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FRACTIONAL POWERS ON NONCOMMUTATIVE Lp FOR p < 1

ÉRIC RICARD

Abstract. We prove that the homogeneous functional calculus associated to x 7→ |x|θ or x 7→
sgn (x)|x|θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for
0 < p 6∞ with values in Lp/θ. This extends an inequality of Birman, Koplienko and Solomjak

also obtained by Ando.

1. Introduction

This note deals with the perturbation theory of functional calculus of selfadjoint operators on
Hilbert spaces. More precisely, given a function f : R → R, the problem is to get a control of
‖f(x) − f(y)‖S for some symmetric norm on selfadjoint operators in terms of possibly another
norm ‖x − y‖S′ . This topic was developed from the 50’s by the Russian school. Birman and
Solomjak had a strong impact on it by the introduction of operator integrals in the 60’s. Since
then, this subject has been very active. Many mathematicians tried to enlarge the classes of
functions f or norms involved. The list would be too long, but we can quote Arazy [5, 6], Ando
[4], and more recently the breakthroughs by Alexandrov-Peller [1, 2],... and Potapov-Sukochev
[21, 20] and their coauthors [22],... Usually the results are stated for symmetric (quasi-)norms
on compact operators, for instance the Schatten p-classes Sp for 0 < p 6 ∞. Nevertheless the
noncommutative integration theory in von Neumann algebras also gives a natural framework to
study these questions.

Our starting point is an inequality in [8], for any fully symmetric norm ‖.‖S and any 0 < θ < 1,
and x, y positive operators on some Hilbert space, i.e x, y ∈ B(H)+∥∥xθ − yθ∥∥

S
6
∥∥ |x− y|θ ∥∥

S
.

It was extended by Ando [4] to any operator monotone function f : R+ → R+ instead of
x 7→ xθ. Dodds and Dodds [13] adapted the proof to semi-finite von Neumann algebras for all fully
symmetric norms.

In the case of Schatten classes, Birman Koplienko and Solomjak’s result or Ando’s proof actually
give that for p > θ and x, y ∈ B(H)+∥∥xθ − yθ∥∥

p/θ
6
∥∥x− y ∥∥θ

p
.

This also holds for semi-finite Neumann algebras by [13] or [20]. For general von Neumann algebras,
Kosaki got the case p = θ in [15] with an extra factor, a full argument can be found in [11] or [24].

Another remarkable extension was obtained in [2] for Schatten p-classes when 1 < p <∞; it is
shown that for any θ-Hölder function f on R, with 0 < θ < 1 and any selfadjoint x, y ∈ B(H)sa,
one has

(1) ‖f(x)− f(x)‖p/θ 6 Cp,f‖x− y‖θp.

In particular this holds if f(x) = |x|θ or f(x) = sgn(x)|x|θ. For them, the arguments can be
adapted to general von Neumann algebras [24] and one can also reach p = 1 in (1).

Surprisingly, when p < 1 even for Schatten classes, very little is known. One can find some
asymptotic estimates in [8] or [26] but (1) seems to be unknown. Weaker related inequalities were
also recently obtained in [27].

Among general results Raynaud [23] proved that x 7→ f(x) from Lp to Lp/θ is uniformly con-
tinuous on balls for f as above. In [18], for type II von Neumann algebras a strange quantitative
estimate was obtained for its modulus of continuity.
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Our main result is that (1) holds for all 0 < p 6∞ for both f(x) = |x|θ and f(x) = sgn(x)|x|θ
and all von Neumann algebras. We hope that the techniques developed here may be useful for
related topics.

We do not address similar questions when θ > 1. When p > 1, this is done in [24] and when
p < 1, some local results can be found in [5, 22] for Schatten classes.

As usual to deal with such questions, one has to find norm estimates for some Schur multipliers,
this is done in the second section. Next, they are used to derive the main result for semi-finite
von Neumann algebras. The argument heavily rests on homogeneity of f . To generalize to type
III algebras, one usually relies on the Haagerup reduction principle, but it involves approximations
using conditional expectations that are not bounded when p < 1 and it seems difficult to use it
in our situation. The only available tool we have is to use weak-type inequalities in semi-finite
algebras to go to type III. The situation is so particular here that this can be done quite easily in
section 4. We end up with some general remarks and extensions.

In the whole paper, we freely use noncommutative Lp-spaces. One may use [19, 17, 29] and [14]
as general references. When τ is a normal faithful trace on a von Neumann algebraM, we use the
classical definition of noncommutative Lp associated to M

Lp(M, τ) = {x ∈ L0(M, τ) | ‖x‖pp = τ(|x|p) <∞},
where L0(M, τ) is the space τ -measurable operators (see [29]). When dealing with more general von
Neumann algebras, we rely on Haagerup’s construction. Given a normal faithful semi-finite weight
ϕ0 on a von Neumann algebraM, Haagerup defined the noncommutative Lp-space Lp(M, ϕ0) for
0 < p 6 ∞ (see [29]). His definition is independent of ϕ0 (Corollary 38 in [29]). When ϕ0 is a
normal faithful trace, his definition is equivalent to the previous one (up to a complete isometry)
but the identifications are not obvious. Nevertheless for most of our statements, we won’t need
the reference to ϕ0 or τ so we may simply write Lp(M). When 0 < p < 1, Lp(M) is a p-normed
space so that for all families (ak) in Lp(M), ‖

∑n
k=1 ak‖pp 6

∑n
k=1 ‖ak‖pp.

We will use the notation SpI,J for the Schatten p-class on B(`2(J), `2(I)), this is naturally a

subspace of Lp(B(`2(I ∪ J)), tr), where tr is the usual trace. Thus by SpI,J [Lp(M)], we will mean

the corresponding subspace of Lp(B(`2(I∪J))⊗M, tr⊗ϕ0), one can think of it as matrices indexed
by I × J with coefficients in Lp(M). We will often use non countable sets like I =]0, 1].

As usual, we denote constants in inequalities by Cpi if they depend only on parameters (pi).
They may differ from line to line.

2. Schur multipliers

A Schur multiplier with symbol M = (mi,j)i∈I,j∈J over MI,J , the set of matrices indexed by
sets I and J , is formally given by

SM ((ai,j)i∈I,j∈J) = M ◦A = (mi,jai,j)i∈I,j∈J .

