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Introduction

This note deals with the perturbation theory of functional calculus of selfadjoint operators on Hilbert spaces. More precisely, given a function f : R → R, the problem is to get a control of f (x) -f (y) S for some symmetric norm on selfadjoint operators in terms of possibly another norm x -y S . This topic was developed from the 50's by the Russian school. Birman and Solomjak had a strong impact on it by the introduction of operator integrals in the 60's. Since then, this subject has been very active. Many mathematicians tried to enlarge the classes of functions f or norms involved. The list would be too long, but we can quote Arazy [START_REF] Arazy | Certain Schur-Hadamard multipliers in the spaces Cp[END_REF][START_REF] Arazy | Contractive projections in Cp[END_REF], Ando [START_REF] Ando | Comparison of norms |||f (A) -f (B)||| and[END_REF], and more recently the breakthroughs by Alexandrov-Peller [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF][START_REF] Aleksandrov | Functions of operators under perturbations of class Sp[END_REF],... and Potapov-Sukochev [START_REF] Potapov | Operator-Lipschitz functions in Schatten-von Neumann classes[END_REF][START_REF] Potapov | Double operator integrals and submajorization[END_REF] and their coauthors [START_REF] Potapov | On the Arazy conjecture concerning Schur multipliers on Schatten ideals[END_REF],... Usually the results are stated for symmetric (quasi-)norms on compact operators, for instance the Schatten p-classes S p for 0 < p ∞. Nevertheless the noncommutative integration theory in von Neumann algebras also gives a natural framework to study these questions.

Our starting point is an inequality in [START_REF] Birman | Estimates of the spectrum of a difference of fractional powers of selfadjoint operators[END_REF], for any fully symmetric norm . S and any 0 < θ < 1, and x, y positive operators on some Hilbert space, i.e x, y ∈ B(H) +

x θ -y θ S |x -y| θ S . It was extended by Ando [START_REF] Ando | Comparison of norms |||f (A) -f (B)||| and[END_REF] to any operator monotone function f : R + → R + instead of x → x θ . Dodds and Dodds [START_REF] Peter | On a submajorization inequality of T. Ando. In Operator theory in function spaces and Banach lattices[END_REF] adapted the proof to semi-finite von Neumann algebras for all fully symmetric norms.

In the case of Schatten classes, Birman Koplienko and Solomjak's result or Ando's proof actually give that for p θ and x, y ∈ B(H) +

x θ -y θ p/θ

x -y θ p . This also holds for semi-finite Neumann algebras by [START_REF] Peter | On a submajorization inequality of T. Ando. In Operator theory in function spaces and Banach lattices[END_REF] or [START_REF] Potapov | Double operator integrals and submajorization[END_REF]. For general von Neumann algebras, Kosaki got the case p = θ in [START_REF] Kosaki | Applications of uniform convexity of noncommutative L p -spaces[END_REF] with an extra factor, a full argument can be found in [START_REF] Caspers | Noncommutative de Leeuw theorems[END_REF] or [START_REF] Éric | Hölder estimates for the noncommutative Mazur maps[END_REF].

Another remarkable extension was obtained in [START_REF] Aleksandrov | Functions of operators under perturbations of class Sp[END_REF] for Schatten p-classes when 1 < p < ∞; it is shown that for any θ-Hölder function f on R, with 0 < θ < 1 and any selfadjoint x, y ∈ B(H) sa , one has [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF] f (x) -f (x) p/θ C p,f x -y θ p . In particular this holds if f (x) = |x| θ or f (x) = sgn(x)|x| θ . For them, the arguments can be adapted to general von Neumann algebras [START_REF] Éric | Hölder estimates for the noncommutative Mazur maps[END_REF] and one can also reach p = 1 in [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF].

Surprisingly, when p < 1 even for Schatten classes, very little is known. One can find some asymptotic estimates in [START_REF] Birman | Estimates of the spectrum of a difference of fractional powers of selfadjoint operators[END_REF] or [START_REF] Ju | Rotfel'd. Asymptotic behavior of the spectrum of abstract integral operators[END_REF] but [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF] seems to be unknown. Weaker related inequalities were also recently obtained in [START_REF] Sobolev | Functions of self-adjoint operators in ideals of compact operators[END_REF].

Among general results Raynaud [START_REF] Raynaud | On ultrapowers of non commutative Lp spaces[END_REF] proved that x → f (x) from L p to L p/θ is uniformly continuous on balls for f as above. In [START_REF] Pisier | The non-commutative Khintchine inequalities for 0 < p < 1[END_REF], for type II von Neumann algebras a strange quantitative estimate was obtained for its modulus of continuity.

