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Abstract

Microalgae are eukaryotic and photosynthetic organisms which are commonly used in 
biotechnology to produce high added value molecules. Recently, biopharmaceuticals 
such as monoclonal antibodies have been successfully produced in microalgae such as 
Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Most of these recombinant pro-
teins are indeed glycosylated proteins, and it is well established that their glycan structures 
are essential for the bioactivity of the biopharmaceuticals. Therefore, prior to any com-
mercial usage of such algae-made biopharmaceuticals, it is necessary to characterize their 
glycan structures and erase glycosylation differences that may occur in comparison with 
their human counterpart. In this context, the chapter summarizes successful attempts to 
produce biopharmaceuticals in microalgae and underlines current information regarding 
glycosylation pathways in microalgae. Finally, genome editing strategies that would be 
essential in the future to optimize the microalgae glycosylation pathways are highlighted.

Keywords: antibodies, biopharmaceuticals, genome editing tools, glycosylation, 
microalgae

1. Introduction

Microalgae are currently used for a broad spectrum of industrial applications including food 
and livestock feed industries, bioenergy, cosmetics, healthcare and environment [1–4]. Recently, 
due to their numerous advantages (high growth rate, easy cultivation, low production cost, etc.), 
microalgae have emerged as a solar-fueled green alternative cell factories for the production  
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of recombinant proteins [4–7]. Among different attempts to produce vaccines and biophar-
maceuticals in microalgae, the production of monoclonal antibodies (mAbs) represents the 
most extensive work [7, 8]. Indeed, the first significant effort to produce recombinant mAb 
fragments was made in the green microalga Chlamydomonas reinhardtii with the synthesis and 
accumulation in its chloroplast of a human single chain antibody directed against the herpes 
simplex virus glycoprotein D (HSV8-lsc) [8]. Later, a full-length human IgG1 directed against 
anthrax was produced successfully in the chloroplast of C. reinhardtii [9]. The Chlamydomonas-
made mAb was able to bind the anthrax protective antigen 83 (PA83) [9]. In another study, a 
series of complex chimeric proteins was expressed in the chloroplast of C. reinhardtii. Such chi-
meric proteins were composed of a single chain antibody fragment (scFv) targeting the B-cell 
surface antigen CD22, genetically fused either to the eukaryotic ribosome inactivating protein, 
gelonin, from Gelonium multiflorm [10] or to Pseudomonas aeruginosa exotoxin A domains 2 and 
3 [11]. These molecules, termed immunotoxins, were encoded by a single gene that produces 
an antibody-toxin chimeric protein. Such algae-made immunotoxins are able to bind target 
B cells and efficiently kill them in vitro [11]. Full-length mAbs have also been expressed in 
the diatom Phaeodactylum tricornutum through nuclear transformation [12–14]. Those mAbs 
correspond respectively to a recombinant mAb directed against the nucleoprotein of Marburg 
virus, a close relative of Ebola virus [14] and to a human IgG1 directed against the Hepatitis 
B virus Antigen (HBsAg) [12, 13]. The latter has been biochemically characterized in order to 
check the quality of the diatom-made mAb as well as its N-glycosylation profile [15]. Moreover, 
it has been demonstrated that this glycosylated antibody is able to bind human Fcy receptors 
[16], thus suggesting that it could be efficient in human therapy.

When the production of biopharmaceuticals is considered, their N-glycosylation has to be 
investigated. Indeed, among the biopharmaceuticals that were approved in 2016 and 2017, 
96% were glycosylated [17]. The glycosylation of the approved biopharmaceutical rep-
resents a critical quality attribute (CQA) that may affect its safety and biological activities 
[18–20]. In addition, introduction by the expression system of nonhuman epitopes on the 
recombinant protein may induce immune response after injection to patients [21]. Thus, the 
N-glycosylation of biopharmaceuticals is a real challenge for the commercial production of 
biopharmaceuticals. The glycosylation state of therapeutic proteins has to be accurately iden-
tified and characterized as per the World Health Organization and International Conference 
on Harmonization Q6B guidelines [17]. Therefore, in the context of developing the microalgae 
as alternative platforms for the production of biopharmaceuticals, the capability of these uni-
cellular eukaryotic cells to introduce N-glycans on their endogenous proteins and on recom-
binant proteins, as well as their regulation, have to be considered and understood.

2. N-glycosylation in microalgae

2.1. General aspects

N-glycosylation is a major post-translational modification of proteins in eukaryotes. Protein 
N-glycosylation first starts by the synthesis of a lipid-linked oligosaccharide formed by trans-
fer of monosaccharides on a dolichol pyrophosphate (PP-Dol) anchored in the membrane of 
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the endoplasmic reticulum (ER) via the action of a set of enzymes named asparagine-linked 
glycosylation (ALG) [22, 23]. The final Glc3Man9GlcNAc2 precursor is transferred en bloc by 
the oligosaccharyltransferase (OST) complex onto the asparagine residues of the consensus 
Asn-X-Ser/Thr sequences of a protein [22] (Figure 1). Alternative consensus sequences, such 
as Asn-X-Cys and Asn-X-Val, have also been found to be glycosylated in some proteins [24–26]. 