Definition 2.1. Given a matrix M = (mi,j)i∈I,j∈J of complex numbers, we say that M defines a p-
completely bounded Schur multiplier for some 0 < p 6∞ if the map SM⊗IdLp(M) on SpI,J [Lp(M)]

is bounded for all von Neumann algebra M and we put ‖M‖pcb = supM ‖SM ⊗ IdLp(M)‖.

Remark 2.2. For 1 < p 6= 2 <∞, this is not exactly the usual definition of complete boundedness
but it is formally stronger. Indeed an unpublished result of Junge states that ‖SM ⊗ IdLp(M)‖ 6
‖SM‖cb if M is a QWEP von Neumann algebra.

We start by easy examples that can be found in [1].

Lemma 2.3. Let (αk) ∈ `p(Z) for 0 < p 6 1 and assume that (fk) ∈ `∞(I)Z and (gk) ∈ `∞(J)Z

are bounded families. Then M given by mi,j =
∑
k αkfk(i)gk(j) is a p-completely bounded Schur

multiplier with
‖M‖pcb 6 ‖(αk)‖p sup

k
‖fk‖∞.‖gk‖∞.

Proof. It is clear that a rank one symbol Mk = (fk(i)gk(j))i∈I,j∈J defines a p-completely bounded
Schur multiplier with norm ‖fk‖∞.‖gk‖∞ for all p and k. The result then follows by the p-triangular
inequality. �

We will often use permanence properties of pcb-Schur multipliers.
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Lemma 2.4. Assume M = (mi,j)i∈I,j∈J is a p-completely bounded Schur multiplier, then

• M ′ = (mi,j)i∈I′,j∈J′ with I ′ ⊂ I, J ′ ⊂ J , then ‖M ′‖pcb 6 ‖M‖pcb.
• M ′ = (mi,j)(i,k)∈I×K,(j,l)∈J×L for any non empty sets K,L, then ‖M ′‖pcb = ‖M‖pcb.

Proof. We view `2(I ′), `2(J ′) as subspaces of `2(I), `2(J). Let P = (1I′(i)1J′(j))i∈I,j∈J , this
is a rank one p-completely bounded Schur multiplier with norm 1, and SM ′ coincides with the
restriction of SP ◦ SM to matrices indexed by I ′ × J ′.

The second point is classical using tensorisation with B(`2(L), `2(K))⊗M instead of M. �

Since finitely supported matrices are dense in SpI,J [Lp(M)], we also have

Lemma 2.5. If (Mn) ∈MN
I,J is a bounded sequence of pcb-Schur multipliers converging pointwise

to some M , then M is also a pcb-Schur multiplier with ‖M‖pcb 6 lim ‖Mn‖pcb.

Remark 2.6. A p-completely bounded Schur multiplier M for p 6 1 is automatically q-completely
bounded for p < q 6 ∞. Indeed, the extreme points of the unit ball of S1 are rank one matrices,
but for those matrices the S1 and Sp norms coincide. Thus SM must be bounded on S1. But
bounded Schur multipliers on S1 are automatically 1-completely bounded (see [17]). Thus we get
the result on Sq for all 1 6 q 6∞ by complex interpolation and duality. The case p < q 6 1 also
follows by interpolation.

The following is a suitable adaptation of classical arguments (see [8, 25, 26]). We use the
measured space L2([0, 2π]2, 1

(2π)2 dm2) where m2 is the Lebesgue measure.

Lemma 2.7. Let K : [0, 2π] × [0, 2π] → C be a 2π-periodic continuous function such that for

any d > 0 ∂d+1

(∂y)d∂x
K is continuous. Then M = (K(x, y))x,y∈[0,2π] is a p-completely bounded Schur

multiplier for all 0 < p 6 1 with for d > 1/p

‖M‖pcb 6 C
( 2

dp− 1
+ 2
)1/p(∥∥ ∂d+1

(∂y)d∂x
K
∥∥

2
+
∥∥ ∂d

(∂y)d
K
∥∥

2
+
∥∥ ∂
∂x
K
∥∥

2
+
∥∥K∥∥

2

)
,

where C is a universal constant. Moreover if Mi = (Ki(x, y))x,y∈[0,2π] is a family of matrices as
above, indexed by i ∈ I, then

M = (Ki(x, y))(x,i)∈[0,2π]×I,y∈[0,2π]

or its transpose satisfies

‖M‖pcb 6 C
( 2

dp− 1
+ 2
)1/p

sup
i

(∥∥ ∂d+1

(∂y)d∂x
Ki

∥∥
2

+
∥∥ ∂d

(∂y)d
Ki

∥∥
2

+
∥∥ ∂
∂x
Ki

∥∥
2

+
∥∥Ki

∥∥
2

)
.

Of course, this is relevant only if the above sup is finite.

Proof. We rely on Fourier expansions, put ek(x) = eikx and hk,l(x, y) = ek(x)el(y) . As (hk,l)k,l∈Z
is an orthonormal basis in L2([0, 2π]2, 1

(2π)2 dm2), we have the equality in L2, K =
∑
l,k∈Z αk,lhk,l

where αk,l = 〈K,hk,l〉 = 1
(2π)2

∫ 2π

0

∫ 2π

0
K(x, y)e−ikxe−ilydydx.

Assume for the moment that l 6= 0. Integrating by part in y, we get for d > 0, αk,l =
1

(il)d
〈 ∂d

(∂y)d
K,hk,l〉. Let βk,l = (il)dαkl. When k 6= 0, another integration by part with respect

to x gives βk,l = 1
ik

1
(2π)2

∫ 2π

0

∫ 2π

0
∂d+1

(∂y)d∂x
K(x, y)e−ikxe−ilydydx. The Cauchy-Schwarz inequality

gives that ∑
k 6=0

|βk,l| 6
(∑
k 6=0

1

k2

)1/2(∑
k 6=0

∣∣〈 ∂d+1

(∂y)d∂x
K, hk,l〉

∣∣2)1/2

6 C
∥∥∥ ∂d+1

(∂y)d∂x
K
∥∥∥

2
.

Thus
∑
k∈Z |βk,l| 6 C

∥∥ ∂d+1

(∂y)d∂x
K
∥∥

2
+
∥∥ ∂d

(∂y)d
K
∥∥

2
= Cd independent from l and one can define a

continuous function fl(x) =
∑
k∈Z

1
id
βk,lek(x) bounded by Cd.

