

1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2b;2',3'-h]carbazole with an unknown solvent

N. Wrobel, Bernhard Witulski, D. Schollmeyer, H. Detert

► To cite this version:

N. Wrobel, Bernhard Witulski, D. Schollmeyer, H. Detert. 1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-b;2',3'-h]carbazole with an unknown solvent. IUCrData, 2017, 2 (Part 3), pp.x170462. 10.1107/S241431461700462X . hal-01844347

HAL Id: hal-01844347 https://normandie-univ.hal.science/hal-01844347

Submitted on 22 May 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ISSN 2414-3146

Received 22 March 2017 Accepted 23 March 2017

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; π -conjugated ladder oligomer; diindolocarbazole; hydrogen bonding.

CCDC reference: 1539831

Structural data: full structural data are available from iucrdata.iucr.org

1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-*b*;2',3'-*h*]carbazole with an unknown solvent

Norma Wrobel,^a Bernhard Witulski,^b Dieter Schollmeyer^a and Heiner Detert^a*

^aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and ^bLaboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France. *Correspondence e-mail: detert@uni-mainz.de

The title compound, $2C_{36}H_{39}N_3O_4 \cdot H_2O$, is a linear π -conjugated ladder oligomer with an alkyl chain on the central nitrogen atom. This diindolocarbazole, prepared *via* a twofold Cadogan reaction, adopts a sligthly convex shape, *anti* to the disordered octyl group. The unit cell contains nine molecules of the title compound and half a water molecule per main molecule. The water molecule forms hydrogen bridges, connecting the carbazole-NH and methoxy groups of different molecules. The crystal contains solvent molecules which are located in a channel parallel to the *c* axis. It was not possible to determine the position and nature of the solvent (a mixure of choroform, *n*-pentane and DMSO). The SQUEEZE [Spek (2015). *Acta Cryst.* C**71**, 9–18] option of *PLATON* was used to model the missing electron density. The given chemical formula and other crystal data do not take into account these solvent molecules.

Structure description

Indolocarbazoles are currently investigated as materials for optical (Nemkovich *et al.*, 2009) and electronic applications (Wakim *et al.*, 2004; Zheng *et al.*, 2015). Among the different synthetic routes (Vlasselaer & Dehaen, 2016), the twofold Cadogan reaction (Cadogan *et al.*, 1965) is a very successful route to indolocarbazoles (Kistenmacher & Müllen, 1992; Wrobel *et al.*, 2013) and is also suitable for the preparation of higher oligomers (Srour *et al.*, 2016). In a continuation of our studies on indolo-annulated heterocycles (Dassonneville *et al.*, 2011; Nissen & Detert, 2011; Letessier & Detert, 2013), we present here the first X-ray structure of a linear diindolocarbazole (Fig. 1).

Figure 1

The crystal structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. Only the major occupancy sites of the disordered atoms are shown.

The unit cell contains nine molecules of the title compound and half a water molecule per title molecule. The water forms hydrogen bridges, connecting the carbazole-NH and methoxy groups of three molecules (Table 1, Fig. 2). The π -conjugated segment is slightly convex, with the alkyl chain on top. Two nearly planar carbazole units [maximum deviations of 0.074 (4) Å for C9 from the mean plane through N11/C2-C10/ C12–C14 and 0.017 (3) Å for C27 of the mean plane through N18/C15-C17/C19-C27) enclose an angle of 8.17 (7)°, anti to the alkyl chain. Two modes of disorder are present in the octyl chain: the terminal methyl group adopts an anti and a gauche conformation (occupancy ratio 0.70:0.30), with torsion angles of 172.8 (6)° (anti, C312-C33-C34-C35) and $-60.1 (12)^{\circ}$ (gauche, C35A-C34-C33-C32). Similarly, the disorder at C29 (0.85:0.15 occupancy ratio *anti/gauche*) is characterized by torsion angles of -176.3 (3)° for C28-C28-C29-C31 and $-121.9 (13)^{\circ}$ for C28-C29A-C30-C23.

Figure 2

A partial packing diagram, showing the hydrogen-bonding network. View along the c axis. Most of the H atoms omitted for clarity. Symmetry-equivalent molecules are drawn with different colours.

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$	
N11 $-$ H11 \cdots O1W	0.88	2.03	2.879 (5)	162	
$N11 - H11 \cdots O1W^{i}$	0.88	2.45	3.238 (6)	149	
$N18-H18\cdots O36^{i}$	1.09	2.03	3.068 (3)	157	
$O1W - H1W \cdot \cdot \cdot N11$	0.84	2.43	2.879 (5)	114	
$O1W-H1W\cdots O38$	0.84	2.41	2.900 (6)	118	
$O1W - H2W \cdot \cdot \cdot O38^{i}$	0.75	2.48	3.181 (6)	158	

Symmetry code: (i) x - y, x, -z.

Synthesis and crystallization

200 mg of 9-octyl-2,7-bis(2,5-dimethoxyphenyl)-3,6-dinitro-9-*H*-carbazole was mixed with triethyl phosphite (4 ml) and heated for 30 min in a microwave oven (483 K, 300 W). The mixture was dissolved in ethyl acetate, hydrochloric acid (6 *M*, 30 ml) was added and stirred at 353 K for 3 h. The product was isolated by extraction with dichloromethane from an aqueous solution followed by column chromatography (SiO₂, petroleum ether:ethyl acetate 5:1). Yield 37 mg (20%), m.p. 392 K. Single crystals were obtained from a solution in DMSO and chloroform.

