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Abstract—The aim of this study is to propose quantifiers
allowing to characterize the adaptation speed of the circadian
rhythm of a living being based on temperature measurements.
While the most commonly used model to represent circadian
rhythm is the COSINOR model, it is not adapted to analyze
changes. An extended COSINOR model is then proposed here
in order to take into account temperature disturbances related
to the activity of the studied living being. The quantifiers are
obtained in a two step process. First, the extended COSINOR
parameters are determined with a modified recursive least
square algorithm, which is modified in order to compensate
for the lack of persistent excitation. The estimates of these
parameters are further filtered in order to provide several
quantifiers which provide useful information on the adaptation
speed of the studied living being. The proposed methodology
is evaluated on rats temperature measurements obtained from
a laboratory experiment.

Index Terms—Circadian rhythm, least square algorithm,
COSINOR, jet lag, hypergravity, rats.

I. INTRODUCTION

The circadian rhythm reflects the temporal organization
of the biology and behavior of every life forms to anticipate
and optimally deal with predictable variation of their en-
vironment [1]. The day/night variations induced by Earth
rotation contribute to their acclimation by synchronizing
the circadian rhythm on a period of 24 hours [2]. The
circadian rhythm promotes wake state to optimally conduct
our daily activity during the active time, and promotes
restoration and repair during rest time. Indeed, it has a
great influence on the behavior, the physical conditions, the
cognitive performance, the muscular power, the sleep or even
the perception of human being and some animals [3]. The
easiest physiological variable allowing to measure and to
identify the circadian rhythm of a living being is its internal
temperature [2].

Nowadays, to ensure the best physical performances of
night shift workers [4] or to speed up the recovery due to
jet lag disturbances [5], the synchronization of the circadian
rhythm has become an important topic. In particular, it
is important to determine if it is possible to modify the
adaptation speed of the circadian rhythm with external
stimuli after a disturbance like jet lags. For that reason,
several quantifiers are required in order to estimate the

speed and time of resynchronization of the circadian rhythm
after stimuli.

Several approaches have been considered in the literature
in order to analyze the circadian rhythm, by using the
internal temperature, as the frequency approach using
periodograms, the statistical method or some methods
from the field of signal processing [6]. The most popular
approach is probably the Lomb and Scargle algorithm [7]
which is used to compute the periodicity of the cycle with
a frequency approach. It uses a sliding window that can
filter out variations in high-frequency signals but does not
provide any parameters other than periodicity. A statistical
analysis, called ANOVA, is employed to determine the
parameters of the circadian cycle. The ANOVA method
is a post-processing tool with does not work in real-time.
In contrast, a recursive least square algorithm, from the
field of signal processing, can be used to fit the circadian
rhythm in real-time with a model [8]. One of the most
commonly used models to represent circadian rhythm, with
this approach, is the COSINOR. Unfortunately, this purely
sinusoidal model cannot take into account disturbances
coming from the external environment, which leads to a
bias on the results. To the authors best knowledge, no study
explicitly incorporates external disturbances into the model,
and are then able to provide accurate quantifiers for the
adaptation speed of the circadian rhythm from external
stimuli.

In this article, we propose an algorithm that provides,
in real-time, quantifiers giving informations on the
adaptation speed of the studied living being, namely, the
resynchronization time and the speed of convergence and
delay. An extended COSINOR model, taking into account
external disturbances, is first proposed, whose parameters
are estimated in real-time by using a modified least square
algorithm that permits to give unbiased estimation of the
parameters even if the persistent excitation condition is not
always met. The quantifiers related to the dynamic of the
circadian rhythm variations are then calculated in real-time
by filtering the parameters estimates.



The paper is organized as follows. The proposed algo-
rithm, providing estimation of the considered quantifiers,
is presented in section II. In section III, the experiment
conducted, by the COMETE laboratory, on rats, is detailed.
The proposed approach is then applied on the measurements
obtained from the experiment, in section IV, and an inter-
pretation of the results, in order to validate the proposed
quantifiers, is given. Finally section V concludes the paper.