In the same way to deal with l = 0, f0(x) =
∑
k∈Z αk,0ek(x) is a continuous function. Indeed

as above ∑
k∈Z
|αk,0| 6

(∑
k 6=0

1

k2

)1/2(∑
k 6=0

∣∣〈 ∂
∂x
K, hk,0〉

∣∣2)1/2

+ |α0,0|,

f0 is bounded by C0 = C
∥∥ ∂
∂xK

∥∥
2

+
∥∥K∥∥

2
.
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Choosing d > 1
p , we can conclude to the pointwise equality

(2) K(x, y) = f0(x)e0(y) +
∑
l 6=0

1

ld
fl(x)el(y).

The result follows directly from Lemma 2.3 by choosing I = Z, α = (1k 6=0
1
kd

+1k=0)k ∈ `p(Z), fk as

above and gk = ek. Obviously supk ‖gk‖∞ = 1, supk ‖fk‖∞ 6 Cd +C0 and ‖α‖p 6
(

2
dp−1 + 2

)1/p

.

The second statement also follows from Lemma 2.3 since in (2), the factorization in y and the
sequence α is independent from Ki. We have Ki(x, y) = f i0(x)e0(y) +

∑
l 6=0

1
ld
f il (x)el(y), hence we

can again take α = (1k 6=0
1
kd

+ 1k=0)k ∈ `p(Z), fk(x, i) = f ik(x) and gk(y) = ek(y). We also have
supk ‖fk‖∞ 6 Cd + C0.

The same holds for the transpose of M as the condition in Lemma 2.3 is invariant by transpo-
sition. �

The Sobolev constant (of order d) for K will mean the quantity∥∥ ∂d+1

(∂y)d∂x
K
∥∥

2
+
∥∥ ∂d

(∂y)d
K
∥∥

2
+
∥∥ ∂
∂x
K
∥∥

2
+
∥∥K∥∥

2
.

Let θ ∈]0, 1[, for x, y > 0 recall that

(3)
xθ − yθ

x− y
=

∫ 1

0

θ

(tx+ (1− t)y)1−θ dt,

where the left hand side has to be understood as θxθ−1 if x = y.

Corollary 2.8. The matrix N =
(
xθ−yθ
x−y

)
x>0,y∈[1,2]

defines a p-completely bounded Schur multi-

plier for 0 < p 6 1 with ‖N‖pcb 6 Cp for some constant depending only on p.

Proof. First we start by showing that
(
xθ−yθ
x−y

)
06x61/2,y∈[1,2]

is a pcb-Schur multiplier.

We fix a C∞ function ϕ : [−π, π] → [0, 1] with support in [−1/4, 3/4] that is identically 1 on
[0, 1/2] and another C∞ function ψ : [0, 2π]→ [0, 1] with support in [7/8, 3] that is identically 1 on
[1, 2]. We define K(x, y) = ϕ(x)ψ(y) 1

x−y on [−π, π] × [0, 2π]. It is C∞ and can be extended to a

2π-periodic C∞ function. Thus Lemma 2.7 and a restriction yield that
(

1
x−y

)
06x61/2,y∈[1,2]

is a

pcb-Schur multiplier. Then one just need to compose it with
(
xθ − yθ

)
06x61/2,y∈[1,2]

which is also

clearly a pcb-Schur multiplier by Lemma 2.3.

Next we show that
(
xθ−yθ
x−y

)
x>1/2,y∈[1,2]

is also a pcb-Schur multiplier.

This time we fix a C∞ function ϕ : [0, 2π] → [0, 1] with support in [1/4, 3] that is identically 1
on [1/2, 2].

For i > 0, one uses Ki(x, y) = ϕ(x)ϕ(y) (x+i)θ−yθ
(x+i)−y on [0, 2π]2. It is clear that Ki can be extended

to a C∞ 2π-periodic function. By construction, for x and y in the support of ϕ and t ∈ [0, 1],
the smallest value of t(x+ i) + (1− t)y is bigger than 1/4. Thus, the formula (3) shows that any

derivative of order l of xθ−yθ
x−y on the support of Ki is bounded by 4l+1−θθ(1 − θ)...(l − θ). Thus

using the chain rule, one sees that Ki and its derivatives up to order d+ 1 are uniformly bounded
independently of i and θ. Thus the same holds for the Sobolev constant in Lemma 2.7 for Ki.

Lemma 2.7 gives that
(
Ki(x, y)

)
(x,i)∈[0,2π]×N,y∈[0,2π]

is pcb. By Lemma 2.4, we can conclude by

restricting x to [1/2, 3/2[×N ' [1/2,∞[ (via (x, i) 7→ x+ i) and y to [1, 2].
The Corollary follows by gluing the two pieces together. �

Corollary 2.9. For k ∈ Z, the matrix Mk =
(
xθ−yθ
x−y

)
x>0,y∈[2−k−1,2−k]

is a p-completely bounded

Schur multiplier for 0 < p 6 1 with ‖Mk‖pcb 6 Cp2−k(θ−1) for some constant depending only on p.

Proof. This is obvious by homogeneity from Corollary 2.8 with a change of variables x↔ 2−k−1x,
y ↔ 2−k−1y. �

Remark 2.10. One can exchange the roles of x and y.
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It will be convenient to redefine M−1, gathering all k 6 −1:

Corollary 2.11. The matrix M−1 =
(
xθ−yθ
x−y

)
x>0,y>1

is a p-completely bounded Schur multiplier

for 0 < p 6 1 with ‖M−1‖pcb 6 Cp
(

1
1−θ
)1/p

for some constant depending only on p.

Proof. Writing [1,∞[= ∪k>0[2k, 2k+1[ and using the previous Corollary for each piece, this follows

from the p-triangular inequality as (2k(θ−1))k>0 ∈ `p(N). Since ‖(2k(θ−1))k>0‖p 6 cp(1− θ)−1/p for

some constant cp. We get that ‖M−1‖pcb 6 cpCp(1− θ)−1/p where Cp comes from 2.9. �

Remark 2.12. The kernel in formula (3) is positive definite because for x, y > 0 xθ−yθ
x−y =

cθ
∫
R+
tθ 1
x+t

1
y+tdt for some cθ > 0. Using this fact and similar arguments, one can check that

there is some C so that ‖M−1‖pcb 6 C for all 0 < θ < 1 and all p > 1.

We now turn to another family of multipliers.