¹H NMR: (400 MHz, DMSO- δ_6): *d* = 11.16 (*s*, 2 H, N–H), 8.10 (*s*, 2 H. 6-H, 7-H), 6.89 (*d*, *J* = 8.5 Hz, 2 H, 3-H, 10-H), 6.55 (*d*, *J* = 8.7 Hz, 2 H, 2-H, 11-H), 4.45 (*t*, *J* = 6.9 Hz, 2 H, OCH₂), 4.03 (*s*, 6 H, 1-OCH₃, 12-OCH₃), 3.95 (*s*, 6 H, 4-OCH₃, 9-OCH₃), 1.91 (*m*, 2 H), 1.39–1.22 (*m*, 10 H), 0.78 (*t*, *J* = 7 Hz, 3 H, CH₃). ¹C NMR: (400 MHz, DMSO- δ_6): *d* = 149.9 (C-1, C-12), 139.9 (C-4, C-9), 136.9 (C-13a, C-14a), 133.9 (C-5a, C-7a), 131.8 (C-4a, C-8a), 121.9 (C-15*a*, C-12*b*), 121.5 (C-6a, C-6 b), 112.7 (C12a, C15b), 106.4 (C-3, C-10), 100.7 (C-6, C-7),

Table 2Experimental details.

Crystal data	
Chemical formula	$2C_{36}H_{39}N_{3}O_{4}H_{2}O$
M _r	1173.42
Crystal system, space group	Trigonal, $R\overline{3}$:H
Temperature (K)	193
a, c (Å)	26.3932 (5), 24.8270 (5)
$V(Å^3)$	14977.5 (6)
Z	9
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.08
Crystal size (mm)	$0.27\times0.17\times0.14$
Data collection	
Diffractometer	Bruker SMART APEXII
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	131773, 7932, 2895
R _{int}	0.145
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.064, 0.222, 0.85
No. of reflections	7932
No. of parameters	429
No. of restraints	24
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.39, -0.24

Computer programs: SMART, APEX2 and SAINT (Bruker, 1997), SIR2004 (Altomare et al., 1999), SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

97.9 (C-2, C-11), 55.7 (4-OCH₃, 9-OCH₃), 55.5 (1-OCH₃, 12-OCH₃), 42.4 (OCH₂), 31.2, 28.6 (2 C), 27.8, 26.5, 22.0, 13.9 (CH₃); IR (ATR): 3424, 3064, 2992, 2925, 2850, 1624, 1597, 1515, 1460, 1420, 1378, 1346, 1305, 1280, 1252, 1223, 1161, 1108, 1089, 1016, 970, 844 cm⁻¹; MS: (FD): 578 (M^{+*}), HR–ESI: 578.3019, calculated for C₃₆H₄₀N₃O₄⁺: 578.3011

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Two modes of disorder are present in the octyl chain: the terminal methyl group (occupancy ratio 0.70:0.30) and atom C29 (occupancy ratio 0.85:0.15). The s.o.f. for the disordered carbon atoms were kept fixed, while the anisotropic thermal parameters were refined using the ISOR instruction. The water molecule was refined with an s.o.f of 0.5. The crystal contains solvent molecules which are located in a channel parallel to the *c* axis. It was not possible to determine the position and nature of the solvent (mixure of choroform, *n*-pentan and DMSO). The SQUEEZE (Spek, 2015) option of *PLATON* (Spek, 2009) was used to model the missing electron density. References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (1997). SMART, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cadogan, J. I. G., Cameron-Wood, M., Mackie, R. K. & Searle, R. J. G. (1965). J. Chem. Soc. pp. 4831–4837.
- Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.
- Kistenmacher, A. & Müllen, K. (1992). J. Heterocycl. Chem. 29, 1237– 1239.
- Letessier, J. & Detert, H. (2013). Synthesis, 44, 290-296.
- Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). *Opt. Spectrosc.* **107**, 275– 281.
- Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2853.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Srour, H., Doan, T.-H., Silva, E. D., Whitby, R. J. & Witulski, B. (2016). J. Mater. Chem. C. 4, 6270–6279.
- Vlasselaer, M. & Dehaen, W. (2016). Molecules, 21, 7851-785.
- Wakim, S., Bouchard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). *Chem. Mater.* 16, 4386–4388.
- Wrobel, N., Witulski, B., Schollmeyer, D. & Detert, H. (2013). Acta Cryst. E69, 0255.
- Zheng, Y.-Q., Potscavage, W. J. Jr, Zhang, J.-H., Wei, B. & Huang, R.-J. (2015). *Chin. Phys.* **B24**, 0278011–027801/4

full crystallographic data

IUCrData (2017). **2**, x170462 [https://doi.org/10.1107/S241431461700462X]

1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-*b*;2',3'-*h*]carbazole with an unknown solvent

Norma Wrobel, Bernhard Witulski, Dieter Schollmeyer and Heiner Detert

1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-b;2',3'-h]carbazole

Crystal data	
$2C_{36}H_{39}N_{3}O_{4} \cdot H_{2}O$ $M_{r} = 1173.42$ Trigonal, $R\overline{3}$:H $a = 26.3932 (5) \text{ Å}$ $c = 24.8270 (5) \text{ Å}$ $V = 14977.5 (6) \text{ Å}^{3}$ $Z = 9$ $F(000) = 5634$	$D_x = 1.171 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8684 reflections $\theta = 2.4-19.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 193 K Block, colourless $0.27 \times 0.17 \times 0.14 \text{ mm}$
Data collection	
Bruker SMART APEXII diffractometer Radiation source: sealed tube CCD scan 131773 measured reflections 7932 independent reflections	2895 reflections with $I > 2\sigma(I)$ $R_{int} = 0.145$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = -33 \rightarrow 34$ $k = -34 \rightarrow 33$ $l = -32 \rightarrow 32$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.222$ S = 0.85 7932 reflections 429 parameters 24 restraints	Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1266P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.39$ e Å ⁻³ $\Delta\rho_{min} = -0.24$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (*sp*³ C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the U_{eq} of the parent atom).