Figure 1. Comparison of protein N-glycosylation pathways in eukaryotes. Biosynthesis steps occurring in the ER are 
gathered in the box. Mature N-glycan structures observed in mammals, plants, insects, yeasts and filamentous fungi 
are drawn according to [33]. , N-acetylglucosamine; , xylose; , mannose; , fucose; , galactose; , sialic acid; Asn,  
asparagine; PP-Dol, pyroPhosphate dolichol; FuT, fucosyltransferase; GalT, galactosyltransferase; SiaT, sialyltransferase; 
XylT, xylosyltransferase; ALG, asparagine-linked glycosylation; OST, oligosaccharyltransferase.
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In  the ER, neo-synthesized glycoproteins are then submitted to a quality control process 
through the deglucosylation by glucosidases and reglucosylation by an UDP-glucose: glyco-
protein glucosyltransferase (UGGT) of the N-glycans. This allows the synthesis of monogluco-
sylated glycan intermediates that interact with ER-resident chaperones, thus ensuring proper 
folding of the glycoproteins [27]. When the glycoprotein is correctly folded, α-glucosidase II 
would finally remove the last glucose residue, and ER-mannosidase will eventually remove 
one mannose residue that leads to the formation of an oligomannoside Man9/8GlcNAc2. The 
quality control events are conserved in eukaryotes because they are crucial for the secretion of 
well-folded proteins [28]. As a consequence, whatever the expression system used, a recom-
binant therapeutic protein leaving the ER compartment exhibits a N-glycosylation similar to 
one of the reference proteins with unique oligomannoside Man9/8GlcNAc2 attached to the Asn 
residue of the N-glycosylation consensus site.

After transfer to the Golgi apparatus, oligomannosides resulting from the ER processing 
are modified by the action of specific mannosidases and glycosyltransferases [29]. These 
Golgi cell-specific repertoires give rise to various organism-specific oligosaccharides. In 
most eukaryotes, a N-acetylglucosaminyltransferase I (GnT I)-dependent N-glycan process-
ing occurs (Figure 1). In this pathway, the α-mannosidase I converts Man9/8GlcNAc2 into 
the branched isomer of Man5GlcNAc2. Then, actions of GnT I, α-mannosidase II and GnT II, 
respectively, give rise to the core GlcNAc2Man3GlcNAc2 that is common to most eukaryotes 
[27–31] (Figure 1). This core is then decorated by the action of specific glycosyltransferases 
that differ from one organism to another. This allows the protein to be decorated by organ-
ism-specific N-glycans that confer to the mature protein in vivo bioactivities [32]. It is worth 
noting that GnT I-independent N-glycan processing also occurs in some eukaryotes such as 
filamentous fungi and yeasts in which N-glycosylation in the Golgi apparatus results in the 
synthesis of high mannose and hypermannose N-glycans, respectively (Figure 1). As a conse-
quence, in the context of the production of biopharmaceuticals by genetic engineering, such a 
diversity of mature N-linked glycans is a limitation because the expression system used may 
introduce inappropriate epitopes and heterogeneous glycosylation on the therapeutics and 
may also fail in introducing glycan sequences that are required for in vivo bioactivity of the 
biopharmaceuticals.

2.2. Protein N-glycosylation in microalgae

Overall, protein N-glycosylation in microalgae received little attention. Few studies, published
in the 1990s have demonstrated that proteins secreted by green microalgae carry mainly oligo-
mannosides or xylose-containing N-glycans based on affinodetection or enzymatic sequenc-
ing [34–36]. More recently, analysis by mass spectrometry of glycans N-linked to microalgae 
endogenous proteins has been reported. First, the 66 kDa cell wall glycoprotein from the red 
microalga Porphyridium sp. has been found to carry Man8GlcNAc2 and Man9GlcNAc2 oligo-
mannosides containing 6-O-methyl mannose residues and substituted by one or two xylose 
residues [37, 38] (Figure 2). Investigation of C. reinhardtii has demonstrated that proteins in 
this green microalga carry oligomannosides ranging from Man2GlcNAc2 to Man5GlcNAc2 
as well as Man4GlcNAc2 and Man5GlcNAc2 N-glycans containing 6-O-methyl mannoses 
and substituted by one or two xylose residues (Figure 2) [39]. Initially reported as branched 
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oligomannosides, the structure of Man5GlcNAc2 was re-evaluated in 2017 as being linear 
sequences based on ESI-MSn analyses [40]. Although mature N-glycans from Porphyridium 
sp. and C. reinhardtii share common structural features, the location of the xylose residues on 
the N-glycan differs between these two microalgae (Figure 2). As mature N-glycans do not 
exhibit any terminal GlcNAc residues, they were proposed to result from Golgi xylosylation 
and O-methylation of oligomannosides deriving from the precursor synthesized in the ER 
in a GnT I-independent processing, even if this needs to be completely elucidated and that 
methylation occurring in the ER cannot be ruled out yet [38].

N-glycan profile from P. tricornutum has been described to contain Man3GlcNAc2 to 
Man9GlcNAc2 oligomannosides and also minute amount of paucimannosidic fucosylated 
N-glycans (Figure 2) [41]. In contrast to Porphyridium sp. and C. reinhardtii, these N-glycans 
result from a GnT I-dependent pathway (Figure 2) [41]. As evidence, GnT I gene predicted in 
the P. tricornutum genome encodes an enzyme able to restore the maturation of complex-type 
N-glycans in the CHO Lec1 mutant that lacks endogenous GnT I activity [41]. N-glycans aris-
ing from a GnT I-dependent pathway have also been recently reported in the green microalga 
Botryococcus braunii through a glycoproteomic approach [42]. In contrast to P. tricornutum, 
these N-glycans harbor a GlcNAc residue at the nonreducing end as well as mono- and di-
O-methylations of the core mannose residue. Moreover, this N-glycan bearing a terminal 
GlcNAc resulting from the GnT I activity could be further elongated with an additional hexose 
or methyl-hexose residue. In addition, proteins from this green microalga also exhibit methyl-
ated N-linked oligomannosides carrying core fucose and core xylose residues (Figure 2) [42].