Corollary 2.13. For a > 1, the matrix Ha =
(

1
a+x+y

)
x,y∈[0,1]

is a p-completely bounded Schur

multiplier for 0 < p 6 1 with ‖Ha‖pcb 6 Cp/a for some constant Cp depending only on p.

Proof. As for Corollary 2.8 take a smooth function ϕ : [−π, π] → [0, 1] that is supported on
[−1/4, 5/4] such that ϕ(t) = 1 for t ∈ [0, 1]. Define K(x, y) = 1

a+x+yϕ(x)ϕ(y) on [−π, π] and make

it 2π-periodic so that it is C∞. Using the chain rule, one easily sees that the Sobolev norms from
Lemma 2.7 are dominated by Cp/a. �

Corollary 2.14. Given a, b > 0 with a+ b > 0, one has∥∥∥(xθ ± yθ
x+ y

)
x>a,y>b

∥∥∥
pcb
6 Cp

( 1

1− θ
)1/p

max{a, b}θ−1,

for some constant Cp depending on p.

Proof. Without loss of generality we may assume a > b.
By a change of variable x↔ a(1 +x) and y ↔ a(t+ y), with t = b/a, it boils down to show that∥∥∥( (1+x)θ±(t+y)θ

1+t+x+y

)
x>0,y>0

∥∥∥
pcb

is bounded independently of t ∈]0, 1].

We use a dyadic decomposition related to max{x, y}. Assume x ∈ Ik = [2k, 2k+1[ and y ∈ Jk =
[0, 2k[. Then by homogeneity and a change of variables x↔ 2k(x+ 1), y ↔ 2ky∥∥∥( 1

1 + t+ x+ y

)
x∈Ik,y∈Jk

∥∥∥
pcb

= 2−k
∥∥∥( 1

1 + 2−k(1 + t) + x+ y

)
x∈[0,1[,y∈[0,1[

∥∥∥
pcb
.

Setting a = 1 + 2−k(1 + t) ∈ [1, 3] and using Corollary 2.13 the latter multiplier is bounded by

Cp2
−k. The multiplier

(
((1 + x)θ ± (t + y)θ)1x∈Ik,y∈Jk

)
is bounded by a fixed multiple of 2kθ.

Thus
∥∥∥( (1+x)θ±(t+y)θ

1+t+x+y

)
x∈Ik,y∈Jk

∥∥∥
pcb
6 Cp2

−k(1−θ). A similar estimate holds for the same symbol

if x ∈ Jk+1 and y ∈ Ik or x, y ∈ [0, 1[ (with k = 0). The sets [0, 1[2, Jk+1 × Ik, Ik × Jk for k > 0
form a partition of [0,∞[2 into product sets. Thus, the p-triangular inequality gives∥∥∥( (1 + x)θ ± (t+ y)θ

1 + t+ x+ y

)
x>0,y>0

∥∥∥p
pcb
6 Cpp + 2

∑
k>0

Cpp2−p(1−θ)k 6 Cpp
1

1− θ
.

�

3. Ando’s inequality in semi-finite algebras

Schur multipliers are intimately related to perturbations of the functional calculus of selfadjoint
operators. Illustrations can be found in [9, 5, 2, 1, 21, 20, 22] and many other references.

Indeed let f : R → R be a (continuous) function. Assume that x, y are selfadjoint elements
in some semi-finite von Neumann algebra (M, τ) with finite discrete spectra (xi)i∈I and (yj)j∈J
and associated spectral projections pi ∈ M and qj ∈ M. As x =

∑
i xipi and y =

∑
j yiqj , with∑

i pi =
∑
j qj = 1, one has

(4) f(x)− f(y) =
∑
i,j

pi(f(xi)− f(yj))qj =
∑
i,j

pi
f(xi)− f(yj)

xi − yj
(x− y)qj ,
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where f(u)−f(v)
u−v can take any value if u = v ∈ R.

The map T : z 7→
∑
i,j pi

f(xi)−f(yj)
xi−yj zqj is very close to be a Schur multiplier with symbol the

divided differences of f .

Lemma 3.1. For any 0 < p 6∞, let M = (mi,j) be a p-completely bounded Schur multiplier then
the following map TM :M→M

TM (z) =
∑
i,j

mi,jpizqj

extends to a bounded map on Lp(M) with ‖TM‖Lp(M)→Lp(M) 6 ‖M‖pcb.

Proof. Recall that we assume that I and J are finite, (pi)i∈I and (qj)j∈J are orthogonal projections
inM summing up to 1. The maps π :M→ B(`2(J), `2(I))⊗M and ρ : B(`2(J), `2(I))⊗M→M
defined by

π(z) = (pizqj)i∈I,j∈J =

 p1

...
p|I|

 z
(
q1 . . . q|J|

)

ρ((Xi,j)) =
∑
i,j

piXi,jqj =
(
p1 . . . p|I|

)
(Xi,j)

 q1

...
q|J|


clearly extend to contractions at Lp-levels respectively on M and B(`2(J), `2(I)) ⊗M since the
column and row matrices in the above products are contractions. Since TM = ρ◦(SM⊗IdLp(M))◦π,
we get the lemma. �

We want to deal with homogeneous functions of selfadjoint operators, namely f(x) = |x|θ or
f(x) = sgn(x)|x|θ = xθ+ − xθ−.

We aim to prove the following theorem that we call Ando’s inequality.

Theorem 3.2. Let 0 < θ < 1 and 0 < p 6∞ then there exists Cp,θ so that for any von Neumann
algebra M, and x, y ∈ Lp(M)sa one has

(5) ‖|x|θ − |y|θ‖p/θ 6 Cp,θ‖x− y‖θp, ‖sgn(x)|x|θ − sgn(y)|y|θ‖p/θ 6 Cp,θ‖x− y‖θp.

The reduction from type III to type II will be explained in the next section so we only deal with
semi-finite algebras here.

Proof. The result for p =∞ follows from Theorem 4.1 in [3].
The result for f(x) = sgn(x)|x|θ when 1 6 p < ∞ can be found in [24]. The absolute value

map x 7→ |x| is bounded on Lq(M) provided that 1 < q < ∞. This is a result by Davies [12]
for Schatten classes, that can be extended to all semi-finite von Neumann algebras (see Remark
6.2 in [10] for instance). Thus for 1 6 p < ∞, with q = p/θ, we have an estimate ‖|x|θ −
|y|θ‖p/θ 6 Cp/θ‖sgn(x)|x|θ − sgn(y)|y|θ‖p/θ. Therefore the Theorem holds for f(x) = |x|θ using it

for f(x) = sgn(x)|x|θ when 1 6 p <∞.

