sufficiently small to encode only the
relevant information characterizing the stereo property of s. Such a subgraph is
called a minimal stereo subgraph of s.

We now present a constructive definition of a minimal stereo subgraph of
a stereo vertex. Let s denote a stereo vertex and let Hs be a subgraph of G
containing kernel(s). We say that the stereo property of s is not captured by
Hs if (Definition 1):

FsHs
6= ∅ (1)

To define a minimal stereo subgraph of s, we consider a finite sequence
(Hk

s )nk=1 of vertex induced subgraphs of G. The first element of this sequence
H1
s is the smallest vertex induced subgraph for which we can test (1): V (H1

s ) =
StereoStar(s).

If the current vertex induced subgraph Hk
s does not capture the stereo prop-

erty of s, we know by (1), that it exists some isomorphisms f ∈ FsHk
s
. We denote

by Ekf the set of vertices of Hk
s inducing the isomorphism f in Hk

s :

Ekf = {v ∈ V (Hk
s ) | ∃p = (v0, . . . , vq) ∈ Hk

s with v0 ∈ kernel(s) and vq = v

s.t. f(v1) 6= v1} (2)

In [6], we show that for any f in FsHk
s
, Ekf is not empty. A vertex v belongs to

Ekf if neither its label nor its neighborhood in Hk
s allow to differentiate it from

f(v). The basic idea of our algorithm consists in enforcing constraints on each
v ∈ Ekf at iteration k + 1 by adding to Hk

s the neighborhood of v in G. The set

of vertices of the vertex induced subgraph Hk+1
s is thus defined by:

V (Hk+1
s ) = V (Hk

s ) ∪
⋃

f∈Fs

Hk
s

N(Ekf ) (3)



From bags to graphs of stereo subgraphs 5

Fig. 2: An asymmetric carbon and its associated sequence (Hk
C)3k=1

where N(Ekf ) denote the neighborhood of Ekf .
The algorithm stops when the set f ∈ FsHk

s
becomes empty. We proved

in [6] that the subgraph obtained by this algorithm captures the stereo property
of s. Figure 2 illustrates our algorithm. Remarks that the computation of the
minimal stereo subgraph requires the computation of graph isomorphisms and
is thus nearly NP-complete, however note that stereo subgraphs correspond to
a local characteristic of vertex and have consequently a limited size [7].

Thus for each stereo vertex we can construct its minimal stereo subgraph to
characterize it. We consider two stereo vertices as similar if they have a same
minimal stereo subgraph, and to test it efficiently, we transform our minimal
stereo subgraphs S into codes cS thanks to the method described in [13].

3 Graph of interactions

In the previous section we have defined a way to encode molecules and construct
an oriented subgraph which characterizes a stereocenter. We associate to an

Fig. 3: 3 molecules with the value of their biological activities. Minimal stereo
subgraphs which differs between them are surrounded by dotted lines.
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ordered graph G its bag of minimal stereo subgraph H(G). In [7], we have pro-
posed a kernel between these bags which encodes a similarity between ordered
graphs. However, using this kernel, each minimal stereo subgraph is considered
independently.

Figure 3 shows an example of three molecules of a dataset used in Section 4.
In this figure, (2) have only one minimal stereo subgraph different from (1) and
(3). Thus by considering the notion of distance associated to the kernel of [7], (1)
and (3) are equidistant from (2). However the biological activity of (2) is closer
from the biological activity of (1) than from the one of (3). As the different
minimal stereo subgraph between (2) and (3) is close from other minimal stereo
subgraphs, taking into account interactions between minimal stereo subgraphs
allows to obtain a smaller distance between (1) and (2) than between (3) and
(2), which may help to obtain a better prediction of the property.

Unfortunately, the amount of interactions between two stereo subgraphs
which may influence a molecular property is yet unknown both in chemoin-
formatics and chemistry fields. Hence we propose to define different functions
of interactions, encoding different degrees of information about the interactions
between stereo vertices.