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
N1	0.39718 (9)	0.15387 (9)	-0.05021 (9)	0.0616 (6)	
C2	0.33803 (11)	0.11326 (11)	-0.05643(10)	0.0569 (7)	
C3	0.31146 (11)	0.06711 (11)	-0.09279(10)	0.0577 (7)	
H3	0.333786	0.058309	-0.117113	0.069*	
C4	0 25060 (11)	0.03444(11)	-0.09185(10)	0.0568 (7)	
C5	0.20000(11) 0.20813(12)	-0.01553(12)	-0.12255(11)	0.0663(7)	
C6	0.20012(12) 0.21232(14)	-0.04878(13)	-0.16476(12)	0.0009(7)	
C7	0.16204(16)	-0.09611(16)	-0.18386(14)	0.0720(0) 0.1020(11)	
Н7	0.164166	-0.117596	-0.213625	0.122*	
C8	0 10804 (16)	-0.11305(17)	-0.16021(14)	0.122 0.1040(12)	
H8	0.074218	-0.146831	-0.173361	0.125*	
C9	0.074210 0.10238(14)	-0.08218(15)	-0.11835(13)	0.125 0.0875 (10)	
C10	0.10230(14) 0.15277(13)	-0.03232(13)	-0.10074(11)	0.0696 (8)	
N11	0.15277 (15)	0.05252(15)	-0.05968(0)	0.0697 (6)	
H11	0.13840 (9)	0.003742	-0.040337	0.0087 (0)	
C12	0.129079	0.003742 0.04723(11)	-0.05408(10)	0.0520 (7)	
C12	0.21804(11) 0.24413(12)	0.04723(11) 0.00410(11)	-0.01950(10)	0.0590(7)	
U12	0.24413(12) 0.221748	0.09410 (11)	0.01950 (10)	0.0391(7)	
П13 С14	0.221/48 0.20485 (11)	0.102997	0.004034 -0.02150 (0)	0.071°	
C14	0.30463(11) 0.24586(11)	0.12/91(11) 0.18072(11)	-0.02130(9)	0.0534(7)	
	0.34380(11) 0.22700(12)	0.18072(11)	0.00042(10)	0.0578(7)	
	0.33799 (12)	0.21639 (11)	0.04236 (10)	0.0596 (7)	
H10	0.300219	0.20/086	0.054655	$0.0/2^{*}$	
CI/	0.38//2(13)	0.26599 (11)	0.05931 (10)	0.0610(/)	
N18	0.39149 (11)	0.30915 (9)	0.09462 (9)	0.0695 (6)	
HI8	0.351821	0.296/59	0.11/984	0.083*	
C19	0.44947 (15)	0.35066 (12)	0.09997 (12)	0.0738 (8)	
C20	0.47299 (18)	0.40164 (13)	0.13206 (14)	0.0839 (10)	
C21	0.5324 (2)	0.43785 (14)	0.13098 (17)	0.1015 (12)	
H21	0.549631	0.472860	0.151597	0.122*	
C22	0.56788 (18)	0.42417 (15)	0.10023 (19)	0.1097 (14)	
H22	0.608978	0.450052	0.101049	0.132*	
C23	0.54594 (16)	0.37413 (14)	0.06817 (16)	0.0923 (11)	
C24	0.48467 (14)	0.33606 (12)	0.06833 (13)	0.0750 (9)	
C25	0.44519 (13)	0.28154 (11)	0.04191 (12)	0.0676 (8)	
C26	0.45295 (12)	0.24538 (12)	0.00583 (12)	0.0678 (8)	
H26	0.490808	0.254411	-0.005931	0.081*	
C27	0.40278 (12)	0.19545 (11)	-0.01222 (11)	0.0611 (7)	
C28	0.44510 (13)	0.14724 (14)	-0.06915 (13)	0.0830 (9)	
H28A	0.479014	0.186180	-0.077441	0.100*	0.85
H28B	0.433502	0.123775	-0.102669	0.100*	0.85
H28C	0.448498	0.156016	-0.108184	0.100*	0.15
H28D	0.480695	0.179279	-0.052218	0.100*	0.15
C29	0.46330 (18)	0.11551 (18)	-0.0245 (2)	0.0924 (13)	0.85
H29A	0.501773	0.120371	-0.034567	0.111*	0.85
H29B	0.468401	0.135942	0.010268	0.111*	0.85

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C29A	0.4496 (8)	0.0993 (9)	-0.0641 (8)	0.058 (5)	0.15
H29C	0.491994	0.112866	-0.064435	0.070*	0.15
H29D	0.433341	0.076631	-0.097653	0.070*	0.15
C30	0.42270 (17)	0.05359 (18)	-0.01624 (15)	0.1057 (12)	
H30A	0.419618	0.032706	-0.050292	0.127*	0.85
H30B	0.383581	0.048371	-0.008451	0.127*	0.85
H30C	0.401214	0.069270	0.003999	0.127*	0.15
H30D	0.391820	0.018897	-0.035301	0.127*	0.15
C31	0.4386 (2)	0.02484 (19)	0.02872 (19)	0.1261 (15)	
H31A	0.478014	0.031055	0.020650	0.151*	
H31B	0.441973	0.046529	0.062317	0.151*	
C32	0.4015 (2)	-0.0360(2)	0.03997 (16)	0.1324 (16)	
H32A	0.396167	-0.057599	0.005916	0.159*	
H32B	0.362699	-0.041886	0.050309	0.159*	
C33	0.4192 (2)	-0.0638(2)	0.0815 (2)	0.1427 (17)	
H33A	0.458966	-0.055696	0.071930	0.171*	
H33B	0.422937	-0.042822	0.115696	0.171*	
C34	0.3843 (4)	-0.1264(3)	0.0933 (3)	0.192 (3)	
H34A	0.346215	-0.134099	0.107849	0.230*	0.7
H34B	0.376296	-0.147749	0.058667	0.230*	0.7
H34C	0.383354	-0.147994	0.060296	0.230*	0.3
H34D	0.405145	-0.135721	0.121238	0.230*	0.3
C35	0.4083 (5)	-0.1519 (4)	0.1304 (3)	0.202 (4)	0.7
H35A	0.380554	-0.193783	0.134472	0.304*	0.7
H35B	0.445381	-0.146321	0.116116	0.304*	0.7
H35C	0.415159	-0.132607	0.165531	0.304*	0.7
C35A	0.3246 (8)	-0.1491 (10)	0.1112 (8)	0.179 (7)	0.3
H35D	0.306388	-0.191287	0.117537	0.269*	0.3
H35E	0.324431	-0.129526	0.144661	0.269*	0.3
H35F	0.302544	-0.141854	0.083450	0.269*	0.3
O36	0.26787 (9)	-0.03024(9)	-0.18319 (8)	0.0809 (6)	
C37	0.27329 (16)	-0.06189 (16)	-0.22806 (13)	0.1004 (11)	
H37A	0.259234	-0.102542	-0.217425	0.151*	
H37B	0.314429	-0.043590	-0.238912	0.151*	
H37C	0.249893	-0.061055	-0.258331	0.151*	
O38	0.05177 (9)	-0.09506 (10)	-0.09089(9)	0.0999 (7)	
C39	0.00197 (15)	-0.15248 (16)	-0.09840 (17)	0.1205 (14)	
H39A	-0.012199	-0.156443	-0.135507	0.181*	
H39B	-0.029162	-0.158138	-0.073385	0.181*	
H39C	0.013321	-0.182006	-0.091425	0.181*	
O40	0.43208 (12)	0.40842 (9)	0.15991 (9)	0.1011 (8)	
C41	0.4547 (2)	0.45374 (17)	0.19893 (16)	0.1433 (18)	
H41A	0.485908	0.452607	0.219340	0.215*	
H41B	0.423350	0.448265	0.223561	0.215*	
H41C	0.470514	0.491679	0.180841	0.215*	
042	0.57773 (10)	0.35734 (9)	0.03698 (13)	0.1135 (9)	
C43	0.6389 (5)	0.3968 (5)	0.0414 (4)	0.102 (3)	0.57
H43A	0.646779	0.437003	0.036787	0.153*	0.57