Our main result is that (1) holds for all 0 < p ∞ for both f (x) = |x| θ and f (x) = sgn(x)|x| θ and all von Neumann algebras. We hope that the techniques developed here may be useful for related topics.

We do not address similar questions when θ > 1. When p 1, this is done in [START_REF] Éric | Hölder estimates for the noncommutative Mazur maps[END_REF] and when p < 1, some local results can be found in [START_REF] Arazy | Certain Schur-Hadamard multipliers in the spaces Cp[END_REF][START_REF] Potapov | On the Arazy conjecture concerning Schur multipliers on Schatten ideals[END_REF] for Schatten classes.

As usual to deal with such questions, one has to find norm estimates for some Schur multipliers, this is done in the second section. Next, they are used to derive the main result for semi-finite von Neumann algebras. The argument heavily rests on homogeneity of f . To generalize to type III algebras, one usually relies on the Haagerup reduction principle, but it involves approximations using conditional expectations that are not bounded when p < 1 and it seems difficult to use it in our situation. The only available tool we have is to use weak-type inequalities in semi-finite algebras to go to type III. The situation is so particular here that this can be done quite easily in section 4. We end up with some general remarks and extensions.

In the whole paper, we freely use noncommutative L p -spaces. One may use [START_REF] Pisier | Non-commutative L p -spaces[END_REF][START_REF] Pisier | Non-commutative vector valued Lp-spaces and completely p-summing maps[END_REF][START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF] and [START_REF] Fack | Generalized s-numbers of τ -measurable operators[END_REF] as general references. When τ is a normal faithful trace on a von Neumann algebra M, we use the classical definition of noncommutative L p associated to M

L p (M, τ ) = {x ∈ L 0 (M, τ ) | x p p = τ (|x| p ) < ∞}
, where L 0 (M, τ ) is the space τ -measurable operators (see [START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF]). When dealing with more general von Neumann algebras, we rely on Haagerup's construction. Given a normal faithful semi-finite weight ϕ 0 on a von Neumann algebra M, Haagerup defined the noncommutative L p -space L p (M, ϕ 0 ) for 0 < p ∞ (see [START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF]). His definition is independent of ϕ 0 (Corollary 38 in [START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF]). When ϕ 0 is a normal faithful trace, his definition is equivalent to the previous one (up to a complete isometry) but the identifications are not obvious. Nevertheless for most of our statements, we won't need the reference to ϕ 0 or τ so we may simply write L p (M). When 0 < p < 1, L p (M) is a p-normed space so that for all families (a k ) in L p (M), As usual, we denote constants in inequalities by C pi if they depend only on parameters (p i ). They may differ from line to line.

Schur multipliers

A Schur multiplier with symbol M = (m i,j ) i∈I,j∈J over M I,J , the set of matrices indexed by sets I and J, is formally given by S M ((a i,j ) i∈I,j∈J ) = M • A = (m i,j a i,j ) i∈I,j∈J . Definition 2.1. Given a matrix M = (m i,j ) i∈I,j∈J of complex numbers, we say that M defines a pcompletely bounded Schur multiplier for some 0 < p ∞ if the map S M ⊗Id Lp(M) on S p I,J [L p (M)] is bounded for all von Neumann algebra M and we put

M pcb = sup M S M ⊗ Id Lp(M) .
Remark 2.2. For 1 < p = 2 < ∞, this is not exactly the usual definition of complete boundedness but it is formally stronger. Indeed an unpublished result of Junge states that

S M ⊗ Id Lp(M) S M cb if M is a QWEP von Neumann algebra.
We start by easy examples that can be found in [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF].

Lemma 2.3. Let (α k ) ∈ p (Z) for 0 < p 1 and assume that (f k ) ∈ ∞ (I) Z and (g k ) ∈ ∞ (J) Z are bounded families. Then M given by m i,j = k α k f k (i)g k (j) is a p-completely bounded Schur multiplier with M pcb (α k ) p sup k f k ∞ . g k ∞ .
Proof. It is clear that a rank one symbol M k = (f k (i)g k (j)) i∈I,j∈J defines a p-completely bounded Schur multiplier with norm f k ∞ . g k ∞ for all p and k. The result then follows by the p-triangular inequality.

We will often use permanence properties of pcb-Schur multipliers.