Functions of interactions are defined according to a sequence of conditions
(c1, . . . , cn). These conditions are increasingly constraining:

∀i ∈ {1, . . . , n− 1} ci+1 ⇒ ci

Let H1 and H2 be two minimal stereo subgraphs, such that s1 is the stereo
vertex of H1 and s2 is the stereo vertex of H2. We propose the following set of
conditions:

c1 : H1

⋂
H2 6= ∅ c2 : kernel(s1) ⊂ H2

c3 : StereoStar(s1) ⊂ H2 c4 : H1 ⊂ H2

We consider in this paper three functions of interactions Fi. Each function
Fi is designed in order to be more restrictive than Fj (with j < i). To do so each
Fi is defined by only using conditions cj with j in {i, . . . , 4} ∪ {0}, where c0 is
defined as ¬ci. The value Fi(H1, H2) is obtained by taking the maximal index j
of conditions cj which represents the strongest interaction between H1 and H2:

Fi(H1, H2) = max{j ∈ {i, . . . , 4} ∪ {0} | cj}

Note that (Fi)i∈{1,2,3} are non symmetric functions.
We define thanks to those functions, three graphs of interactions Gi where

each vertex v ∈ Vi represents a minimal stereo subgraph and each edge encodes
an interaction between two minimal stereo subgraphs deduced from Fi :

Definition 2 (Graph of interactions). A graph of interactionsGi = (Vi, Ei, µi, νi)
is a graph built from an ordered graph G = (Gm = (V,E, µ, ν), ord) and a func-
tion of interaction Fi such that :

– ∀u ∈ Vi, ∃!H(u) ∈ H(G).
– ∀u ∈ Vi, µi(u) = cH(u), where cH is the code defined in [13] (Section 2).
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(a) An ordered graph and its mini-
mal stereo subgraphs

(b) G1

(c) G2 (d) G3

Fig. 4: One ordered graph and its different graphs of interactions Gi, obtained
using Fi with i ∈ {1, 2, 3}

– ∃(u1, u2) ∈ Ei ⇐⇒ Fi(H(u1), H(u2)) 6= 0 or Fi(H(u2), H(u1)) 6= 0.
– ∀e = (u1, u2) ∈ Ei, νi(e) = min(Fi(H(u1), H(u2)), Fi(H(u2), H(u1))) �

max(Fi(H(u1), H(u2)), Fi(H(u2), H(u1))).

where � denotes the concatenation.

We can check if a vertex is in a minimal stereo subgraph in constant time.
Thus, the complexity to check each conditions considering a minimal subgraph
H1 withH2 isO(max(|H1|, |H2|)) for c1,O(|kernel(s1)) for c2,O(|StereoStar(s1))
for c3 and O(|H1|) for c4. Thus the complexity in the worst case for comput-
ing the graphs of interactions is O(|H(G)|2 max

H∈H(G)
|H|). In practice this value is

small (for the vitamin dataset presented in Section 4, we have at most |H(G)| = 9
and max

H∈H(G)
|H| = 24).

Figure 4 shows the graphs of interactions obtained from an ordered graph
using the different functions of interactions. The graph G1 is built by taking all
conditions. However we may suppose that the weaker interactions c1 may not
be relevant. Indeed, an intersection between two minimal stereo subgraphs may
not be a sufficiently relevant information. Thus the graph G2 is designed by
considering that two stereo vertices are related if we have at least kernel(s1) ⊂
H2 or kernel(s2) ⊂ H1. Moreover, a vertex s1 is a stereo vertex because of the
relative positioning of its neighbour. So we may suppose that, if a stereo vertex
is present in a stereo subgraph (kernel(s1) ⊂ H2), but not its neighbourhood
(StereoStar(s1) 6⊂ H2), the stereo vertex may have a similar influence inH2 than
a non-stereo vertex. Thus G3 is built by considering that two stereo vertices are
related if we have at least StereoStar(s1) ⊂ H2 or StereoStar(s2) ⊂ H1.
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Table 1: Average values of numbers of vertices (|V |), number of edges (|E|),
number of labels(|LV |,|LE |), and mean degree (d) of graph of interactions.

(a) ACE dataset

|V | |E| |LV | |LE | d

Graph 1 5 7 4.5 3 2.8

Graph 2 5 2 4.5 2 0.8

Graph 3 5 1 4.5 1 0.4

(b) Vitamin dataset

|V | |E| |LV | |LE | d

Graph 1 8.55 17.4 8.38 5.71 4.07

Graph 2 8.55 11.3 8.38 4.71 2.62

Graph 3 8.55 6.14 8.38 2.71 1.43

Table 2: Classification of the ACE inhibitory activity of perindopirilates
stereoisomers

Method Accuracy

Brown [1] 96.875
Stereo Kernel [7] 87.5
Stereo + Extended subgraphs [5] 96.875

Graph of interactions with [3] [9] [10] [11] [3] with MKL

Graph of interactions 1 93.75 84.375 93.75 93.75 100
Graph of interactions 2 93.75 62.5 62.5 62.5 87.5
Graph of interactions 3 84.375 62.5 62.5 62.5 90.625

As graphs of interaction are graphs without order, we may apply any graph
kernel (e.g. [9–11, 3]) to measure their similarities. Note that for the treelet ker-
nel [3], treelets of size 1 are vertices of graphs of interactions, and thus encode
the same notion of similarity than the bags of stereo subgraphs [7].