We just need to prove the Theorem for p < 1.

If the result holds for the couples (p, θ1) and (p/θ1, θ2), it also holds for (p, θ1θ2). Indeed for
instance if

‖|x|θ1 − |y|θ1‖p/θ1 6 Cp,θ1‖x− y‖
θ1
p and ‖|z|θ2 − |t|θ2‖p/(θ1θ2) 6 Cp/θ1,θ2‖z − t‖

θ2
p/θ1

,

then one gets with z = |x|θ1 , t = |y|θ1 :

‖|x|θ1θ2 − |y|θ1θ2‖p/(θ1θ2) 6 Cp/θ1,θ2C
θ2
p,θ1
‖x− y‖θ1θ2p .

Hence Cp,θ1θ2 6 Cp/θ1,θ2C
θ2
p,θ1

. By this transitivity, we reduce the proof to p 6 θ; indeed if p > θ,

then (p, θ) = (p.1, p.θ/p) and the estimate follows from that for (p, p) and (1, θ/p).

We do it only for f(t) = |t|θ as the other case is similar.

We prove the inequality from case to case regarding M and the values of x and y.

Case 1: We assume that x, y ∈Msa with finite discrete spectra and ‖x−y‖∞ 6 2 and ‖x−y‖p/2 6
2. We prove that ‖|x|θ − |y|θ‖p/θ 6 Cp,θ for some Cp,θ > 0.
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We denote by x =
∑
i∈I xipi and y =

∑
i∈J yjqj the spectral decompositions of x and y, so that

pi = 1{xi}(x) and qi = 1{yi}(y).

We will rely on the formula (4), decompose |x|θ − |y|θ =
∑1
i,j=−1 ai(|x|θ − |y|θ)bi where a−1 =

1]∞,0[(x), a0 = 1{0}(x) and a1 = 1]0,∞[(x) and similarly for bi.

We use dyadic decompositions. Set Ik = [2−k−1, 2−k[, Jk =]0, 2−k−1[ for k > 0 and I−1 = [1,∞[,
J−1 =]0, 1[, J−2 =]0,∞[. The definition is made so that the sets Ik×Jk−1 and Jk× Ik are disjoint
with union {(x, y) ∈]0,∞[2 | max{x, y} ∈ Ik}. Hence we have a partition ]0,+∞[2= ∪k>−1(Ik ×
Jk−1 ∪ Jk × Ik). Define accordingly the maps T 1

k (z) =
∑
xi∈Ik,yj∈Jk−1

pi
xθi−y

θ
j

xi−yj zqj , T
2
k (z) =∑

xi∈Jk,yj∈Ik pi
xθi−y

θ
j

xi−yj zqj . For any 0 < a 6 1, Lemma 3.1 says that ‖T 1
k ‖La(M)→La(M) is dominated

by
∥∥∥(xθi−yθjxi−yj

)
xi∈Ik,yj∈Jk−1

∥∥∥
acb

. By Lemma 2.4, this norm is smaller than
∥∥∥(xθ−yθx−y

)
x∈Ik,y>0

∥∥∥
acb

.

Using Remark 2.10 and Corollary 2.9 for k > 0, this norm is bounded by Ca2−k(θ−1). When
k = −1, using Corollary 2.11 instead, we also get a bound by Ca,θ. We have similar estimates for
‖T 2

k ‖La(M)→La(M).
Put rk = 1Ik(x), sk = 1Ik(y) as well as uk = 1Jk(x), vk = 1Jk−1

(y), we can write (note that the
sums are actually finite)

a1(|x|θ − |y|θ)b1 =
∑

xi>0,yj>0

pi
xθi − yθj
xi − yj

(x− y)qj

=
∑
k>−1

T 1
k (x− y) + T 2

k (x− y)

=
∑
k>−1

T 1
k (rk(x− y)vk) + T 2

k (uk(x− y)sk).

We use the above norm estimates for T jk with a = p/θ to get ‖T jk‖Lp/θ(M)→Lp/θ(M) 6 Cp,θ2k(1−θ).

By the p/θ-triangular inequality

‖a1(|x|θ − |y|θ)b1‖p/θp/θ 6 C
p/θ
p,θ

∑
k>−1

2k(1−θ)p/θ(‖rk(x− y)vk‖p/θp/θ + ‖uk(x− y)sk‖p/θp/θ).

But by definition 0 6 rkx, ukx, yvk, ysk 6 2−k for k > 0 and ‖x − y‖∞ 6 2, so that we have
‖rk(x − y)vk‖∞ 6 ‖rkx − yvk‖∞ 6 2−k, and also ‖ukx − ysk‖∞ 6 2−k for all k > −1 . But also
‖rk(x−y)vk‖p/2, ‖uk(x−y)sk‖p/2 6 ‖x−y‖p/2 6 2. Thus as θ/p = (θ/2).2/p+(1−θ/2)/∞, by the

Hölder inequality ‖rk(x − y)vk‖p/θ, ‖uk(x − y)sk‖p/θ 6 2.2−k(1−θ/2). This is enough to conclude
that

‖a1(|x|θ − |y|θ)b1‖p/θp/θ 6 4C
p/θ
p,θ

∑
k>−1

2−kp/2.

To deal with a1(|x|θ − |y|θ)b−1, one can do exactly the same using Corollary 2.14 as the Schur

multipliers involved have shape
(
aθ−bθ
a+b

)
a∈Ik,b∈Jk−1

,
(
aθ−bθ
a+b

)
a∈Jk,b∈Ik

.

The terms a−1(|x|θ − |y|θ)b1 and a−1(|x|θ − |y|θ)b−1 can be treated similarly.
It is a well known fact that complex interpolation remains valid for Lp(M, τ) in the range

0 < p 6 1, see Lemma 2.5 in [18] for what we need. Using it, one easily deals with the remaining
terms as for instance

‖a0(|x|θ − |y|θ)‖p/θ = ‖a0|y|θ‖p/θ 6 ‖a0|y|‖θp = ‖a0y‖θp = ‖a0(x− y)‖θp 6 2.

Gluing the pieces together, we find a constant Cp,θ so that (5) holds in Case 1.

Case 2: We assume M finite, x, y ∈ Msa, y = x + q for some projection q with ‖q‖p = 1, that is
τ(q) = 1.