In support to these biochemical data, protein N-glycosylation in microalgae can be drawn on 
the basis of public genomic databases. Microalgae genomes from different phyla are available 

Figure 2. Major mature N-linked glycans from the green microalga Chlamydomonas reinhardtii and Botryococcus braunii, 
the red microalga Porphyridium sp. and the diatom Phaeodactylum tricornutum. N-glycan structures are drawn according 
to [33]. , N-acetylglucosamine; , xylose; , mannose; , fucose; , galactose; Asn, asparagine; Me, methyl.
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to date (https://genome.jgi.doe.gov/pages/tree-of-life.jsf) [4, 43]. Since protein N-glycosylation 
occurs in the ER and the Golgi apparatus, bioinformatics analyses of microalgae genomes 
must be investigated independently for the two compartments: search for gene encoding pro-
teins involved in the precursor biosynthesis and the ER protein quality control on the one 
hand, and search for Golgi glycosidases and glycosyltransferases involved in the synthesis of 
mature N-glycans on the other hand.

Genes encoding subunits of OST, glucosidases, as well as ER-resident UGGT and chaperones 
are predicted in microalgae genomes suggesting that the process of ER quality control in these 
unicellular organisms is similar to the one described in other eukaryotic cells [41, 44, 45]. 
Among these putative ER candidates, only the activity of the α(1,3)-glucosidase, also called 
glucosidase II, from the red microalga Porphyridium sp. has been biochemically confirmed 
[44]. Most ALG genes are also predicted in microalgae genomes [39, 41, 44] suggesting that 
the synthesis of the oligosaccharide precursor is overall conserved. However, some of these 
ALG, that is ALG3, ALG9 and ALG12, are not predicted in C. reinhardtii [39, 45]. These ER 
enzymes are involved in the completion of the biosynthesis of the precursor Man9GlcNAc2-
PP-Dol, prior to its glucosylation, by addition of mannose residues on the α(1,6)-mannose arm 
of the core (Figure 1). Reinvestigation in C. reinhardtii of the structure of oligomannosides and 
analysis of the ER N-glycan precursor [40] confirmed the absence of ALG3, ALG9 and ALG12 
activities and the synthesis in this green microalga of linear oligomannoside sequences instead 
of branched isomer initially proposed in [39]. It is worth noting that in this truncated ER path-
way, the presence of the triglucosyl extension is likely sufficient to ensure interaction of the 
N-glycan precursor with chaperones of the ER quality control process. In addition to the lack 
of the ALG3, ALG9 and ALG12 in C. reinhardtii, other microalgae genomes lack genes encoding 
ALG10 and GCS1, an α(1,2)-glucosidase [44]. Because ALG10 is the α(1, 2)-glucosyltransferase 
responsible for the addition of the α(1, 2)-glucose residue on the precursor N-glycan and GCS1 
is responsible for trimming this residue, we hypothesize that the ER quality control in these 
microalgae involved only diglucosylated N-glycan intermediates.

With regard to Golgi N-glycosylation events, the presence of GnT I is predicted in some 
microalgae including haptophytes and cryptophytes, but not in C. reinhardtii, Volvox and 
Ostreococcus [41, 42]. As mentioned previously, P. tricornutum GnT I activity was confirmed 
by the complementation of CHO Lec 1 mutant cell line [41]. A recent study of B. braunii 
[42] confirmed the involvement of this transferase in this green microalga N-glycosylation 
pathway. Concerning other Golgi enzymes, α-mannosidases (CAZy GH 47) and α(1,3)- 
fucosyltransferases (CAZy GT10) are also predicted in microalgae genomes studied so far 
[41, 44, 45]. These enzymes are respectively involved in the trimming of mannose residue 
of oligomannosides and the transfer of fucose on the proximal GlcNAc. These sequences 
exhibit peptide motifs that were demonstrated to be required for activities of such Golgi 
enzymes, but, in contrast to GnT I, no biochemical data of their activity and specificity are 
available yet.

As depicted, protein N-glycosylation occurring in microalgae is specific and largely differs 
from the one described in mammals (Figures 1 and 2). Therefore, production in microalgae 
of biopharmaceuticals exhibiting N-glycans compatible with their use in human therapy 
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would be challenging and requiring metabolic engineering of the N-glycosylation pathway 
in microalgae. This will include the inactivation of enzymes that introduce nonhuman glyco-
epitopes onto N-linked glycans and complementation of microalgae with appropriate gly-
cosyltransferases to introduce missing glycan sequences. These strategies have already been 
successfully carried out for the engineering of the N-glycan pathways in plants and yeasts 
[46, 47]. In addition, the success of the complementation with human glycosyltransferases 
requires the availability in the Golgi apparatus of appropriate nucleotide-activated sugars 
[48]. For instance, sialic acids that terminate bi-antennary N-glycans in mammals have not 
been reported in microalgae such as P. tricornutum and Porphyridium sp. [38, 41]. As well, 
there is no evidence for the import of GlcNAc in the Golgi apparatus in microalgae exhibiting 
a GnT I-independent N-glycan pathway, even if putative candidates for UDP-GlcNAc trans-
porter have been identified in microalgae such as C. reinhardtii [49]. Indeed, the two GlcNAc 
of the chitobiose unit of N-linked glycans are transferred onto the PP-Dol lipid in the cytosolic 
face of the ER membrane. Currently, metabolic engineering strategies are now feasible due to 
the recent development of transgene expression and gene inactivation in microalgae as sum-
marized in Section 3.