H43B	0.659522	0.387936	0.013464	0.153*	0.57	
H43C	0.652498	0.392724	0.076988	0.153*	0.57	
C43A	0.6370 (7)	0.3986 (8)	0.0112 (5)	0.114 (5)	0.43	
H43D	0.668387	0.405174	0.036311	0.171*	0.43	
H43E	0.639392	0.436013	0.002852	0.171*	0.43	
H43F	0.641233	0.381021	-0.022029	0.171*	0.43	
O1W	0.0541 (2)	-0.0271 (2)	0.0018 (2)	0.1203 (16)	0.5	
H1W	0.070937	-0.046260	-0.004863	0.180*	0.5	
H2W	0.068337	-0.007660	0.025637	0.180*	0.5	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0533 (14)	0.0561 (13)	0.0704 (14)	0.0236 (11)	-0.0004 (11)	-0.0020 (11)
C2	0.0586 (17)	0.0549 (16)	0.0546 (15)	0.0264 (14)	-0.0025 (13)	0.0037 (13)
C3	0.0597 (17)	0.0578 (16)	0.0545 (15)	0.0284 (14)	0.0005 (13)	0.0043 (13)
C4	0.0626 (17)	0.0525 (15)	0.0518 (15)	0.0262 (14)	-0.0066 (13)	0.0023 (12)
C5	0.0637 (19)	0.0687 (18)	0.0593 (17)	0.0278 (15)	-0.0099 (14)	-0.0012 (15)
C6	0.070(2)	0.074 (2)	0.0631 (18)	0.0250 (17)	-0.0109 (16)	-0.0156 (15)
C7	0.085 (3)	0.105 (3)	0.083 (2)	0.023 (2)	-0.007(2)	-0.033 (2)
C8	0.081 (3)	0.107 (3)	0.089 (2)	0.021 (2)	-0.017 (2)	-0.041 (2)
C9	0.056 (2)	0.098 (2)	0.084 (2)	0.0200 (18)	-0.0081 (17)	-0.011 (2)
C10	0.067 (2)	0.0739 (19)	0.0572 (17)	0.0276 (17)	-0.0144 (15)	-0.0058 (15)
N11	0.0555 (15)	0.0737 (15)	0.0665 (15)	0.0244 (13)	-0.0043 (11)	-0.0029 (12)
C12	0.0547 (16)	0.0584 (16)	0.0561 (16)	0.0225 (14)	-0.0064 (13)	0.0032 (13)
C13	0.0599 (17)	0.0625 (17)	0.0525 (15)	0.0288 (15)	-0.0015 (13)	0.0000 (13)
C14	0.0579 (17)	0.0553 (16)	0.0482 (14)	0.0248 (14)	-0.0033 (13)	0.0041 (12)
C15	0.0551 (16)	0.0541 (16)	0.0570 (15)	0.0220 (13)	-0.0045 (13)	0.0051 (13)
C16	0.0604 (17)	0.0574 (16)	0.0564 (15)	0.0260 (14)	-0.0057 (13)	-0.0025 (13)
C17	0.074 (2)	0.0516 (16)	0.0562 (16)	0.0302 (15)	-0.0093 (14)	-0.0010 (13)
N18	0.0786 (17)	0.0510 (13)	0.0654 (14)	0.0222 (13)	-0.0132 (12)	-0.0035 (11)
C19	0.086 (2)	0.0523 (18)	0.076 (2)	0.0290 (18)	-0.0213 (17)	0.0022 (15)
C20	0.116 (3)	0.0511 (19)	0.077 (2)	0.036 (2)	-0.032 (2)	-0.0049 (16)
C21	0.115 (3)	0.049 (2)	0.119 (3)	0.025 (2)	-0.046 (3)	-0.0009 (19)
C22	0.092 (3)	0.051 (2)	0.160 (4)	0.017 (2)	-0.041 (3)	0.013 (2)
C23	0.080 (2)	0.050(2)	0.138 (3)	0.0252 (19)	-0.029 (2)	0.004 (2)
C24	0.074 (2)	0.0458 (17)	0.091 (2)	0.0194 (16)	-0.0242 (17)	0.0043 (15)
C25	0.069 (2)	0.0514 (17)	0.0766 (19)	0.0257 (15)	-0.0139 (16)	0.0057 (15)
C26	0.0552 (17)	0.0559 (17)	0.086 (2)	0.0230 (15)	-0.0039 (15)	0.0083 (15)
C27	0.0595 (18)	0.0532 (16)	0.0657 (17)	0.0246 (14)	-0.0030 (14)	0.0061 (14)
C28	0.0632 (19)	0.077 (2)	0.099 (2)	0.0273 (17)	0.0086 (17)	-0.0136 (18)
C29	0.077 (3)	0.080 (3)	0.127 (4)	0.043 (2)	-0.021 (3)	-0.024 (3)
C29A	0.056 (11)	0.076 (14)	0.060 (11)	0.047 (11)	-0.010 (10)	-0.011 (11)
C30	0.110 (3)	0.117 (3)	0.097 (3)	0.062 (3)	-0.020 (2)	-0.012 (2)
C31	0.128 (3)	0.103 (3)	0.170 (4)	0.074 (3)	-0.061 (3)	-0.038 (3)
C32	0.174 (4)	0.128 (4)	0.101 (3)	0.080 (4)	-0.034 (3)	-0.008 (3)
C33	0.203 (5)	0.139 (4)	0.130 (4)	0.118 (4)	-0.025 (4)	-0.014 (3)
C34	0.233 (7)	0.215 (7)	0.164 (5)	0.139 (6)	0.025 (5)	0.061 (5)