Consider (xn) a sequence in the von Neumann algebra generated by x that |xn| 6 |x|, ‖xn −
x‖∞ → 0 and each xn has a finite spectrum, and similarly for (yn) and y.

Obviously ‖|xn|θ−|x|θ‖p/θ → 0 by the dominated convergence theorem asM is finite (similarly
for y). As ‖xn − yn‖t → ‖q‖t = 1 for t =∞, p/2, xn and yn satisfy the assumptions of Case 1 for
n big enough. Going to the limit in (5) for xn, yn, we get (5) for x, y with the same Cp,θ.
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Case 3: We assume M finite, x, y ∈ Msa and y = x+ tq for some projection q with τ(q) = 1 and
t ∈ R.

If t > 0, this follows by homogeneity applying the result for y/t, x/t and q. If t < 0, one just
needs to exchange x and y. The constant Cp,θ is the same as in the previous cases.

Case 4: We assumeM finite, x, y ∈Msa and y = x+
∑n
i=1 tiqi where ti ∈ R and qi are orthogonal

projections with τ(qi) = 1.

Simply put x0 = x and xk = x+
∑k
i=1 tiqi and use the p/θ-triangular inequality and Case 3 for

xk−1 and xk.

‖f(x)− f(y)‖p/θp/θ 6
n∑
i=1

‖f(xi−1)− f(xi)‖p/θp/θ 6 C
p/θ
p,θ

n∑
i=1

(
‖tiqi‖θp

)p/θ
.

But ‖x− y‖p =
(∑n

i=1 |ti|p
)1/p

and we get this case as ‖qi‖p = 1.

Case 5: We assumeM finite, x, y ∈Msa and y = x+
∑n
i=1 tiqi where ti ∈ R and qi are orthogonal

projections with τ(qi) ∈ Q.

Consider the von Neumann algebra (M̃, τ̃) where M̃ =M⊗L∞([0, 1]) with the trace τ̃ = Nτ⊗
∫

where N is such that for all i, Nτ(qi) ∈ N . Put z̃ = z ⊗ 1 for z ∈M. We have ỹ − x̃ =
∑n
i=1 tiq̃i.

For each i, and k 6 Nτ(qi), let qi,k = qi ⊗ 1[(k−1)/(Nτ(qi)),k/(Nτ(qi))]. The (qi,k)k are orthogonal

projections with τ̃(qi,k) = 1 and
∑Nτ(qi)
k=1 qi,k = q̃i. By Case 4:

Nθ/p‖f(x)−f(y)‖Lp/θ(M) = ‖f(x̃)−f(ỹ)‖Lp/θ(M̃) 6 Cp,θ‖x̃−ỹ‖
θ
Lp(M̃)

= Cp,θ

(
N1/p‖x−y‖Lp(M)

)θ
.

We still obtain the same constant Cp,θ.
Case 6: We assume M finite and x, y ∈Msa.

By considering again (M̃, τ̃) where M̃ = M⊗ L∞([0, 1]) with the trace τ̃ = τ ⊗
∫

, in a masa
containing it, one can approximate x−y for the L1-norm by elements of the form δk =

∑nk
i=1 ti,kqi,k

where τ̃(qi,k) ∈ Q. With yk = x+ δk, yk converges to y in L1 it also does in Lp as M̃ is finite. The
Ando inequality for the index 1/θ also gives that ‖f(yk) − f(y)‖1/θ 6 Cθ‖yk − y‖θ1, hence f(yk)
converges to f(y) in Lp/θ. Since x, yk satisfy the assumptions of Case 5, the conclusion follows by
going to the limit in (5).

Case 7: We assume M semi-finite and x, y ∈ Lp(M)sa.

This is again a matter of approximation. By the semi-finiteness ofM and functional calculus in a

masa containing x, we may approximate x in Lp by elements of the form xn =
∑N
i=1 tiqn commuting

with x where qn are finite projections. We can as well assume that f(xn) converges to f(x) in
Lp/θ, similarly for yn and y (these are purely commutative results). Then yn and xn are in some

finite subalgebra ofM and we have (5) for them by Case 6: ‖f(xn)− f(yn)‖p/θ 6 Cp,θ‖xn− yn‖θp.
Taking again limits as n→∞ gives the result. �

Remark 3.3. One can get a proof of the case p = ∞ following case 1 (since p/2 = ∞) and then
case 6 directly. A careful analysis of the constant shows that lim supθ→1(1− θ)C∞,θ <∞ as in [3].

We slightly extend the result to τ -measurable operators L0(M, τ). With its measure topology
[29, 14], it becomes a complete Hausdorff topological ∗-algebra (Theorem 28 in [29]) in which
M is dense. We recall the Fatou Lemma in L0 (Lemma 3.4 in [14]) if vn → v in L0 and then
‖v‖q 6 lim inf ‖vn‖q for all q. Moreover, the functional calculus associated to our f(t) = |t|θ or
f(t) = sgn(t)|t|θ is continuous on Lsa0 (Lemma 3.2 in [23]).

Theorem 3.4. Let 0 < θ < 1 and 0 < p 6 ∞ then there exists Cp,θ so that for any semi-
finite von Neumann algebra (M, τ), and x, y ∈ L0(M, τ)sa such that x − y ∈ Lp(M, τ), then
|x|θ − |y|θ, sgn(x)|x|θ − sgn(y)|y|θ ∈ Lp/θ(M, τ) and

‖|x|θ − |y|θ‖p/θ 6 Cp,θ‖x− y‖θp, ‖sgn(x)|x|θ − sgn(y)|y|θ‖p/θ 6 Cp,θ‖x− y‖θp.

Proof. This is a matter of approximations.
We start by giving arguments to get the result when x, y ∈Msa and x− y ∈ Lp(M). First note

that if a bounded sequence (xn)n ∈Msa goes to x for the strong-topology then (f(xn))n also goes
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to f(x) for the strong-topology (Lemma 4.6 in [28]). Take any finite projection γ ∈M and (qn)n a
sequence of finite projections that goes to 1 strongly, it follows that (γf(qnxqn)γ)n goes to γf(x)γ
in L2. since L2 ⊂ L0 is continuous, we get that in the topology of L0, limn γf(qnxqn)γ = γf(x)γ
and similarly for y.