3. Genetic engineering tools now available to envision future N-
glycosylation engineering in microalgae

3.1. Different tools to generate genome-modified organisms

Classical strategies of genetic engineering involve the modulation of gene expression includ-
ing overexpression and inactivation by RNA interference [50–52]. The most used engineering 
methods are based on random insertional mutagenesis obtained by various processes such as 
conjugation, agitation with glass beads, electroporation, biolistic microparticle bombardment, 
agrobacterium-mediated transformation or multipulse electroporation. The transformation 
step is followed by phenotypic selection using antibiotics to generate genome-modified 
organisms [53]. Those processes present the advantage to be simple and reach a high level 
of transformed cells. For example, P. tricornutum transformation reached 1 per 106 cells with 
biolistic bombardment system [54]. However, cell-wall-less strains are required for almost all 
the classical methods quoted above [50, 55]. Furthermore, genetic stability of the mutagenesis 
obtained after transformation by random insertion depends on microalgae species [53]. For 
example, a high mutagenesis stability has been shown in C. reinhardtii [55]. Unlike, mutagene-
sis was unstable in Thalassosiara weissflogii [56]. More recently, new tools have been developed 
in order to knock in, knock out, modify, replace, or insert genes. These new genetic engineer-
ing tools consist of the action of nucleases effecting their molecular scissor activities in specific 
loci [52]. A break in the DNA causes activation of DNA repair mechanisms, which can be 
either the homologous-recombination (HR) or the non-homologous end-joining (NHEJ) [52]. 
The HR results in sequence modification in the target locus [57]. In the NHEJ process, the two 
ends of the broken chromosome are stuck together causing small deletions or small insertions 
[57]. These events confer several modifications of the target gene such as gene inactivations or 
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insertions. Very little is known about these mechanisms in microalgae due to their complexity 
as reported by Daboussi in 2017 [53].

Several researches have recently contributed to demonstrate that particular nucleases could 
be used for targeting stable modifications by acting like molecular scissors. Among these 
nucleases, we can quote meganucleases (MNs), zinc finger nucleases (ZFNs), transcriptor 
activator-like effector nucleases (TALENs) and finally, the famous clustered regularly inter-
spaced short palindromic repeats (CRISPR)/nuclease Cas9 system. These four cited nucleases 
are described in the following paragraphs.

Meganuclease is an engineered endonuclease able to recognize and cleave a long specific 
DNA sequence from 18 to 30 base pairs. The meganuclease strategy requires to design a hom-
ing endonuclease from the LAGLIDADG family especially the I-CreI enzyme from C. rein-
hardtii implied in the targeting of interesting gene sequences that need to be modified [58]. 
This was tested for the first time in 2014 using P. tricornutum as a model [59]. In this study, 
two engineered meganucleases targeting genes involved in the lipid metabolism are allowed 
to obtain 29% of targeted mutagenesis [59]. Even successful, this strategy is time-consuming 
as compared to the other alternatives [52].

Zinc finger nucleases (ZFNs) are hybrid proteins composed of a restriction enzyme FokI 
with a designed zinc-finger DNA-binding domains [60]. These FokI enzymes are inactive 
in a homodimer conformation [61]. Therefore, cleavage of a typical DNA-target sequence 
requires to design two different ZFNs for binding to adjacent half-sites of a specific locus. 
Each designed ZFN is able to recognize a sequence of 9–12 nucleotides in the genome [52]. 
A set of zinc finger nucleases has been recently used to modify by insertion of template DNA, 
the Cop3 gene locus encoding a light-activated channel in C. reinhardtii [62]. Moreover, in 
2017, the genome editing was reliably performed using the ZFN strategy in order to inhibit 
and modify nuclear photoreceptor genes in this same microalga [63]. Despite these promising 
results, the ZFN system is barely used because of its low specificity. Indeed, cleavage of DNA 
requires both ZFN monomers to recognize a homologous target in the genome in the proper 
spatial orientation to assemble a functional ZFN [64]. Also, ZFN system is time-consuming 
implementation [64]. Nowadays, other designed nucleases like TALENs or CRISPR/cas9 are 
emerging in the scientific community to perform genome editing in microalgae.

Transcriptional activator-like effector nuclease (TALEN) system is similar to ZFN because 
it uses nucleases composed of a restriction enzyme domain fused to a DNA-binding domain 
(here the TAL effector domain) and a nonspecific DNA cleavage domain FokI [65]. TALEN 
proteins are characterized by a repeated 34-amino acid sequence that recognizes specific 
DNA sequences [66]. P. tricornutum lipid metabolism was recently modified using TALEN 
[59]. In this study, seven genes involved in this metabolism were modified. Each genome 
modification had a high frequency reaching up to 56% of colonies with targeted mutagenesis 
[59]. This genetic engineering allowed creation of a high lipid-producing strain by inactivat-
ing a key gene for carbohydrate energy storage [59]. Another team has inactivated success-
fully the urease gene in P. tricornutum with 24% of transformed colonies [67]. In addition, 
TALEN system has also been used in order to inactivate red/far-red light-sensing phytochrome 
gene of this diatom [68].
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The clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 system is the 
most famous engineered nuclease system of this decade because it is a powerful and precise 
tool applied in numerous eukaryotic organisms [69]. This system is based on the RNA-guided 
DNA cleavage defense system from archaea and many bacteria. Indeed, these organisms are 
able to store bacteriophage DNA fragments along a previous bacteriophage infection in the 
CRISPR locus, which is formed of DNA repeat sequences spaced by a unique DNA sequence. 
This system establishes the basis of a bacterial defense as a response to bacteriophage attacks 
[70]. This defense mechanism has been highlighted for the first time by Pr Emmanuelle 
Charpentier and her team in 2011 [70, 71]. The CRISPR/Cas9 system has been developed 
into a simple toolkit based on a custom single guide RNA (sgRNA) that contains a target-
ing sequence (crRNA sequence) and a cas9 nuclease-recruiting sequence (tracrRNA) [52]. In 
microalgae, CRISPR/cas9 has been used in C. reinhardtii [72]. However, the Cas9 nuclease pro-
duction seemed to be toxic for the microalga limiting efficiency to obtain genome-modified 
strains [72]. Two years later, a new assay has been performed in this same microalga using 
another strategy avoiding toxicity [73]. Indeed, the authors succeeded to generate CRISPR/
cas9-induced NHEJ-mediated knock-in mutant strains in three loci [73]. In the same year, 
CRISPR/cas9 gene knockout technology has been used in P. tricornutum to induce mutant for 
the CpSRP43 gene, a member of the chloroplast signal recognition particle pathway. Using 