II. METHODOLOGY

In this section, one describes the algorithm which esti-
mates some quantifiers related to the speed of the circadian
rhythm adaptation when facing perturbations. First, the ex-
tended COSINOR model and the corresponding modified
least square algorithm are presented in subsection II-A.
Then, the considered quantifiers are presented in subsection
II-B together with an estimation algorithm which extracts
characteristic informations on the circadian rhythm adapta-
tion.

A. Estimation of circadian rhythm parameters

1) Reminder on the circadian rhythm:
The circadian rhythm is a biological rhythm that can be

described as a repetition of oscillations of a physical variable.
The oscillations occur periodically. This phenomenon can be
characterized with physical quantities as shown on Fig. 1 and
enumerated in the following paragraph:
• the MESOR (Midline Estimating Statistic Of Rhythm)

is the mean value of the signal during one period.
• the Amplitude is the half of the difference between the

maximum value and the minimum value of the signal.
• the Period is the length of one oscillation.
• Acrophases are the instants corresponding to the max-

imum values of the signal contrary to the Batyphases
which are the instants corresponding to the minimum
values.

Internal temperature measurements are usually analyzed
using the COSINOR model [9]. The parameters can be
estimated with a recursive least square algorithm. The aim
of this algorithm is to determine the set of parameters
that minimizes the quadratic error between the internal
temperature of the subject and the output of the model.
Since the COSINOR model only considers stable circadian
rhythm, we present next an extended COSINOR model that
takes into account the effects of an external stimuli on the
circadian rhythm and then the internal temperature.

2) Extended COSINOR model:
The COSINOR model [8] is conventionally defined as

follows:

Θ(t) = M +A cos(2πft+ ϕ) (1)

with Θ(t) the temperature, M the mesor, A the amplitude,
ϕ the phase, f the frequency and t the discrete time. In
this study, the frequency f is considered to be known with
a value of 1/24 hours−1. In the classical case, the least
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Acrophase Batyphase
Time

Physical variable
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Fig. 1. Representation of the circadian rhythm

square algorithm has to give a consistent estimation of M ,
A and ϕ [10].

To improve the model, two signals v(t) and e(t), rep-
resenting respectively the external stimuli and other non-
modeled inputs, are introduced. The extended COSINOR is
hence defined as follows:

Θ(t) = M +A cos (2πft+ ϕ) +B(q−1)v(t) +C(q−1)e(t)
(2)

with B(q−1) = b0 + b1q
−1 + b2q

−2 + · · · + bnb
q−nb ,

C(q−1) = 1 + c1q
−1 + c2q

−2 + · · · + cncq
−nc , nb and nc

represent respectively the order of B(q−1) and C(q−1). q−1

is the shift operator such that q−1x(t) = x(t− 1).
The signal e(t) is assumed to be a white noise that

represents the effects of the external environment on the
internal temperature and v(t) is a centered binary signal
that represents the presence of a stimuli.

As the cosine function is not a linear combination of the
parameters, it is linearized as follows :

Θ(t) = M + α cos (2πft) + ρ sin (2πft)

+B(q−1)u(t) + C(q−1)e(t) (3)

with α = A cos (ϕ) and ρ = A sin (ϕ).
The parameter vector θ and the regression vector φ(t) are

respectively defined by:

θ = [M α ρ b0 b1 . . . c1 c2 . . .]

φT (t) = [1 cos (2πft) sin (2πft) v(t) . . .

v(t− nb) e(t− 1) . . . e(t− nc)]
(4)

Using the previous definitions, equation (3) can be re-written
under the following matrix standard form :

Θ(t) = φT (t)θ + e(t) (5)



3) Adaptation of the recursive least square algorithm:
The vector θ̂(t) containing the estimated parameters is
defined as follows

θ̂(t) =
[
M̂ α̂ ρ̂ b̂0 b̂1 . . . ĉ1 ĉ2 . . .