C35	0.319 (11)	0.184 (7)	0.160 (7)	0.167 (8)	0.067 (7)	0.051 (6)
C35A	0.138 (12)	0.225 (16)	0.156 (13)	0.077 (11)	-0.011 (11)	-0.022 (11)
O36	0.0801 (15)	0.0857 (14)	0.0682 (13)	0.0350 (12)	-0.0015 (11)	-0.0177 (11)
C37	0.113 (3)	0.106 (3)	0.078 (2)	0.052 (2)	0.0006 (19)	-0.026 (2)
O38	0.0648 (14)	0.0994 (17)	0.1058 (17)	0.0189 (13)	-0.0138 (13)	-0.0196 (13)
C39	0.075 (2)	0.096 (3)	0.150 (4)	0.013 (2)	-0.013 (2)	-0.026 (3)
O40	0.145 (2)	0.0707 (15)	0.0760 (14)	0.0449 (15)	-0.0241 (15)	-0.0223 (12)
C41	0.207 (5)	0.093 (3)	0.102 (3)	0.055 (3)	-0.042 (3)	-0.046 (2)
O42	0.0677 (16)	0.0602 (14)	0.195 (3)	0.0189 (13)	-0.0109 (16)	0.0058 (15)
C43	0.069 (5)	0.067 (4)	0.157 (9)	0.024 (4)	0.006 (7)	0.023 (7)
C43A	0.074 (6)	0.098 (8)	0.127 (10)	0.011 (5)	0.002 (9)	0.030 (8)
O1W	0.109 (4)	0.125 (4)	0.135 (4)	0.065 (3)	0.005 (3)	-0.010 (3)
C43 C43A O1W	0.069 (5) 0.074 (6) 0.109 (4)	0.067 (4) 0.098 (8) 0.125 (4)	0.157 (9) 0.127 (10) 0.135 (4)	0.024 (4) 0.011 (5) 0.065 (3)	0.006 (7) 0.002 (9) 0.005 (3)	0.023 (7) 0.030 (8) -0.010 (3)

Geometric parameters (Å, °)

N1—C2	1.392 (3)	C29—C30	1.453 (5)
N1—C27	1.398 (3)	C29—H29A	0.9900
N1-C28	1.440 (3)	C29—H29B	0.9900
C2—C3	1.392 (3)	C29A—C30	1.586 (19)
C2-C14	1.416 (3)	C29A—H29C	0.9900
C3—C4	1.393 (3)	C29A—H29D	0.9900
С3—Н3	0.9500	C30—C31	1.521 (5)
C4—C12	1.422 (4)	C30—H30A	0.9900
C4—C5	1.449 (4)	C30—H30B	0.9900
C5—C10	1.406 (4)	С30—Н30С	0.9900
C5—C6	1.406 (4)	C30—H30D	0.9900
C6—O36	1.372 (3)	C31—C32	1.429 (6)
С6—С7	1.374 (4)	C31—H31A	0.9900
С7—С8	1.393 (5)	C31—H31B	0.9900
С7—Н7	0.9500	C32—C33	1.470 (5)
С8—С9	1.374 (5)	C32—H32A	0.9900
С8—Н8	0.9500	C32—H32B	0.9900
C9—O38	1.382 (4)	C33—C34	1.464 (7)
C9—C10	1.394 (4)	С33—Н33А	0.9900
C10—N11	1.381 (3)	С33—Н33В	0.9900
N11—C12	1.405 (3)	C34—C35A	1.448 (18)
N11—H11	0.8800	C34—C35	1.459 (9)
C12—C13	1.375 (3)	C34—H34A	0.9900
C13—C14	1.392 (3)	C34—H34B	0.9900
С13—Н13	0.9500	C34—H34C	0.9900
C14—C15	1.444 (3)	C34—H34D	0.9900
C15—C16	1.386 (4)	C35—H35A	0.9800
C15—C27	1.428 (4)	C35—H35B	0.9800
C16—C17	1.377 (4)	C35—H35C	0.9800
С16—Н16	0.9500	C35A—H35D	0.9800
C17—N18	1.401 (3)	С35А—Н35Е	0.9800
C17—C25	1.426 (4)	C35A—H35F	0.9800
N18—C19	1.372 (4)	O36—C37	1.442 (3)