MN system ZFN system TALEN system CRISPR/cas9

Actor(s) of gene 
targeting

Chimeric endonuclease Chimeric 
endonuclease

Chimeric 
endonuclease

RNA guide and cas9 
nuclease

Engineered protein 
origin

Chlamydomonas reinhardtii

Saccharomyces cerevisiae 
[59, 77]

Xanthomonas [78] Xanthomonas [78] Bacteria and 
Archaea [70]

Nuclease 
specificity

Low Moderate Moderate High

Mutagenesis 
frequency in 
microalgae

Up to 29% [59] Not reported Up to 56% [59] Up to 63% [74]

Toxicity in cells Low Moderate1 Moderate1 Moderate [72]

Time investment Very high [52] Very high [64] Moderate Low

Possibility of 
multiple gene 
targeting

No No Yes Yes

System cost2 Not reported Expensive 
(4000–7000$)

Expensive 
(3000–5000$)

Cheap (500$)

1Source: https://www.news-medical.net/life-sciences/How-Does-CRISPR-Compare-to-Other-Gene-Editing-Techniques.
aspx visited [Accessed: 2017-12-06].
2Source: http://www.biocompare.com/Editorial-Articles/144186-Genome-Editing-with-CRISPRs-TALENs-and-ZFNs/ 
[Accessed: 2017-12-06].

Table 1. Comparison of four specific genomic tools based on nuclease systems in order to generate genomic-modified 
species in microalgae.
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this strategy, the authors obtained 31% of mutation efficiency [74]. This team targeted two 
other genes of the diatom using this technology and obtained from 25 to 63% of mutation level 
[74]. Adaptability of the CRISPR/Cas9 system has been demonstrated in other diatoms like 
Thalassiosira pseudonana [75] as well as in the heterokont, Nannochloropsis oceanica in order to 
knock out the nitrate reductase activity [76]. In conclusion, CRISPR/cas9 system is a promis-
ing technology to generate genome-modified organisms in microalgae. Table 1 compares this 
system with the other nuclease systems cited above in terms of their technical characteristics 
and highlights their advantages and disadvantages.

3.2. Mutant libraries

The study of mutants impaired in a glycosidase or a glycosyltransferase implied in the N-glycan 
pathway is of great interest. Indeed, the synthesis of oligosaccharides is a sequential process. 
Inactivation of an enzyme usually results in the accumulation of its N-glycan substrate which 
enables the step-by-step dissection of the entire pathway. Moreover, mutant phenotyping of 
the glycosylation pathway allows to investigate to which extent the protein N-glycan process-
ing is required for normal growth and development. An indexed and mapped mutant library 
has been created in C. reinhardtii by single random insertional mutagenesis of gene cassettes 
in 2016 [79]. This library already envisioned to study the function of genes encoding putative 
glycosyltransferases, glycosidases or even putative translocators in microalgae and to confirm 
their physiological role from reverse genetic studies.

4. Conclusion

The production of biopharmaceuticals in microalgae currently requires a better understand-
ing of the N-glycosylation pathway mechanism and regulation. Such information can be 
gained by the use of mutant libraries like the one recently developed for C. reinhardtii. Indeed, 
characterization of each individual mutants will allow an understanding of a specific step of 
the N-glycan processing, and mutant cells could represent interesting cell lines for the pro-
duction of biopharmaceuticals bearing a chosen N-glycan profiling.

Once these pathways would be completely deciphered in the microalgae model intended to 
be used for the production of biopharmaceuticals, the humanization of the N-glycosylation 
pathway could be initiated using designed engineered nucleases strategies recently devel-
oped in microalgae. We can now consider that transformed microalgae by these innovative 
new genomic tools will constitute in a near future one of the most suitable green cell factories 
for the production of humanized biopharmaceuticals.

Acknowledgements

The authors are indebted to all coworkers and students at the Glyco-MEV laboratory who are 
currently contributing to the microalgae research project or did so in the past. They are also 

Microalgal Biotechnology186



thankful to the University of Rouen Normandy, the region Normandie and the I.U.F. for their 
financial support.

Conflict of interest

The authors have declared no conflict of interest.

Author details

Rodolphe Dumontier1, Alain Mareck1, Narimane Mati-Baouche1, Patrice Lerouge1 and 
Muriel Bardor1,2*

*Address all correspondence to: muriel.bardor@univ-rouen.fr

1 Normandie Univ, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire 
Végétale, Rouen, France

2 I.U.F. (Institut Universitaire de France), Paris Cedex 05, France

References

[1]	 Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C. Microalgae in the postgenomic era: 
A blooming reservoir for new natural products. FEMS Microbiology Reviews. Jul 1, 
2012;36(4):761-785

[2]	 Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of micro-
algae. Journal of Bioscience and Bioengineering. Feb 1, 2006;101(2):87-96

[3]	 Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other appli-
cations: A review. Renewable and Sustainable Energy Reviews. Jan 1, 2010;14(1):217-232

[4]	 Cadoret J-P, Garnier M, Saint-Jean B. Microalgae, functional genomics and biotechnol-
ogy. Advances in Botanical Research. Jan 1, 2012;64:285-341