]
(6)

The signal e(t) cannot be measured since it corresponds to
un-modeled inputs, as a consequence, e(t − i) is replaced
by the a posteriori error ε(t− i/t− i), which is defined as
follows

ε(t− i/t− i) = Θ(t− i)− φ̂T (t− i)θ̂(t− i) (7)

This leads to the following definition of the substituted
regression vector φ̂(t)

φ̂T (t) = [1 cos (2πft) sin (2πft) v(t) . . . v(t− nb)
. . . ε(t− 1/t− 1) . . . ε(t− nc/t− nc)]

(8)

The least square algorithm proposed in this study is
defined as follows [11], [12]:



ε(t/t− 1) = Θ(t)− φ̂T (t)θ̂(t− 1)

δ(ε(t/t− 1)) =

{
0 if |ε(t/t− 1)| < γw
1− γw

|ε(t/t−1)| otherwise

Γ(t) = δ(ε(t/t−1))F (t)φ̂(t)

1+δ(ε(t/t−1))φ̂T (t)F (t)φ̂(t)

θ̂(t) = θ̂(t− 1) + Γ(t)ε(t/t− 1)

F (t+ 1) = (1− β)(In − F (t)φ̂T (t))F (t) + βF0

(9)
with n = 3 + nb + nc + 1, β ∈ R+ relatively small that
respect 0 < β < 1, γw an infimum of the imperfection of
the model and F0 the initial value of the matrix F (t) which
is chosen very large.

This algorithm is a robust modification of the standard
extended least square algorithm. It permits to ensure an
unbiased convergence of the parameters even if the persistent
excitation conditions are not always met [13].

The role of δ(ε(t/t − 1)) is to freeze the adaptation if
the a priori error is below the threshold γw. In the other
case, δ(ε(t/t − 1)) progressively increases while the error
increases until it approaches 1. In this least square algorithm,
the matrix F (t) is computed with a filtering action controlled
by β.

B. Estimation of the quantifiers

The aim of the present work is to determine characteristic
factors of the resynchronization of the circadian rhythm after
a disturbance. These factors are obtained from the phase ϕ of
the circadian rhythm. Indeed, this variable seemed to be the
best physical quantity to perceive the adaptation. Therefore,
two methods are proposed to compute the factors. The
first one estimates the resynchronization time by estimating

the convergence time of the phase ϕ. The second one
estimates two factors: a speed of convergence and a delay
corresponding to the time before the beginning of the phase
shift.

1) Resynchronization time approach:
The resynchronization time can be obtained from an

estimation of the derivative of the phase. A Luenberger
observer [14] is implemented based on the following design
model that contains the phase and its first derivative as state
variables {

x(t+ 1) = Ax(t)
Θ(t) = Cx(t)

(10)

with A =

[
1 Te
0 1

]
, C =

[
1 0

]
, x(t) =

[
x1(t) x2(t)

]T ∈
R2 is the state vector, Θ(t) = x1(t) ∈ R the phase and Te
the sampling period. Please note that x2(t) represents the
first derivative of Θ(t) and hence the signal to be estimated.

Based on the model (10), the Luenberger observer that
provides a consistent estimation x̂(t) =

[
x̂1(t) x̂2(t)

]T
of

x(t) is given by

x̂(t+ 1) = Ax̂(t)−K(Θ̂(t)−Θ(t)) (11)

where the gain K ∈ R2×1 is calculated to adjust the eigen-
values of the matrix (A−KC) in the stability domain and
to ensure a compromise between the speed of convergence
and the observer sensitivity to the noise measurement.

The time of resynchronization is inferred form a threshold
calculated from the derivative of the phase. Indeed, the value
of the threshold is computed from the maximum of the
derivative of the phase between the interval [t1, t2], with t1
corresponds to the time of convergence of the least square
algorithm and t2 the time of the stimuli.

The convergence time is finally obtained by computing
the last instant for which the derivative of the phase is above
the threshold. The resynchronization time corresponds to the
convergence time minus the perturbation time. This method
is illustrated Fig. 2.