As qnxqn and qnyqn are in Lp, we get

‖γ(f(qnxqn)− f(qnyqn))γ‖p/θ 6 Cp,θ‖qn(x− y)qn‖θp 6 Cp,θ‖x− y‖θp.
Using the Fatou lemma, we obtain

‖γ(f(x)− f(y))γ‖p/θ 6 Cp,θ‖x− y‖θp.

It is a simple exercise to check that if z ∈ Lsa0 is so that sup ‖γzγ‖p/θ 6 C where the sup runs over
all finite projections, then z ∈ Lp/θ with norm less than C. This allows to conclude.

Next take any x, y ∈ L0 such that x− y ∈ Lp. Let qn = 1|x|6n ∧ 1|y|6n, then qn is an increasing
sequence of projections to 1 with τ(1− qn)→ 0 as x, y ∈ L0. Moreover qnxqn ∈M goes to x in L0

(similarly for y) (see [29] page 20). By the continuity of the functional calculus in L0, (f(qnxqn))
and (f(qnyqn)) go to f(x) and f(y). Once again with the help of the Fatou lemma and the previous
case

‖f(x)− f(y)‖p/θ 6 lim inf ‖f(qnxqn)− f(qnyqn)‖p/θ 6 Cp,θ lim inf ‖qn(x− y)qn‖θp 6 Cp,θ‖x− y‖θp.
�

4. Ando’s inequality in type III algebras

Before going to type III algebras, we need to extend Ando’s inequality to weak-Lp spaces. We
will use the K-interpolation method see [7].

As usual, given two compatible quasi-Banach spaces X0 and X1, we let for t > 0 and x ∈ X0+X1

Kt(x,X0, X1) = inf{‖x0‖X0 + t‖x1‖X1 ; x = x0 + x1}.
For 0 < η < 1 and 0 < q 6∞ set

‖x‖η,q = ‖t−ηKt(x,X0, X1)‖Lq(R+,dt/t) =

(∫ ∞
0

(t−ηKt(x,X0, X1))q
dt

t

)1/q

,

with the obvious modification when q =∞.
The interpolated space (X0, X1)η,q is {x ∈ X0 +X1 | ‖x‖η,q <∞} with (quasi)-norm ‖.‖η,q.
If (M, τ) is a semi-finite von Neumann algebra, and x ∈ L0(M, τ) we denote as usual its

decreasing rearrangement by µt(x) (see [14]).
The noncommutative Lorentz spaces Lp,q(M, τ) for 0 < p <∞ and 0 < q 6∞ are defined as in

the commutative case. The space Lp,q(M, τ) consists of all measurable operators x ∈ L0(M, τ) so

that ‖x‖Lp,q = ‖t1/pµt(f)‖Lq(R+,dt/t) < ∞. With the (quasi)-norm ‖.‖Lp,q , it becomes a (quasi)-
Banach space.

The results about real interpolation of commutative Lp-spaces ([7] Theorem 5.3.1) remain avail-
able for semi-finite von Neumann algebras. Indeed for any 0 < p0 < p1 6 ∞, for all t > 0, x ∈
Lp0(M, τ)+Lp1(M, τ), the quantitiesKt(x, Lp0(M, τ), Lp1(M, τ)) andKt(µ(x), Lp0(R+), Lp1(R+))
are equivalent with constants depending only on p0 and p1, see [30] for details. As a conse-
quence, we get that for p0 6= p1 6 ∞ and 0 < q 6 ∞, 0 < η < 1 with 1

p = 1−η
p0

+ η
p1

,

(Lp0(M, τ), Lp1(M, τ))η,q = Lp,q(M, τ) with equivalent norms (depending only on the param-
eters but not on (M, τ)).

We drop the reference to (M, τ) to lighten notation.
When x = x∗ ∈ Lp0 + Lp1 , we can also consider

Ksa
t (x, Lp0 , Lp1) = inf{‖x0‖p0 + t‖x1‖p1 ; x = x0 + x1 with xi = x∗i }.

Lemma 4.1. Let 0 < p0 < p1 6∞, t > 0 and x ∈ (Lp0 + Lp1)sa, then

Ksa
t (x, Lp0 , Lp1) > Kt(x, Lp0 , Lp1) > Ksa

t (x, Lp0 , Lp1)/2max{1/p0,1}−1.

Proof. This is a standard fact. Let x = a0 + a1 with ai ∈ Lpi such that ‖a0‖p0 + t‖a1‖p1 6
Kt(x, Lp0 , Lp1) + ε. Then x = b0 + b1 with bi = (ai + a∗i )/2. We have ‖bi‖pi 6 21/pi−1‖ai‖pi if
pi < 1 or ‖bi‖pi 6 ‖ai‖pi otherwise, hence we get the result letting ε→ 0. �
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Remark 4.2. Similarly one can easily show that for x > 0, Kt(x, Lp0 , Lp1) is equivalent to
inf{‖x0‖p0 + t‖x1‖p1 ; x = x0 + x1 with xi > 0}.

Lemma 4.3. Let 0 < p0 < p1 6∞ and θ ∈]0, 1[ and x, y ∈ (Lp0 + Lp1)sa. Then for all t > 0 and
f(s) = |s|θ or f(s) = sgn(s)|s|θ:

Ktθ (f(y)− f(x), Lp0/θ, Lp1/θ) 6 Cp0,p1,θKt(y − x, Lp0 , Lp1)θ.

Proof. Thanks to the previous Lemma, it suffices to do it with Ksa
t instead of Kt.

Choose selfadjoint operators δ0 ∈ Lp0 and δ1 ∈ Lp1 so that y−x = δ0 +δ1 and ‖δ0‖p0 +t‖δ1‖p1 6
2Ksa

t (x− y, Lp0 , Lp1).
Set a0 = f(y) − f(x + δ1) = f(y) − f(y − δ0) and a1 = f(x + δ1) − f(x), then f(y) − f(x) =

a0 + a1. By Theorem 3.4 for pi, we obtain ‖ai‖pi/θ 6 Cpi,θ‖δi‖θpi . Since, ‖a0‖p0/θ + tθ‖a1‖p1/θ 6
Cp0,p1,θ(‖δ0‖1 + t‖δ1‖p1)θ, we have found a suitable decomposition to conclude. �

Proposition 4.4. For all 0 < p <∞, 0 < q 6∞ and 0 < θ < 1, there exists Cp,q,θ > 0 such that
for x, y ∈ Lsap , with f(s) = |s|θ or f(s) = sgn(s)|s|θ:

‖f(y)− f(x)‖Lp/θ,q 6 Cp,q,θ‖y − x‖
θ
Lp,qθ

.