[5]	 León-Bañares R, González-Ballester D, Galván A, Fernández E. Transgenic microalgae 
as green cell-factories. Trends in Biotechnology. Jan 1, 2004;22(1):45-52

[6]	 Barrera DJ, Mayfield SP. High-value recombinant protein production in microalgae. In: 
Emeritus ARPD, Hu Q, editors. Handbook of Microalgal Culture [Internet]. Oxford, UK: 
John Wiley & Sons, Ltd; 2013. pp. 532-544. Available from: http://onlinelibrary.wiley.com/
doi/10.1002/9781118567166.ch27/summary

[7]	 Hempel F, Maier UG.  Microalgae as solar-powered protein factories. Advances in 
Experimental Medicine and Biology. 2016;896:241-262

Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production…
http://dx.doi.org/10.5772/intechopen.73401

187



[8]	 Rosales-Mendoza S. Algae-Made Antibodies and Immunotoxins. In: Algae-Based Bio
pharmaceuticals [Internet]. Springer, Cham; 2016 [cited 2017 Nov 17]. pp. 77-93. Available 
from: https://link.springer.com/chapter/10.1007/978-3-319-32232-2_5

[9]	 Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP.  Synthesis and assembly 
of a full-length human monoclonal antibody in algal chloroplasts. Biotechnology and 
Bioengineering. Nov 1, 2009;104(4):663-673

[10]	 Tran M, Henry RE, Siefker D, Van C, Newkirk G, Kim J, et al. Production of anti-cancer 
immunotoxins in algae: Ribosome inactivating proteins as fusion partners. Biotechnology 
and Bioengineering. Nov 1, 2013;110(11):2826-2835

[11]	 Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, et al. Production of unique 
immunotoxin cancer therapeutics in algal chloroplasts. Proceedings of the National 
Academy of Sciences of the United States of America. Jan 2, 2013;110(1):E15-E22

[12]	 Hempel F, Lau J, Klingl A, Maier UG. Algae as protein factories: Expression of a human 
antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS 
One. Dec 2, 2011;6(12):e28424

[13]	 Hempel F, Maier UG. An engineered diatom acting like a plasma cell secreting human 
IgG antibodies with high efficiency. Microbial Cell Factories. Sep 13, 2012;11:126

[14]	 Hempel F, Maurer M, Brockmann B, Mayer C, Biedenkopf N, Kelterbaum A, et al. From 
hybridomas to a robust microalgal-based production platform: Molecular design of a 
diatom secreting monoclonal antibodies directed against the Marburg virus nucleopro-
tein. Microbial Cell Factories. Jul 27, 2017;16:131

[15]	 Vanier G, Hempel F, Chan P, Rodamer M, Vaudry D, Maier UG, et al. Biochemical char-
acterization of human anti-hepatitis B monoclonal antibody produced in the microalgae 
Phaeodactylum tricornutum. PLoS One. 2015;10(10):e0139282

[16]	 Vanier G, Stelter S, Vanier J, Hempel F, Maier UG, Lerouge P, et al. Alga-made anti-hepatitis 
B antibody binds to human Fcγ receptors. Biotechnology Journal. 1700496. DOI: 10.1002/
biot.201700496

[17]	 O’Flaherty R, Trbojević-Akmačić I, Greville G, Rudd PM, Lauc G. The sweet spot for 
biologics: Recent advances in characterization of biotherapeutic glycoproteins. Expert 
Review of Proteomics. 2018;15(1):13‑29

[18]	 Lingg N, Zhang P, Song Z, Bardor M. The sweet tooth of biopharmaceuticals: Importance 
of recombinant protein glycosylation analysis. Biotechnology Journal. Dec 1, 2012;7(12): 
1462-1472

[19]	 Brorson K, Jia AY.  Therapeutic monoclonal antibodies and consistent ends: Terminal 
heterogeneity, detection, and impact on quality. Current Opinion in Biotechnology. Dec, 
2014;30:140-146

[20]	 Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of recombinant anti-
bodies: Analytics and functional impact. Biotechnol J. 2018 Jan;13(1). DOI: 10.1002/biot. 
201700476. PMID: 28862393

Microalgal Biotechnology188



[21]	 van Beers MMC, Bardor M.  Minimizing immunogenicity of biopharmaceuticals by 
controlling critical quality attributes of proteins. Biotechnology Journal. 2012 Dec;7 
(12):1473-1484

[22]	 Burda P, Aebi M.  The dolichol pathway of N-linked glycosylation. Biochimica et 
Biophysica Acta (BBA)—General Subjects. Jan 6, 1999;1426(2):239-257

[23]	 Weerapana E, Imperiali B. Asparagine-linked protein glycosylation: From eukaryotic to 
prokaryotic systems. Glycobiology. Jun 1, 2006;16(6):91R-101R

[24]	 Gil G-C, Velander WH, Van Cott KE. N-glycosylation microheterogeneity and site occu-
pancy of an Asn-X-Cys sequon in plasma-derived and recombinant protein C. Proteomics. 
May, 2009;9(9):2555-2567

[25]	 Zielinska DF, Gnad F, Wiśniewski JR, Mann M.  Precision mapping of an in  vivo 
N-Glycoproteome reveals rigid topological and sequence constraints. Cell. May 28, 
2010;141(5):897-907

[26]	 Matsui T, Takita E, Sato T, Kinjo S, Aizawa M, Sugiura Y, et al. N-glycosylation at non-
canonical Asn-X-Cys sequences in plant cells. Glycobiology. Aug 1, 2011;21(8):994-999

[27]	 Williams DB. Beyond lectins: The calnexin/calreticulin chaperone system of the endo-
plasmic reticulum. Journal of Cell Science. Feb 15, 2006;119(4):615-623