Lemma 2.4. Assume M = (m i,j ) i∈I,j∈J is a p-completely bounded Schur multiplier, then • M = (m i,j ) i∈I ,j∈J with I ⊂ I, J ⊂ J, then M pcb M pcb . • M = (m i,j ) (i,k)∈I×K,(j,l)∈J×L for any non empty sets K, L, then M pcb = M pcb .

Proof. We view 2 (I ), 2 (J ) as subspaces of 2 (I), 2 (J). Let P = (1 I (i)1 J (j)) i∈I,j∈J , this is a rank one p-completely bounded Schur multiplier with norm 1, and S M coincides with the restriction of S P • S M to matrices indexed by I × J .

The second point is classical using tensorisation with B( 2 (L), 2 (K)) ⊗ M instead of M.

Since finitely supported matrices are dense in S p I,J [L p (M)], we also have Lemma 2.5. If (M n ) ∈ M N I,J is a bounded sequence of pcb-Schur multipliers converging pointwise to some M , then M is also a pcb-Schur multiplier with M pcb lim M n pcb .

Remark 2.6. A p-completely bounded Schur multiplier M for p 1 is automatically q-completely bounded for p < q ∞. Indeed, the extreme points of the unit ball of S 1 are rank one matrices, but for those matrices the S 1 and S p norms coincide. Thus S M must be bounded on S 1 . But bounded Schur multipliers on S 1 are automatically 1-completely bounded (see [START_REF] Pisier | Non-commutative vector valued Lp-spaces and completely p-summing maps[END_REF]). Thus we get the result on S q for all 1 q ∞ by complex interpolation and duality. The case p < q 1 also follows by interpolation.

The following is a suitable adaptation of classical arguments (see [START_REF] Birman | Estimates of the spectrum of a difference of fractional powers of selfadjoint operators[END_REF][START_REF] Ju | Rotfel'd. The singular values of the sum of completely continuous operators[END_REF][START_REF] Ju | Rotfel'd. Asymptotic behavior of the spectrum of abstract integral operators[END_REF]). We use the measured space L 2 ([0, 2π] 2 , 1 (2π) 2 dm 2 ) where m 2 is the Lebesgue measure. Lemma 2.7.

Let K : [0, 2π] × [0, 2π] → C be a 2π-periodic continuous function such that for any d 0 ∂ d+1 (∂y) d ∂x K is continuous. Then M = (K(x, y)) x,y∈[0,2π] is a p-completely bounded Schur multiplier for all 0 < p 1 with for d > 1/p M pcb C 2 dp -1 + 2 1/p ∂ d+1 (∂y) d ∂x K 2 + ∂ d (∂y) d K 2 + ∂ ∂x K 2 + K 2 ,
where C is a universal constant. Moreover if M i = (K i (x, y)) x,y∈[0,2π] is a family of matrices as above, indexed by i ∈ I, then

M = (K i (x, y)) (x,i)∈[0,2π]×I,y∈[0,2π]
or its transpose satisfies

M pcb C 2 dp -1 + 2 1/p sup i ∂ d+1 (∂y) d ∂x K i 2 + ∂ d (∂y) d K i 2 + ∂ ∂x K i 2 + K i 2 .
Of course, this is relevant only if the above sup is finite.

Proof. We rely on Fourier expansions, put e k (x) = e ikx and h k,l (x, y) = e k (x)e l (y) . As (

h k,l ) k,l∈Z is an orthonormal basis in L 2 ([0, 2π] 2 , 1 (2π) 2 dm 2 ), we have the equality in L 2 , K = l,k∈Z α k,l h k,l where α k,l = K, h k,l = 1 (2π) 2 2π 0 2π 0 K(x, y)e -ikx e -ily dydx.
Assume for the moment that l = 0. Integrating by part in y, we get for d 0,

α k,l = 1 (il) d ∂ d (∂y) d K, h k,l . Let β k,l = (il) d α kl . When k = 0, another integration by part with respect to x gives β k,l = 1 ik 1 (2π) 2 2π 0 2π 0 ∂ d+1 (∂y) d ∂x K(x, y)e -ikx e -ily dydx. The Cauchy-Schwarz inequality gives that k =0 |β k,l | k =0 1 k 2 1/2 k =0 ∂ d+1 (∂y) d ∂x K, h k,l 2 1/2 C ∂ d+1 (∂y) d ∂x K 2 . Thus k∈Z |β k,l | C ∂ d+1 (∂y) d ∂x K 2 + ∂ d (∂y) d K 2 = C d independent from l and one can define a continuous function f l (x) = k∈Z 1 i d β k,l e k (x) bounded by C d .
In the same way to deal with l = 0, f 0 (x) = k∈Z α k,0 e k (x) is a continuous function. Indeed as above

k∈Z |α k,0 | k =0 1 k 2 1/2 k =0 ∂ ∂x K, h k,0 2 1/2 + |α 0,0 |, f 0 is bounded by C 0 = C ∂ ∂x K 2 + K 2 .
Choosing d > 1 p , we can conclude to the pointwise equality