2) Speed of convergence and delay approach:
The second method provides an estimation of the speed of

convergence to the new rhythm and the delay taken to begin
the phase shift. This is done by fitting on the estimated phase
a second order model with a delay and a zero. The equation
of the model is given in equation (12).

G(s) = Kp
−Tz + s

1 + 2ζ
ω0
s+ ( s

ω0
)2
e−Tds (12)

with Kp the static gain, ζ the damping, ωo the natural
frequency, Td the delay that is related to the time taken
before the shift and Tz the zero.

In this model, the natural frequency ωo is related to the
bandwidth and thus to the speed of convergence and Td to
the time taken before the beginning of the phase shift. The
zero Tz was added to obtain a better fit of the model. In fact,
the zero in the frequency domain doesn’t disturb the second
order model because of its small value.
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Fig. 2. Estimation of the time of convergence

The curve is considered as a step response of a delayed
second order model as illustrated on Fig. 3. This second
method consists in identifying the delay and the natural
frequency of this model.
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Fig. 3. Estimation of a model: Jet lag (SHAM and BVL) and Jet lag plus
2G (only BVL)

III. DESCRIPTION OF THE EXPERIMENT

Besides from light information, the vestibular system
plays an important role in the synchronization of circadian
rhythms [7]. It is an organ that sens every head acceleration
in all directions and thus gives sense of balance and gravity.
The vestibular system is sensitive and can be affected with
external perturbations. An experiment was conducted on rats
to highlight the effects of jet lags and vestibular stimulation
by hypergravity on circadian rhythms adaptation to jet lag.
This experiment was set up in the COMETE UMR-S 1075
INSERM laboratory.

The vestibular system plays an important role in the
circadian rhythm [15]. It is a sensor that gives a spatial
orientation and a sense of balance. The vestibular system
is sensitive and can be affected by external perturbations.
Research is being carried out to determine factors that can
modify the rate of adaptation of this rhythm. An experiment
was conducted on rats to highlight the effects of jet lags and
hypergravity on circadian rhythm. This experiment was set
up in the COMETE UMR-S 1075 INSERM laboratory of
CAEN University .

Two different groups of rats were used. The first one
was called bilateral vestibular loss (BVL) induced using an
injection of chemicals products. The perception of movement
by the inner ear was then abolished permanently. The second
group was called SHAM. This group underwent the same
operation than the BVL but were injected with a placebo.

The two groups of rats were separated in three sub-groups.
Each sub-group endured different perturbations. The three
sub-groups are called JET LAG, 2G and JET LAG+2G.
Their protocols are described as follow:

1) JET LAG: This first group was exposed to a 6 hours jet
lag. This was done by changing the time of the cycle
Day-Night of the experiment room. The rats were used
to have their lights turning off at 8 p.m. When the
perturbation began, the darkness occurred at 2 p.m. It
is a phase advance of 6 hours.

2) 2G: The rats of the 2G group underwent a hypergravity
representing the double of the earth gravity. The mate-
rial used was a centrifuge for small animal. This was
done once a day at a fixed hour during the Acrophase.

3) JET LAG+2G: The rats in this last group endured the
two types of perturbations exposed in 1) and 2) at the
same time.

The physical quantity acquired during the experiment was
the internal temperature of the rats. Thermometers contained
in pills were given to the rodents to monitor the temperature.
It was measured 7 days before the perturbation and until
the end of the experiment. 14 rats were used in each sub-
group and each sub-group was divided by two with BVLs
and SHAMs.

IV. RESULTS OF THE EXPERIMENTATION

A. Implementation of the selected algorithm

The presented algorithm has been used on data corre-
sponding to experiments conducted by the COMETE lab-
oratory. The different aspects that need to be considered are
described in the following.

The signal v(t) that represents the stimuli is defined here
as the centrifuge impact on the rats behavior. The signal,
before being centered, takes the value 1 when the centrifuge
is on and 0 otherwise. The signal e(t) represents here other
perturbations corresponding to various activities, such as for
example when the rats eat.