4 Experiments

We have tested our method on two datasets. For both of them we use the same
protocol: a nested cross-validation which select parameters and estimate the per-
formance. The outer cross-validation is a leave-one-out procedure, used to com-
pute an error of prediction for each molecule of the dataset. For each fold, we use
another leave-one-out procedure on the remaining molecules, to compute a vali-
dation error. We use standard SVM methods for classification and regression of
molecules. Basic statisistics about the graphs of interactions Gi = (Vi, Ei, µi, νi)
deduced from each dataset is displayed in Table 1.

Our first experiment is based on a dataset composed of all the stereoisomers
of the perindoprilate [2]. As this molecule has 5 stereocenters, the dataset is
composed of 25 = 32 molecules. In this dataset, we try to predict if a molecule
inhibit the angiotensin-converting enzyme (ACE).

In this dataset two stereocenters have a same minimal stereo subgraph, but
different surrounding. The stereo kernel [7] and one of the graph of interactions
(G3), can not differentiate those two stereocenters, which have different influence
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Table 3: Prediction of the biological activity of synthetic vitamin D derivatives.
Method RMSE

1 - Tree patterns Kernel [10] 0.251
2 - Treelet Kernel [3] 0.271
3 - Brown [1] 0.184
4 - Stereo Kernel [7] 0.194
5 - Stereo + Extended subgraphs [5] 0.180

Graph of interactions with [3] [9] [10] [11]

6 - Graph of interactions 1 0.177 0.184 0.185 0.201
7 - Graph of interactions 2 0.169 0.189 0.162 0.166
8 - Graph of interactions 3 0.172 0.172 0.161 0.162

on the property, this explains why other method ([1, 5] and the two other graphs
of interactions) obtain a better accuracy. However, for our graphs of interactions,
treelet of size one have a negative effect on the classification, this explains why
we do not obtain better results than [1, 5]. By using a multiple kernel learning
algorithm [12], we can learn a weight for each treelet, that allow us to discard
treelet of size 1 and to obtain the best results with the first graph of interactions.
The second graph of interactions have very few edges and a low degree (Table 1a).
This last point explains why some kernel [9–11] and the treelet kernel with
multiple kernel learning obtains poor results on this graph.

The second dataset is a dataset of synthetic vitamin D derivatives, used in [1].
This dataset is composed of 69 molecules, with an average of 8.55 stereocenters
per molecule. This dataset is associated to a regression problem, which consists
in predicting the biological activity of each molecule.

Methods which do not encode stereoisomerism information [10, 3] obtain poor
results as we can see in Table 3 (lines 1-2). The adaptation of the tree pattern
kernel to stereoisomerism [1] and our previous kernels [7, 5] (lines 3-5) improves
the results over the two previous methods hence showing the insight of adding
stereoisomerism information. Taking into account relationships between minimal
stereo subgraphs (lines 6-8) allows us to obtain better results than our previous
method [5]. Unlike the previous dataset, the graphs of interactions G2 and G3

have higher degree (≈ 2) and thus obtains good results. Graph G1 have a high
degree (4) and a high number of different labels on vertices, which induces a
lot of unique patterns in each graph. This last point decreases the number of
patterns common to two graphs and explains why on this dataset G1 does not
obtain results as good as G2 and G3.

In conclusion, the treelet kernel applied on graphs of interactions seems to
obtain equivalent or better results than alternative kernel methods. Moreover,
given a data set of molecules related to stereoisomerism, our experiments show
that the choice of a particular graph of interactions should be based on the mean
degree of vertice of these graphs. A mean degree of 2 seems to correspond to a
good compromise between a very low degree corresponding to a node set without
graph structure and a too high degree which also hidden the graph structure.
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5 Conclusion

In this paper we have proposed an extension of our previous method [7] based
on a new graph model, where each node represents a stereo subgraph and each
edge encodes an interaction between two stereo subgraphs. This graph allows
us to take into account interactions between stereo subgraphs. The relevance of
this approach is demonstrated through experiments on two datasets.
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