(2) K(x, y) = f 0 (x)e 0 (y) + l =0 1 l d f l (x)e l (y).
The result follows directly from Lemma 2.3 by choosing

I = Z, α = (1 k =0 1 k d +1 k=0 ) k ∈ p (Z), f k as above and g k = e k . Obviously sup k g k ∞ = 1, sup k f k ∞ C d + C 0 and α p 2 dp-1 + 2 1/p .
The second statement also follows from Lemma 2.3 since in (2), the factorization in y and the sequence α is independent from K i . We have

K i (x, y) = f i 0 (x)e 0 (y) + l =0 1 l d f i l (x)e l (y), hence we can again take α = (1 k =0 1 k d + 1 k=0 ) k ∈ p (Z), f k (x, i) = f i k (x) and g k (y) = e k (y). We also have sup k f k ∞ C d + C 0 .
The same holds for the transpose of M as the condition in Lemma 2.3 is invariant by transposition.

The Sobolev constant (of order d) for K will mean the quantity

∂ d+1 (∂y) d ∂x K 2 + ∂ d (∂y) d K 2 + ∂ ∂x K 2 + K 2 . Let θ ∈]0, 1[, for x, y 0 recall that (3) x θ -y θ x -y = 1 0 θ (tx + (1 -t)y) 1-θ dt,
where the left hand side has to be understood as

θx θ-1 if x = y. Corollary 2.8. The matrix N = x θ -y θ x-y x 0,y∈[1,2]
defines a p-completely bounded Schur multiplier for 0 < p 1 with N pcb C p for some constant depending only on p.

Proof. First we start by showing that x θ -y θ

x-y 0 x 1/2,y∈ [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF][START_REF] Aleksandrov | Functions of operators under perturbations of class Sp[END_REF] is a pcb-Schur multiplier.

We fix a

C ∞ function ϕ : [-π, π] → [0, 1] with support in [-1/4, 3/4] that is identically 1 on [0, 1/2] and another C ∞ function ψ : [0, 2π] → [0, 1] with support in [7/8, 3] that is identically 1 on [1, 2]. We define K(x, y) = ϕ(x)ψ(y) 1 x-y on [-π, π] × [0, 2π].
It is C ∞ and can be extended to a 2π-periodic C ∞ function. Thus Lemma 2.7 and a restriction yield that

1 x-y 0 x 1/2,y∈[1,2]
is a pcb-Schur multiplier. Then one just need to compose it with x θ -y θ 0 x 1/2,y∈ [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF][START_REF] Aleksandrov | Functions of operators under perturbations of class Sp[END_REF] which is also clearly a pcb-Schur multiplier by Lemma 2.3.

Next we show that x θ -y θ

x-y x 1/2,y∈ [START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF][START_REF] Aleksandrov | Functions of operators under perturbations of class Sp[END_REF] is also a pcb-Schur multiplier.

This time we fix a

C ∞ function ϕ : [0, 2π] → [0, 1] with support in [1/4, 3] that is identically 1 on [1/2, 2].
For i 0, one uses

K i (x, y) = ϕ(x)ϕ(y) (x+i) θ -y θ (x+i)-y on [0, 2π] 2 .
It is clear that K i can be extended to a C ∞ 2π-periodic function. By construction, for x and y in the support of ϕ and t ∈ [0, 1], the smallest value of t(x + i) + (1 -t)y is bigger than 1/4. Thus, the formula (3) shows that any derivative of order l of x θ -y θ

x-y on the support of K i is bounded by 4 l+1-θ θ(1 -θ)...(l -θ). Thus using the chain rule, one sees that K i and its derivatives up to order d + 1 are uniformly bounded independently of i and θ. Thus the same holds for the Sobolev constant in Lemma 2.7 for K i .

Lemma 2.7 gives that

K i (x, y) (x,i)∈[0,2π]×N,y∈[0,2π] is pcb. By Lemma 2.4, we can conclude by restricting x to [1/2, 3/2[×N [1/2, ∞[ (via (x, i) → x + i) and y to [1, 2].
The Corollary follows by gluing the two pieces together.

Corollary 2.9. For k ∈ Z, the matrix 1) for some constant depending only on p.