N18—H18	1.0943	C37—H37A	0.9800
C19—C24	1.410 (4)	С37—Н37В	0.9800
C19—C20	1.412 (4)	C37—H37C	0.9800
C20—O40	1.367 (4)	O38—C39	1.438 (4)
C20—C21	1.369 (5)	C39—H39A	0.9800
C21—C22	1.388 (5)	C39—H39B	0.9800
C21—H21	0.9500	C39—H39C	0.9800
C22—C23	1.396 (5)	O40—C41	1.418 (4)
C22—H22	0.9500	C41—H41A	0.9800
C23—O42	1.368 (4)	C41—H41B	0.9800
C23—C24	1.414 (4)	C41—H41C	0.9800
C24—C25	1.445 (4)	O42—C43	1.422 (12)
C25—C26	1.397 (4)	O42—C43A	1.529 (16)
C26—C27	1.395 (4)	C43—H43A	0.9800
C26—H26	0.9500	C43—H43B	0.9800
C28—C29A	1.334 (18)	C43—H43C	0.9800
C28—C29	1.601 (5)	C43A—H43D	0.9800
C28—H28A	0.9900	C43A—H43E	0.9800
C28—H28B	0.9900	C43A—H43F	0.9800
C28—H28C	0.9900	O1W—H1W	0.8406
C28—H28D	0.9900	O1W H2W	0.7487
020 11202	0.000		01, 10,
C2—N1—C27	108.5 (2)	H29A—C29—H29B	107.4
C_{2} N1 – C_{28}	125.9 (2)	C_{28} C_{29A} C_{30}	125.0 (13)
C_{27} N1 $-C_{28}$	1242(2)	C_{28} C_{29A} H_{29C}	106.1
C_{3} C_{2} N_{1}	$12 \times 12 (2)$ $128 \times 12 (2)$	C_{30} C_{29A} H_{29C}	106.1
C_{3} C_{2} C_{14}	120.0(2) 121.8(2)	C_{28} C_{29A} H_{29D}	106.1
N1 - C2 - C14	121.0(2) 1093(2)	$C_{20} = C_{29A} = H_{29D}$	106.1
$C_{2} - C_{3} - C_{4}$	105.5(2) 116.8(2)	$H_{29}C - C_{29}A - H_{29}D$	106.3
С2—С3—Н3	121.6	$C_{29} - C_{30} - C_{31}$	115.6(4)
C4 - C3 - H3	121.6	C_{2} C_{30} C_{29}	143.0(7)
C_{3} C_{4} C_{12}	121.0 120.7(2)	C_{29} C_{30} H_{30A}	108.4
$C_{3} - C_{4} - C_{5}$	120.7(2) 133.1(3)	C_{2} C_{30} H_{30A}	108.4
$C_{12} - C_{4} - C_{5}$	106.2(2)	C29_C30_H30B	108.4
C10-C5-C6	100.2(2) 118.9(3)	C_{2} C_{30} H_{30B}	108.4
C10-C5-C4	107.1(2)	H30A_C30_H30B	107.4
C6-C5-C4	107.1(2) 133.9(3)	$C_{31} - C_{30} - H_{30C}$	101.4
036-C6-C7	125.7(3)	$C_{294} - C_{30} - H_{30C}$	101.2
036-C6-C5	125.7(5) 115.4(2)	C_{2}^{31} C_{30} H30D	101.2
C_{7} C_{6} C_{5}	113.4(2) 118.0(3)	C_{20A} C_{30} H_{30D}	101.2
$C_{1} = C_{0} = C_{3}$	110.9(3)	$H_{30C} = C_{30} = H_{30D}$	101.2
C6 C7 H7	121.0 (5)	$C_{32} C_{31} C_{30}$	104.3
C^{8} C^{7} H^{7}	119.5	$C_{32} = C_{31} = C_{30}$	119.9 (4)
$C_0 - C_1 - 11_7$	117.3 121 7 (2)	$C_{30} C_{31} H_{21A}$	107.3
$C_{2} = C_{0} = C_{1}$	121.7(3)	$C_{30} = C_{31} = H_{31A}$	107.3
$C_7 = C_0 = \Pi_0$	119.1	$C_{20} C_{21} H_{21D}$	107.3
$C^{0} = C^{0} = C^{0}$	117.1 127.2 (2)		107.3
$C_{0} = C_{0} = C_{10}$	127.3(3)	$H_{21} = C_{22} = C_{22}$	100.9
Lo-L9-L10	11/.5(3)	USI-US2-USS	119.2 (4)