[28]	 Helenius A, Aebi M.  Intracellular functions of N-linked glycans. Science. Mar 23, 
2001;291(5512):2364-2369

[29]	 Varki A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and 
implications for hominid evolution. American Journal of Physical Anthropology. Jan 1, 
2001;116(S33):54-69

[30]	 Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé A-C, Gomord V, Faye L. 
N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant 
Molecular Biology. Sep 1, 1998;38(1-2):31-48

[31]	 Wilson IBH, Zeleny R, Kolarich D, Staudacher E, Stroop CJM, Kamerling JP, et al. Analysis 
of Asn-linked glycans from vegetable foodstuffs: Widespread occurrence of Lewis a, 
core α1,3-linked fucose and xylose substitutions. Glycobiology. Apr 1, 2001;11(4):261-274

[32]	 Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to 
biological function. Glycobiology. Aug 1, 1999;9(8):747-755

[33]	 Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et  al., editors. 
Essentials of Glycobiology [Internet]. 2nd ed. Cold Spring Harbor (NY): Cold Spring 
Harbor Laboratory Press; 2009. Available from: http://www.ncbi.nlm.nih.gov/books/
NBK1908/

[34]	 Balshüsemann D, Jaenicke L. The oligosaccharides of the glycoprotein pheromone of 
Volvox carteri f. nagariensis Iyengar (Chlorophyceae). European Journal of Biochemistry. 
Aug 1, 1990;192(1):231-237

Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production…
http://dx.doi.org/10.5772/intechopen.73401

189



[35]	 Grunow A, Becker B, Melkonian M. Isolation and characterization of the Golgi apparatus 
of a flagellate scaly green alga. European Journal of Cell Biology. Jun, 1993;61(1):10-20

[36]	 Gödel S, Becker B, Melkonian M.  Flagellar membrane proteins of Tetraselmis striata 
butcher (Chlorophyta). Protist. Aug, 2000;151(2):147-159

[37]	 Levy-Ontman O, Arad SM, Harvey DJ, Parsons TB, Fairbanks A, Tekoah Y.  Unique 
N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga 
Porphyridium sp. The Journal of Biological Chemistry. Jun 17, 2011;286(24):21340-21352

[38]	 Levy-Ontman O.  N-Glycosylation of the 66-kDa Cell-Wall Glycoprotein of a Red 
Microalga. 2012 [cited 2017 Nov 17]; Available from: http://www.intechopen.com/books/
glycosylation/n-glycosylation-of-the-66-kda-cell-wall-glycoprotein-of-a-red-microalga

[39]	 Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S, Le Mauff F, et al. Exploring 
the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex 
structures. Molecular & Cellular Proteomics. Nov, 2013;12(11):3160-3183

[40]	 Vanier G, Lucas P-L, Loutelier-Bourhis C, Vanier J, Plasson C, Walet-Balieu M-L, et al. 
Heterologous expression of the N-acetylglucosaminyltransferase I dictates a reinvestiga-
tion of the N-glycosylation pathway in Chlamydomonas reinhardtii. Scientific Reports. 
Aug 31, 2017;7(1):10156

[41]	 Baïet B, Burel C, Saint-Jean B, Louvet R, Menu-Bouaouiche L, Kiefer-Meyer M-C, et al. 
N-Glycans of Phaeodactylum tricornutum diatom and functional characterization of its 
N-acetylglucosaminyltransferase I enzyme. The Journal of Biological Chemistry. Feb 25, 
2011;286(8):6152-6164

[42]	 Schulze S, Urzica E, Reijnders MJMF, van de Geest H, Warris S, Bakker LV, et  al. 
Identification of methylated GnTI-dependent N-glycans in Botryococcus brauni. The 
New Phytologist. Sep, 2017;215(4):1361-1369

[43]	 Casabianca S, Cornetti L, Capellacci S, Vernesi C, Penna A. Genome complexity of harm-
ful microalgae. Harmful Algae. Mar 1, 2017;63(Supplement C):7-12

[44]	 Levy-Ontman O, Fisher M, Shotland Y, Weinstein Y, Tekoah Y, Arad SM.  Genes 
involved in the endoplasmic reticulum N-glycosylation pathway of the red microalga 
Porphyridium sp.: A bioinformatic study. International Journal of Molecular Sciences. 
Feb 7, 2014;15(2):2305-2326

[45]	 Mathieu-Rivet E, Kiefer-Meyer M-C, Vanier G, Ovide C, Burel C, Lerouge P, et  al. 
Protein N-glycosylation in eukaryotic microalgae and its impact on the production 
of nuclear expressed biopharmaceuticals. Frontiers in Plant Science [Internet]. Jul 28, 
2014 [cited 2016 Nov 16]:5. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4135232/

[46]	 Kallolimath S, Castilho A, Strasser R, Grünwald-Gruber C, Altmann F, Strubl S, et al. 
Engineering of complex protein sialylation in plants. Proceedings of the National 
Academy of Sciences of the United States of America. Aug 23, 2016;113(34):9498-9503

Microalgal Biotechnology190



[47]	 Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization 
of yeast to produce complex terminally Sialylated glycoproteins. Science. Sep 8, 
2006;313(5792):1441-1443

[48]	 Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M. Diatom-specific oli-
gosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in 
diatoms. Marine Drugs. Sep 18, 2015;13(9):5993-6018

[49]	 Mathieu-Rivet E, Lerouge P, Bardor M. Chlamydomonas reinhardtii: Protein glycosylation 
and production of biopharmaceuticals. In: Hippler M, editor. Chlamydomonas: Bio
technology and Biomedicine. Microbiology Monographs. Vol. 31. Cham: Springer; 2017. 
DOI: https://doi.org/10.1007/978-3-319-66360-9_3