M k = x θ -y θ x-y x 0,y∈[2 -k-1 ,2 -k ] is a p-completely bounded Schur multiplier for 0 < p 1 with M k pcb C p 2 -k(θ-
Proof. This is obvious by homogeneity from Corollary 2.8 with a change of variables x ↔ 2 -k-1 x, y ↔ 2 -k-1 y.

Remark 2.10. One can exchange the roles of x and y.

It will be convenient to redefine M -1 , gathering all k -1:

Corollary 2.11. The matrix M -1 = x θ -y θ

x-y x 0,y 1 is a p-completely bounded Schur multiplier for 0 < p 1 with M -1 pcb C p 1 1-θ 1/p for some constant depending only on p.

Proof. Writing [1, ∞[= ∪ k 0 [2 k , 2 k+1
[ and using the previous Corollary for each piece, this follows from the p-triangular inequality as (2 k(θ-1) ) k 0 ∈ p (N). Since (2 k(θ-1) ) k 0 p c p (1 -θ) -1/p for some constant c p . We get that M -1 pcb c p C p (1 -θ) -1/p where C p comes from 2.9.

Remark 2.12. The kernel in formula ( 3) is positive definite because for x, y > 0

x θ -y θ x-y = c θ R+ t θ 1 x+t 1
y+t dt for some c θ > 0. Using this fact and similar arguments, one can check that there is some C so that M -1 pcb C for all 0 < θ < 1 and all p 1.

We now turn to another family of multipliers.

Corollary 2.13. For a 1, the matrix

H a = 1 a+x+y x,y∈[0,1]
is a p-completely bounded Schur multiplier for 0 < p 1 with H a pcb C p /a for some constant C p depending only on p.

Proof. As for Corollary 2.8 take a smooth function ϕ :

[-π, π] → [0, 1] that is supported on [-1/4, 5/4] such that ϕ(t) = 1 for t ∈ [0, 1]. Define K(x, y) = 1
a+x+y ϕ(x)ϕ(y) on [-π, π] and make it 2π-periodic so that it is C ∞ . Using the chain rule, one easily sees that the Sobolev norms from Lemma 2.7 are dominated by C p /a. Corollary 2.14. Given a, b 0 with a + b > 0, one has

x θ ± y θ x + y x a,y b pcb C p 1 1 -θ 1/p max{a, b} θ-1 ,
for some constant C p depending on p. 

k (x + 1), y ↔ 2 k y 1 1 + t + x + y x∈I k ,y∈J k pcb = 2 -k 1 1 + 2 -k (1 + t) + x + y x∈[0,1[,y∈[0,1[ pcb .
Setting a = 1 + 2 -k (1 + t) ∈ [1, 3] and using Corollary 2.13 the latter multiplier is bounded by -θ) . A similar estimate holds for the same symbol

C p 2 -k . The multiplier ((1 + x) θ ± (t + y) θ )1 x∈I k ,y∈J k is bounded by a fixed multiple of 2 kθ . Thus (1+x) θ ±(t+y) θ 1+t+x+y x∈I k ,y∈J k pcb C p 2 -k(1
if x ∈ J k+1 and y ∈ I k or x, y ∈ [0, 1[ (with k = 0). The sets [0, 1[ 2 , J k+1 × I k , I k × J k for k 0 form a partition of [0, ∞[ 2 into
product sets. Thus, the p-triangular inequality gives

(1 + x) θ ± (t + y) θ 1 + t + x + y x 0,y 0 p pcb C p p + 2 k 0 C p p 2 -p(1-θ)k C p p 1 1 -θ .

Ando's inequality in semi-finite algebras

Schur multipliers are intimately related to perturbations of the functional calculus of selfadjoint operators. Illustrations can be found in [START_REF] Sh | Double operator integrals in a Hilbert space[END_REF][START_REF] Arazy | Certain Schur-Hadamard multipliers in the spaces Cp[END_REF][START_REF] Aleksandrov | Functions of operators under perturbations of class Sp[END_REF][START_REF] Aleksandrov | Hankel and Toeplitz-Schur multipliers[END_REF][START_REF] Potapov | Operator-Lipschitz functions in Schatten-von Neumann classes[END_REF][START_REF] Potapov | Double operator integrals and submajorization[END_REF][START_REF] Potapov | On the Arazy conjecture concerning Schur multipliers on Schatten ideals[END_REF] and many other references.