Proof. Put p0 = p/2, p1 = 2p and η = 2/3 so that 1
p = 1−η

p0
+ η

p1
. We have

‖f(y)− f(x)‖Lp/θ,q 'p/θ,q ‖t−ηKt(f(y)− f(x), Lp0/θ, Lp1/θ)‖Lq(R+,dt/t),

‖y − x‖Lp,qθ 'p,qθ ‖u−ηKu(y − x, Lp0 , Lp1)‖Lqθ(R+,du/u).

But by Lemma 4.3

‖t−ηKt(f(y)− f(x), Lp0/θ, Lp1/θ)‖Lq(R+,dt/t) 6 Cp,θ‖t−ηKt1/θ (y − x, Lp0 , Lp1)θ‖Lq(R+,dt/t).

But by a change of variable u = t1/θ:

‖t−ηKt1/θ (y − x, Lp0 , Lp1)θ‖Lq(R+,dt/t) = θ1/q‖u−ηKu(y − x, Lp0 , Lp1)‖θLqθ(R+,du/u)

and we get the estimate. �

We can conclude with the proof of Theorem 3.2 for type III algebras.

Proof. Assume that M is given with a n.s.f. weight ϕ with modular group σ. Let R = M oσ̂ R
be its core (with the dual action σ̂), this is a semi-finite von Neumann algebra with a trace τ such
that τ ◦ σ̂t = e−tτ . Then by definition Lp(M, ϕ) is isometrically a subspace of Lp,∞(R, τ), more
precisely

Lp(M, ϕ) = {x ∈ L0(R, τ) | σ̂t(x) = e−t/px, ∀t ∈ R} ⊂ Lp,∞(R, τ),

with by definition ‖x‖p = ‖x‖Lp,∞(R) (see [29] Definition 13 and Lemma 5 or Lemma B in [16]).
Thus Theorem 3.2 for type III algebras follows from Proposition 4.4 for the weak-Lp spaces

noticing that f(Lp(M, ϕ)) ⊂ Lp/θ(M, ϕ) as σ̂t is a representation and f is θ-homogeneous. �

5. Further comments

By very classical arguments using the Cayley transform see [24], estimates for the functional
calculus are equivalent to some for commutators or anticommutators.

Proposition 5.1. Let 0 < p 6 ∞ and 0 < θ < 1, then there exists a constant Cp,θ so that for
x ∈ Lp(M)sa and b ∈M with f(s) = |s|θ or f(s) = sgn(s)|s|θ:∥∥[f(x), b]

∥∥
p/θ
6 Cp,θ

∥∥[x, b]
∥∥θ
p
‖b‖1−θ.

If x, y ∈ Lp(M)+ and b ∈M, then∥∥bxθ ± yθb∥∥
p/θ
6 Cp,θ

∥∥bx± yb∥∥θ
p
‖b‖1−θ.

Let Mp,q denote the Mazur map for p < q given by Mp,q(f) = f |f |(p−q)/q. The 2×2-tricks from
[24] also give

Proposition 5.2. Let 0 < p 6 ∞ and 0 < θ < 1, then there exists a constant Cp,θ so that for
x, y ∈ Lp(M): ∥∥Mp,p/θ(x)−Mp,p/θ(y)]

∥∥
p/θ
6 Cp,θ‖x− y‖θp.
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This improves the estimates for Mp,q when p < q of Theorem 4.1 in [18] and gives the expected
Hölder continuity.

Remark 5.3. The above two propositions are valid for all von Neumann algebras. For semi-finite
ones, similar estimates are true for the Lorentz norms as in Proposition 4.4.

Contrary to the case p > 1, at least for p 6 1/2, there is no constant Cp so that for all 0 < θ < 1,

‖
(
xθ−yθ
x−y

)
x>1,y>1

‖pcb 6 Cp.

Indeed if this is so, then taking θ = 1 − ε, x = et/ε, y = es/ε by Lemma 2.5, letting ε → 0, we

would get that ‖
(
e−max{t,s}

)
t,s>0
‖pcb 6 Cp. Using that 2 max{x, y} = |x − y| + x + y, we would

deduce that ‖
(
e−|t−s|

)
06t,s61

‖pcb 6 Cp.
By easy arguments going from a discrete situation to a continuous one, one can deduce that the

same matrix has to be a Schur multiplier on Sp(L2[0, 1]). The constant kernel 1 on [0, 1]2 is in

Sp(L2[0, 1]) with norm one, thus we would get that ‖
(
e−|x−y|

)
06x,y61

‖Sp(L2[0,1]) 6 Cp.

The operator T on L2[0, 1] with kernel K(x, y) = e−|x−y| is obviously positive and Hilbert-
Schmidt with HS norm less than 1. One easily checks that the eigenvectors fλ associated to
λ must satisfy λf ′′ = λf − 2f . Letting λ = 2

1+α2 with α > 0, the only possibilities are fλ(x) =

aeiαx+be−iαx. But T (eiαx) = 2
1+α2 e

iαx− e−x

1+iα−e
x e−1+iα

1−iα . Thus, λ is a eigenvalue iff e2iα =
(

1−iα
1+iα

)2

.

Set tan θ = α with θ ∈]0, π/2[, so that e2iα = e−4iθ. The equation tan t = −2t+kπ admits a unique
solution θk in ]0, π/2[ for k > 0 so that tan θk ≈ kπ. We deduce that the set of eigenvalues of T is
( 2

1+tan(θk)2 )k>1 with associated eigenvector fλ(x) = eiαx − 1+iα
1−iαe

−iαx. Thus T /∈ Sp(L2[0, 1]) when

p 6 1/2.
As fλ/‖fλ‖2 is uniformly bounded in C[0, 1], we can also deduce using Lemma 2.3 that for

p > 1/2

‖
(
e−max{t,s}

)
06t,s61

‖pcb <∞ and ‖
(
e−max{t,s}

)
t,s>0
‖pcb <∞.

About Corollary 2.11, it is easier to see that the norm cannot be independent of 0 < θ < 1 for

p 6 1. Indeed the multiplier
(
x−y
x+y

)
x>1,y>1

, or equivalently
(
x−y
x+y

)
x>0,y>0

using homogeneity, is

not bounded for p = 1 (hence also for p < 1) as shown in [12].
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