[50]	 Galván A, González-Ballester D, Fernández E. Insertional mutagenesis as a tool to study 
genes/functions in Chlamydomonas. Advances in Experimental Medicine and Biology. 
2007;616:77-89

[51]	 Doron L, Segal N, Shapira M. Transgene expression in microalgae-from tools to applica-
tions. Frontiers in Plant Science. 2016;7:505

[52]	 Daboussi F. Advances in editing microalgae genomes. Perspectives in Phycology. 
2017;4(1):17-23

[53]	 Ng I-S, Tan S-I, Kao P-H, Chang Y-K, Chang J-S. Recent developments on genetic engi-
neering of microalgae for biofuels and bio-based chemicals. Biotechnology Journal. Oct 
2017;12(10):1600644. DOI: 10.1002/biot.201600644

[54]	 Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C. Transformation of nonselect-
able reporter genes in marine diatoms. Marine Biotechnology (New York, NY). May, 
1999;1(3):239-251

[55]	 Kindle KL.  High-frequency nuclear transformation of Chlamydomonas reinhardtii. 
Proceedings of the National Academy of Sciences. Jan 2, 1990;87(3):1228-1232

[56]	 Armbrust EV. Identification of a new gene family expressed during the onset of sexual 
reproduction in the centric DiatomThalassiosira weissflogii. Applied and Environmental 
Microbiology. Jan 7, 1999;65(7):3121-3128

[57]	 Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, et al. Homologous 
recombination and non-homologous end-joining pathways of DNA double-strand break 
repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate 
cells. The EMBO Journal. Sep 15, 1998;17(18):5497-5508

[58]	 Maeder ML, Gersbach CA.  Genome-editing technologies for gene and cell therapy. 
Molecular Therapy. Mar 1, 2016;24(3):430-446

[59]	 Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, et al. Genome 
engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. 
Nature Communications. May 29, 2014;5:3831

Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production…
http://dx.doi.org/10.5772/intechopen.73401

191



[60]	 Miller JC, Holmes MC, Wang J, Guschin DY, Lee Y-L, Rupniewski I, et al. An improved 
zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology. 
Jul 1, 2007;25(7):nbt1319

[61]	 Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements 
for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-
recognition domains. Nucleic Acids Research. Sep 1, 2000;28(17):3361-3369

[62]	 Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P.  Nuclear gene targeting in 
Chlamydomonas using engineered zinc-finger nucleases. The Plant Journal. 2013 Mar 1; 
73(5):873-882

[63]	 Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P.  Targeting of 
Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-finger Nucleases and 
CRISPR/Cas9. Plant Cell. Jan 1, 2017;tpc.00659.2017

[64]	 Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, et al. An unbiased 
genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology. Aug 7, 
2011;29(9):nbt.1948

[65]	 Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA 
double-strand breaks with TAL effector nucleases. Genetics. Oct 1, 2010;186(2):757-761

[66]	 Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcrip-
tion factor and induces a cell size regulator. Science. Oct 26, 2007;318(5850):648-651

[67]	 Weyman PD, Beeri K, Lefebvre SC, Rivera J, McCarthy JK, Heuberger AL, et  al. 
Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-
like effector nuclease-based targeted mutagenesis. Plant Biotechnology Journal. May, 
2015;13(4):460-470

[68]	 Fortunato AE, Jaubert M, Enomoto G, Bouly J-P, Raniello R, Thaler M, et  al. Diatom 
phytochromes reveal the existence of far-red light based sensing in the ocean. Plant Cell. 
Jan 1, 2016;tpc.00928.2015

[69]	 Liao H-K, Hatanaka F, Araoka T, Reddy P, Wu M-Z, Sui Y, et al. In vivo target gene 
activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell [Internet]. 
Dec 7, 2017 [cited 2017 Dec 9]. Available from: http://www.cell.com/cell/abstract/
S0092-8674(17)31247-3

[70]	 Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et  al. 
Evolution and classification of the CRISPR–Cas systems. Nature Reviews. Microbiology. 
Jun, 2011;9(6):467-477

[71]	 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable 
dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. Aug 17, 
2012;337(6096):816-821

[72]	 Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP.  Successful transient 
expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. 
Eukaryotic Cell. Jan 11, 2014;13(11):1465-1469

Microalgal Biotechnology192



[73]	 Shin S-E, Lim J-M, Koh HG, Kim EK, Kang NK, Jeon S, et  al. CRISPR/Cas9-induced 
knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports. 
Jun 13, 2016;6:27810

[74]	 Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P.  A CRISPR/Cas9 system 
adapted for gene editing in marine algae. Scientific Reports. Apr 25, 2016;6:24951

[75]	 Hopes A, Nekrasov V, Kamoun S, Mock T. Editing of the urease gene by CRISPR-Cas in 
the diatom Thalassiosira pseudonana. Plant Methods. Nov 24, 2016;12:49

[76]	 Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J. Genome editing of model oleaginous microal-
gae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal. Dec 1, 2016;88(6):1071-1081

[77]	 Chevalier BS, Stoddard BL. Homing endonucleases: Structural and functional insight 
into the catalysts of intron/intein mobility. Nucleic Acids Research. Sep 15, 2001;29(18): 
3757-3774

[78]	 Joung JK, Sander JD.  TALENs: A widely applicable technology for targeted genome 
editing. Nature Reviews. Molecular Cell Biology. 2013 Jan;14(1):49-55

[79]	 Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, et al. An indexed, mapped mutant 
library enables reverse genetics studies of biological processes in Chlamydomonas rein-
hardtii. The Plant Cell. 2016 Feb;28(2):367-387

Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production…
http://dx.doi.org/10.5772/intechopen.73401

193




	Chapter 9
Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production of Biopharmaceuticals