Indeed let f : R → R be a (continuous) function. Assume that x, y are selfadjoint elements in some semi-finite von Neumann algebra (M, τ ) with finite discrete spectra (x i ) i∈I and (y j ) j∈J and associated spectral projections p i ∈ M and q j ∈ M. As x = i x i p i and y = j y i q j , with

i p i = j q j = 1, one has (4) f (x) -f (y) = i,j p i (f (x i ) -f (y j ))q j = i,j p i f (x i ) -f (y j ) x i -y j (x -y)q j , where f (u)-f (v) u-v can take any value if u = v ∈ R. The map T : z → i,j p i f (xi)-f (yj ) xi-yj
zq j is very close to be a Schur multiplier with symbol the divided differences of f . Lemma 3.1. For any 0 < p ∞, let M = (m i,j ) be a p-completely bounded Schur multiplier then the following map

T M : M → M T M (z) = i,j m i,j p i zq j
extends to a bounded map on L p (M) with T M Lp(M)→Lp(M) M pcb .

Proof. Recall that we assume that I and J are finite, (p i ) i∈I and (q j ) j∈J are orthogonal projections in M summing up to 1. The maps π : M → B( 2 (J), 2 (I))⊗M and ρ : B( 2 (J), 2 (I))⊗M → M defined by

π(z) = (p i zq j ) i∈I,j∈J =    p 1 . . . p |I|    z q 1 . . . q |J| ρ((X i,j )) = i,j p i X i,j q j = p 1 . . . p |I| (X i,j )    q 1 . . . q |J|   
clearly extend to contractions at L p -levels respectively on M and B( 2 (J), 2 (I)) ⊗ M since the column and row matrices in the above products are contractions. Since T M = ρ•(S M ⊗Id Lp(M) )•π, we get the lemma.

We want to deal with homogeneous functions of selfadjoint operators, namely

f (x) = |x| θ or f (x) = sgn(x)|x| θ = x θ + -x θ -.
We aim to prove the following theorem that we call Ando's inequality. C p,θ x -y θ p . The reduction from type III to type II will be explained in the next section so we only deal with semi-finite algebras here.

Proof. The result for p = ∞ follows from Theorem 4.1 in [START_REF] Aleksandrov | Operator Hölder-Zygmund functions[END_REF].

The result for f (x) = sgn(x)|x| θ when 1 p < ∞ can be found in [START_REF] Éric | Hölder estimates for the noncommutative Mazur maps[END_REF]. The absolute value map x → |x| is bounded on L q (M) provided that 1 < q < ∞. This is a result by Davies [START_REF] Davies | Lipschitz continuity of functions of operators in the Schatten classes[END_REF] for Schatten classes, that can be extended to all semi-finite von Neumann algebras (see Remark 6.2 in [START_REF] Caspers | Weak type estimates for the absolute value mapping[END_REF] for instance). Thus for 1 p < ∞, with q = p/θ, we have an estimate |x| θ -|y| θ p/θ C p/θ sgn(x)|x| θ -sgn(y)|y| θ p/θ . Therefore the Theorem holds for f (x) = |x| θ using it for f (x) = sgn(x)|x| θ when 1 p < ∞.

We just need to prove the Theorem for p < 1.

If the result holds for the couples (p, θ 1 ) and (p/θ 1 , θ 2 ), it also holds for (p, θ 1 θ 2 ). Indeed for instance if Hence C p,θ1θ2 C p/θ1,θ2 C θ2 p,θ1 . By this transitivity, we reduce the proof to p θ; indeed if p > θ, then (p, θ) = (p.1, p.θ/p) and the estimate follows from that for (p, p) and (1, θ/p).

We do it only for f (t) = |t| θ as the other case is similar. We prove the inequality from case to case regarding M and the values of x and y.

Case 1: We assume that x, y ∈ M sa with finite discrete spectra and x-y ∞ 2 and x-y p/2 2. We prove that |x| θ -|y| θ p/θ C p,θ for some C p,θ > 0.

We denote by x = i∈I x i p i and y = i∈J y j q j the spectral decompositions of x and y, so that p i = 1 {xi} (x) and q i = 1 {yi} (y).

We will rely on the formula (4), decompose |x| θ -|y| θ = 1 i,j=-1 a i (|x| θ -|y| θ )b i where a -1 = 1 ]∞,0[ (x), a 0 = 1 {0} (x) and a 1 = 1 ]0,∞[ (x) and similarly for b i .