The threshold of the first method of quantification is
increased by 40% to have a suitable estimation of the
resynchronization time for all rats.



The input of the model is different for the three groups
because of the nature of the perturbation. It is described in
the following paragraph.

1) Jet lag (SHAM and BVL) and Jet lag + 2G (only BVL)
For this group, the model is computed after the con-
vergence time t1 of the least square algorithm. The
input was set to 0 before the time perturbation time t2
and to 1 after. This is illustrated on Fig. 3.

2) 2G and Jet lag + 2G (only SHAM)
For these groups, no model was calculated due to the
impact of the centrifuge on the phase.

The algorithm has been validated to ensure the unbiased
convergence of estimated parameters for this experiment
with the autocorrelation rate of the residuals [13].

The results of the proposed methodology applied to the
rat experiment are now presented. All results are given with
their mean values and their standard deviations .

1) JET LAG group (BVL)
The rats in this group were subject to an 8 hours
JET LAG. The phase evolves progressively to the new
referenced hour, after a delay. The mean bandwidth
is 0.34 (0.17) rad/s, the resynchronization time is
15.65(3.29), and the delay is 6.73 (2.48) days. The
evolution of the phase for BVLs and SHAMs is
presented below on Fig. 4.
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Fig. 4. Evolution of the phase of the JET LAG group during the experiment
(BVL)

2) 2G group (SHAM)
In this group, the rats were placed in a centrifuge once
a day for one hour, during one week. SHAMs see
their phase falling during the centrifuge time. Their
resynchronization time are 8.92 (2.09) days thus they
take 1.92 days to stabilize their phase after the last
centrifuge Fig. 5.

3) JET LAG+2G group (BVL)
This group experience a jet lag of 8 hours and a
centrifuge at the same time. The BVLs have the same
variation as the JET LAG group. Thus, the BVLs
seems to not feel the centrifuge as the SHAM. They
have a bandwidth of 0.24 (0.05) rad/s, a delay of
5.67 (0.95) days and a resynchronization time of 17.02
(3.30) days.
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Fig. 5. Evolution of the phase of the 2G group during the experiment.
(SHAM)

0 5 10 15 20 25

Time (s)

-10

-5

0

5

10

P
h

a
se

 (
h

o
u

r)

Fig. 6. Evolution of the phase of the JET LAG+2G group during the
experiment (BVL)

The results are summarized in the Table I. A comparison
between the BVL of the first group and the last group shows
that the rats of the third group take less time to begin their
phase shift but their speed of convergence is lower than the
first group.

JET LAG group BVL
Bandwidth (rad/s) 0.34 (0.17)
Delay (day) 6.73 (2.48)
Resynchronization time (day) 15.65 (3.29)
2G group SHAM
Bandwidth (rad/s) / (/)
Delay (day) / (/)
Resynchronization time (h) 8.92 (2.09)
JET LAG+2G group BVL
Bandwidth (rad/s) 0.24 (0.05)
Delay (day) 5.67 (0.95)
Resynchronization time (day) 17.02 (3.30)

TABLE I
QUANTIFIERS RELATED TO CIRCADIAN RHYTHM VARIATIONS

V. CONCLUSION

The problem of defining quantifiers characterizing the
dynamics of circadian rhythm variations has been considered



in this paper. To this purpose, an extended COSINOR
model has been proposed to take into account stimuli and
external sources of disturbance. Its parameters have been
estimated with a modified Least Square Algorithm that is
less sensitive to the lack of persistent excitation. Based on
the estimated parameters, two quantification methods have
been set up to assess the dynamics of the phase. The first
one, based on the phase derivative, allows to estimate a time
of resynchronization. The second one allows to estimate a
convergence speed, considering the phase as a step response
of a second order model with a delay and a zero. Finally,
the proposed method has been tested on data issued from
experiments performed on rats under specific conditions.
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