O38—C9—C10	115.2 (3)	C31—C32—H32A	107.5
N11—C10—C9	128.4 (3)	С33—С32—Н32А	107.5
N11—C10—C5	109.6 (2)	C31—C32—H32B	107.5
C9—C10—C5	121.8 (3)	С33—С32—Н32В	107.5
C10—N11—C12	108.3 (2)	H32A—C32—H32B	107.0
C10—N11—H11	125.8	C34—C33—C32	121.7 (5)
C12—N11—H11	125.8	С34—С33—Н33А	106.9
C13—C12—N11	128.9 (3)	С32—С33—Н33А	106.9
C13—C12—C4	122.3 (2)	С34—С33—Н33В	106.9
N11—C12—C4	108.7 (2)	С32—С33—Н33В	106.9
C12—C13—C14	116.9 (2)	H33A—C33—H33B	106.7
C12—C13—H13	121.5	C35A—C34—C33	117.9 (11)
C14—C13—H13	121.5	C35—C34—C33	118.2 (7)
C13—C14—C2	121.2 (2)	C35—C34—H34A	107.7
C13—C14—C15	132.0 (2)	C33—C34—H34A	107.7
C2—C14—C15	106.9 (2)	C35—C34—H34B	107.7
C16—C15—C27	121.2 (2)	C33—C34—H34B	107.8
C16—C15—C14	132.1 (2)	H34A—C34—H34B	107.1
C27—C15—C14	106.6 (2)	C35A—C34—H34C	107.8
C17—C16—C15	116.6 (3)	C33—C34—H34C	107.8
C17—C16—H16	121.7	C35A—C34—H34D	107.8
C15—C16—H16	121.7	C33—C34—H34D	107.8
C16—C17—N18	127.7 (3)	H34C—C34—H34D	107.2
C16—C17—C25	123.5 (3)	С34—С35—Н35А	109.5
N18—C17—C25	108.8 (2)	С34—С35—Н35В	109.5
C19—N18—C17	107.9 (3)	H35A—C35—H35B	109.5
C19—N18—H18	134.9	С34—С35—Н35С	109.5
C17—N18—H18	114.9	H35A—C35—H35C	109.5
N18—C19—C24	110.6 (3)	H35B—C35—H35C	109.5
N18—C19—C20	126.8 (3)	C34—C35A—H35D	109.5
C24—C19—C20	122.6 (3)	С34—С35А—Н35Е	109.5
O40—C20—C21	128.5 (3)	H35D—C35A—H35E	109.5
O40—C20—C19	114.2 (3)	C34—C35A—H35F	109.5
C21—C20—C19	117.3 (4)	H35D—C35A—H35F	109.5
C20—C21—C22	121.0 (4)	H35E—C35A—H35F	109.5
C20—C21—H21	119.5	C6—O36—C37	116.7 (2)
C22—C21—H21	119.5	О36—С37—Н37А	109.5
C21—C22—C23	123.0 (4)	О36—С37—Н37В	109.5
C21—C22—H22	118.5	Н37А—С37—Н37В	109.5
С23—С22—Н22	118.5	О36—С37—Н37С	109.5
O42—C23—C22	126.7 (4)	Н37А—С37—Н37С	109.5
O42—C23—C24	116.1 (3)	Н37В—С37—Н37С	109.5
C22—C23—C24	117.2 (4)	C9—O38—C39	117.2 (3)
C19—C24—C23	118.9 (3)	O38—C39—H39A	109.5
C19—C24—C25	106.2 (3)	O38—C39—H39B	109.5
C23—C24—C25	134.9 (4)	H39A—C39—H39B	109.5
C26—C25—C17	119.7 (2)	O38—C39—H39C	109.5
C26—C25—C24	133.8 (3)	Н39А—С39—Н39С	109.5

C17—C25—C24	106.4 (3)	H39B—C39—H39C	109.5
C27—C26—C25	117.2 (3)	C20—O40—C41	115.4 (3)
С27—С26—Н26	121.4	O40—C41—H41A	109.5
С25—С26—Н26	121.4	O40—C41—H41B	109.5
C26—C27—N1	129.5 (3)	H41A—C41—H41B	109.5
C26—C27—C15	121.7 (3)	O40—C41—H41C	109.5
N1-C27-C15	108.7 (2)	H41A—C41—H41C	109.5
C29A—C28—N1	125.8 (8)	H41B—C41—H41C	109.5
N1-C28-C29	110.4 (3)	$C_{23} - O_{42} - C_{43}$	112.0 (6)
N1—C28—H28A	109.6	C23-042-C43A	125.5 (8)
C29—C28—H28A	109.6	O42— $C43$ — $H43A$	109.5
N1-C28-H28B	109.6	O42— $C43$ — $H43B$	109.5
C29—C28—H28B	109.6	H43A - C43 - H43B	109.5
H28A-C28-H28B	108.1	042— $C43$ — $H43C$	109.5
$C_{29A} - C_{28} - H_{28C}$	105.9	H43A - C43 - H43C	109.5
$N1 - C_{28} - H_{28}C$	105.9	H43B— $C43$ — $H43C$	109.5
$C_{29A} = C_{28} = H_{28D}$	105.9	042— $C43A$ — $H43D$	109.5
$N1 - C^{28} + H^{28}D$	105.9	O42— $C43$ A—H43F	109.5
$H_{28C} - C_{28} + H_{28D}$	106.2	H43D - C43A - H43F	109.5
C_{30} C_{29} C_{28}	116.1 (3)	042— $C43$ A—H43F	109.5
C_{30} C_{29} H_{29A}	108.3	H43D - C43A - H43F	109.5
C_{28} C_{29} H_{29A}	108.3	H43F $C43A$ $H43F$	109.5
$C_{20} = C_{29} = H_{29R}$	108.3	H1W = 01W = H2W	109.5
C_{28} C_{29} H_{29B}	108.3		107.4
C20 C2) 112/D	100.5		
C27 - N1 - C2 - C3	174 3 (2)	N18—C19—C20—C21	-1791(3)
$C_{28} = N_1 = C_2 = C_3$	-193(4)	C_{24} C_{19} C_{20} C_{21}	0.9(4)
$C_{27} = N_1 = C_2 = C_{14}$	-10(3)	040-C20-C21-C22	1799(3)
$C_{28} N_{1} C_{2} C_{14}$	165 3 (3)	C19-C20-C21-C22	-11(5)
N1-C2-C3-C4	-1773(2)	C_{20} C_{21} C_{22} C_{23}	11(6)
$C_{14} C_{2} C_{3} C_{4}$	-24(4)	$C_{21} = C_{22} = C_{23} = 0.42$	-1797(3)
$C_2 - C_3 - C_4 - C_{12}$	-1.9(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.8(5)
$C_2 = C_3 = C_4 = C_5$	1800(3)	N18-C19-C24-C23	1794(3)
C_{3} C_{4} C_{5} C_{10}	1757(3)	C_{20} C_{19} C_{24} C_{23}	-0.7(4)
C_{12} C_{4} C_{5} C_{10}	-27(3)	N18-C19-C24-C25	-0.2(3)
C_{3} C_{4} C_{5} C_{6}	-1.1(5)	C_{20} C_{19} C_{24} C_{25}	179.8(2)
$C_{12} - C_{4} - C_{5} - C_{6}$	-1795(3)	$042 - C^{23} - C^{24} - C^{19}$	179.6(2)
C12 - C4 - C5 - C6	-178.9(2)	$C_{22} = C_{23} = C_{24} = C_{19}$	179.0(3)
C4-C5-C6-O36	-24(5)	$042 - C^{23} - C^{24} - C^{25}$	-11(5)
C_{10} C_{5} C_{6} C_{7}	2.4(5)	$C_{22} = C_{23} = C_{24} = C_{25}$	1.1(3) 1799(3)
$C_{10} = C_{5} = C_{6} = C_{7}$	1.0(4)	$C_{22} = C_{23} = C_{24} = C_{23}$	-0.1(4)
$C_{+} C_{-} C_{-$	177.4(3) 176A(3)	N18 C17 C25 C26	-1704(2)
$C_{5} = C_{6} = C_{7} = C_{8}$	-24(5)	$C_{16} C_{17} C_{25} C_{20}$	179.4(2)
$C_{0} = C_{0} = C_{0}$	2.4 (5) 2.4 (6)	10 - 017 - 023 - 024 N18 C17 C25 C24	1/7.7(2)
$C_{1} = C_{2} = C_{2} = C_{2}$	2.4(0) -178.6(2)	1010 - 017 - 023 - 024	0.4(3)
$C_7 = C_8 = C_9 = C_{10}$	-1/8.0(3)	U19 - U24 - U23 - U20	1/9.0(3)
U = U = U = U = U = U = U = U = U = U =	11(6)	C^{11} C^{14} C^{15} C^{16}	0.2(6)
C9 C0 C10 N11	1.1 (6)	C23—C24—C25—C26	0.2 (6)
C8—C9—C10—N11	1.1 (6) -179.7 (3)	C23-C24-C25-C26 C19-C24-C25-C17	0.2 (6) -0.1 (3)