We use dyadic decompositions. Set

I k = [2 -k-1 , 2 -k [, J k =]0, 2 -k-1 [ for k 0 and I -1 = [1, ∞[, J -1 =]0, 1[, J -2 =]0, ∞[. The definition is made so that the sets I k × J k-1 and J k × I k are disjoint with union {(x, y) ∈]0, ∞[ 2 | max{x, y} ∈ I k }. Hence we have a partition ]0, +∞[ 2 = ∪ k -1 (I k × J k-1 ∪ J k × I k ). Define accordingly the maps T 1 k (z) = xi∈I k ,yj ∈J k-1 p i x θ i -y θ j xi-yj zq j , T 2 k (z) = xi∈J k ,yj ∈I k p i x θ i -y θ j
xi-yj zq j . For any 0 < a 1, Lemma 3.1 says that T 1 k La(M)→La(M) is dominated by

x θ i -y θ j xi-yj xi∈I k ,yj ∈J k-1 acb
. By Lemma 2.4, this norm is smaller than

x θ -y θ x-y x∈I k ,y 0 acb .
Using Remark 2.10 and Corollary 2.9 for k 0, this norm is bounded by C a 2 -k(θ-1) . When k = -1, using Corollary 2.11 instead, we also get a bound by C a,θ . We have similar estimates for

T 2 k La(M)→La(M) . Put r k = 1 I k (x), s k = 1 I k (y) as well as u k = 1 J k (x), v k = 1 J k-1 ( 
y), we can write (note that the sums are actually finite)

a 1 (|x| θ -|y| θ )b 1 = xi>0,yj >0 p i x θ i -y θ j x i -y j (x -y)q j = k -1 T 1 k (x -y) + T 2 k (x -y) = k -1 T 1 k (r k (x -y)v k ) + T 2 k (u k (x -y)s k ).
We use the above norm estimates for T j k with a = p/θ to get -θ) . By the p/θ-triangular inequality

T j k L p/θ (M)→L p/θ (M) C p,θ 2 k(1
a 1 (|x| θ -|y| θ )b 1 p/θ p/θ C p/θ p,θ k -1 2 k(1-θ)p/θ ( r k (x -y)v k p/θ p/θ + u k (x -y)s k p/θ p/θ ).
But by definition 0 r k x, u k x, yv k , ys k 2 -k for k 0 and x -y ∞ 2, so that we have

r k (x -y)v k ∞ r k x -yv k ∞ 2 -k , and also u k x -ys k ∞ 2 -k for all k -1 . But also r k (x-y)v k p/2 , u k (x-y)s k p/2
x-y p/2 2. Thus as θ/p = (θ/2).2/p+(1-θ/2)/∞, by the Hölder inequality

r k (x -y)v k p/θ , u k (x -y)s k p/θ 2.2 -k(1-θ/2) . This is enough to conclude that a 1 (|x| θ -|y| θ )b 1 p/θ p/θ 4C p/θ p,θ k -1 2 -kp/2 .
To deal with a 1 (|x| θ -|y| θ )b -1 , one can do exactly the same using Corollary 2.14 as the Schur multipliers involved have shape

a θ -b θ a+b a∈I k ,b∈J k-1 , a θ -b θ a+b a∈J k ,b∈I k . The terms a -1 (|x| θ -|y| θ )b 1 and a -1 (|x| θ -|y| θ )b -1 can be treated similarly.
It is a well known fact that complex interpolation remains valid for L p (M, τ ) in the range 0 < p 1, see Lemma 2.5 in [START_REF] Pisier | The non-commutative Khintchine inequalities for 0 < p < 1[END_REF] for what we need. Using it, one easily deals with the remaining terms as for instance

a 0 (|x| θ -|y| θ ) p/θ = a 0 |y| θ p/θ a 0 |y| θ p = a 0 y θ p = a 0 (x -y) θ p 2.
Gluing the pieces together, we find a constant C p,θ so that (5) holds in Case 1.

Case 2: We assume M finite, x, y ∈ M sa , y = x + q for some projection q with q p = 1, that is τ (q) = 1. Consider (x n ) a sequence in the von Neumann algebra generated by x that |x n | |x|, x nx ∞ → 0 and each x n has a finite spectrum, and similarly for (y n ) and y.

Obviously |x n | θ -|x| θ p/θ → 0 by the dominated convergence theorem as M is finite (similarly for y). As x n -y n t → q t = 1 for t = ∞, p/2, x n and y n satisfy the assumptions of Case 1 for n big enough. Going to the limit in (5) for x n , y n , we get (5) for x, y with the same C p,θ .

Case 3: We assume M finite, x, y ∈ M sa and y = x + tq for some projection q with τ (q) = 1 and t ∈ R.

If t > 0, this follows by homogeneity applying the result for y/t, x/t and q. If t < 0, one just needs to exchange x and y. The constant C p,θ is the same as in the previous cases.