C8—C9—C10—C5	-3.5 (5)	C17—C25—C26—C27	1.0 (4)
O38—C9—C10—C5	176.2 (3)	C24—C25—C26—C27	-178.7 (3)
C6-C5-C10-N11	179.3 (2)	C25—C26—C27—N1	175.9 (2)
C4—C5—C10—N11	2.0 (3)	C25—C26—C27—C15	-1.8 (4)
C6-C5-C10-C9	2.5 (4)	C2—N1—C27—C26	-177.5 (3)
C4—C5—C10—C9	-174.8 (3)	C28—N1—C27—C26	15.8 (4)
C9-C10-N11-C12	176.1 (3)	C2—N1—C27—C15	0.4 (3)
C5-C10-N11-C12	-0.5 (3)	C28—N1—C27—C15	-166.3 (2)
C10—N11—C12—C13	178.1 (3)	C16—C15—C27—C26	1.6 (4)
C10—N11—C12—C4	-1.3 (3)	C14—C15—C27—C26	178.5 (2)
C3—C4—C12—C13	4.4 (4)	C16—C15—C27—N1	-176.4 (2)
C5-C4-C12-C13	-177.0 (2)	C14—C15—C27—N1	0.4 (3)
C3—C4—C12—N11	-176.2 (2)	C2—N1—C28—C29A	-45.1 (12)
C5-C4-C12-N11	2.4 (3)	C27—N1—C28—C29A	119.3 (12)
N11-C12-C13-C14	178.4 (2)	C2—N1—C28—C29	-88.8 (3)
C4—C12—C13—C14	-2.3 (4)	C27—N1—C28—C29	75.5 (3)
C12—C13—C14—C2	-2.0 (3)	N1-C28-C29-C30	71.9 (4)
C12—C13—C14—C15	176.7 (2)	N1-C28-C29A-C30	-30 (2)
C3—C2—C14—C13	4.5 (4)	C28—C29—C30—C31	-176.3 (3)
N1-C2-C14-C13	-179.7 (2)	C28—C29A—C30—C31	-121.9 (13)
C3—C2—C14—C15	-174.5 (2)	C29—C30—C31—C32	-179.9 (4)
N1—C2—C14—C15	1.3 (3)	C29A—C30—C31—C32	-139.7 (14)
C13—C14—C15—C16	-3.5 (5)	C30—C31—C32—C33	176.6 (4)
C2-C14-C15-C16	175.4 (3)	C31—C32—C33—C34	-177.4 (5)
C13—C14—C15—C27	-179.8 (2)	C32—C33—C34—C35A	-60.1 (12)
C2-C14-C15-C27	-1.0 (3)	C32—C33—C34—C35	172.8 (6)
C27—C15—C16—C17	-0.7 (4)	C7—C6—O36—C37	2.9 (5)
C14—C15—C16—C17	-176.6 (2)	C5—C6—O36—C37	-177.3 (2)
C15—C16—C17—N18	179.1 (2)	C8—C9—O38—C39	14.1 (5)
C15—C16—C17—C25	-0.1 (4)	C10-C9-O38-C39	-165.6 (3)
C16—C17—N18—C19	-179.7 (3)	C21—C20—O40—C41	-10.8 (5)
C25-C17-N18-C19	-0.5 (3)	C19—C20—O40—C41	170.2 (3)
C17—N18—C19—C24	0.4 (3)	C22—C23—O42—C43	1.7 (6)
C17—N18—C19—C20	-179.6 (3)	C24—C23—O42—C43	-177.2 (5)
N18—C19—C20—O40	0.0 (4)	C22—C23—O42—C43A	-28.2 (8)
C24—C19—C20—O40	-180.0 (3)	C24—C23—O42—C43A	152.9 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N11—H11…O1W	0.88	2.03	2.879 (5)	162
N11—H11…O1 <i>W</i> ⁱ	0.88	2.45	3.238 (6)	149
N18—H18…O36 ⁱ	1.09	2.03	3.068 (3)	157
O1 <i>W</i> —H1 <i>W</i> …N11	0.84	2.43	2.879 (5)	114
O1 <i>W</i> —H1 <i>W</i> ···O38	0.84	2.41	2.900 (6)	118
O1 <i>W</i> —H2 <i>W</i> ···O38 ⁱ	0.75	2.48	3.181 (6)	158

Symmetry code: (i) x-y, x, -z.