Case 4: We assume M finite, x, y ∈ M sa and y = x + n i=1 t i q i where t i ∈ R and q i are orthogonal projections with τ (q i ) = 1.

Simply put x 0 = x and x k = x + k i=1 t i q i and use the p/θ-triangular inequality and Case 3 for x k-1 and x k .

f (x) -f (y) p/θ p/θ n i=1 f (x i-1 ) -f (x i ) p/θ p/θ C p/θ p,θ n i=1 t i q i θ p p/θ . But x -y p = n i=1 |t i | p 1/p
and we get this case as q i p = 1.

Case 5: We assume M finite, x, y ∈ M sa and y = x + n i=1 t i q i where t i ∈ R and q i are orthogonal projections with τ (q i ) ∈ Q.

Consider the von Neumann algebra ( M, τ ) where M = M⊗L ∞ ([0, 1]) with the trace τ = N τ ⊗ where N is such that for all i, N τ (q i ) ∈ N . Put z = z ⊗ 1 for z ∈ M. We have ỹ -x = n i=1 t i qi . For each i, and k N τ

(q i ), let q i,k = q i ⊗ 1 [(k-1)/(N τ (qi)),k/(N τ (qi))]
. The (q i,k ) k are orthogonal projections with τ (q i,k ) = 1 and N τ (qi) k=1 q i,k = qi . By Case 4:

N θ/p f (x)-f (y) L p/θ (M) = f (x)-f (ỹ) L p/θ ( M) C p,θ x-ỹ θ Lp( M) = C p,θ N 1/p x-y Lp(M) θ .
We still obtain the same constant C p,θ . Case 6: We assume M finite and x, y ∈ M sa . By considering again ( M, τ ) where M = M ⊗ L ∞ ([0, 1]) with the trace τ = τ ⊗ , in a masa containing it, one can approximate x-y for the L 1 -norm by elements of the form δ k = n k i=1 t i,k q i,k where τ (q i,k ) ∈ Q. With y k = x + δ k , y k converges to y in L 1 it also does in L p as M is finite. The Ando inequality for the index 1/θ also gives that f (y k ) -f (y) 1/θ C θ y k -y θ 1 , hence f (y k ) converges to f (y) in L p/θ . Since x, y k satisfy the assumptions of Case 5, the conclusion follows by going to the limit in [START_REF] Arazy | Certain Schur-Hadamard multipliers in the spaces Cp[END_REF].

Case 7:

We assume M semi-finite and x, y ∈ L p (M) sa . This is again a matter of approximation. By the semi-finiteness of M and functional calculus in a masa containing x, we may approximate x in L p by elements of the form x n = N i=1 t i q n commuting with x where q n are finite projections. We can as well assume that f (x n ) converges to f (x) in L p/θ , similarly for y n and y (these are purely commutative results). Then y n and x n are in some finite subalgebra of M and we have [START_REF] Arazy | Certain Schur-Hadamard multipliers in the spaces Cp[END_REF] for them by Case 6:

f (x n ) -f (y n ) p/θ C p,θ x n -y n θ p .
Taking again limits as n → ∞ gives the result. Remark 3.3. One can get a proof of the case p = ∞ following case 1 (since p/2 = ∞) and then case 6 directly. A careful analysis of the constant shows that lim sup θ→1 (1 -θ)C ∞,θ < ∞ as in [START_REF] Aleksandrov | Operator Hölder-Zygmund functions[END_REF].

We slightly extend the result to τ -measurable operators L 0 (M, τ ). With its measure topology [START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF][START_REF] Fack | Generalized s-numbers of τ -measurable operators[END_REF], it becomes a complete Hausdorff topological * -algebra (Theorem 28 in [START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF]) in which M is dense. We recall the Fatou Lemma in L 0 (Lemma 3.4 in [START_REF] Fack | Generalized s-numbers of τ -measurable operators[END_REF]) if v n → v in L 0 and then v q lim inf v n q for all q. Moreover, the functional calculus associated to our f (t) = |t| θ or f (t) = sgn(t)|t| θ is continuous on L sa 0 (Lemma 3.2 in [START_REF] Raynaud | On ultrapowers of non commutative Lp spaces[END_REF]). Theorem 3.4. Let 0 < θ < 1 and 0 < p ∞ then there exists C p,θ so that for any semifinite von Neumann algebra (M, τ ), and x, y

∈ L 0 (M, τ ) sa such that x -y ∈ L p (M, τ ), then |x| θ -|y| θ , sgn(x)|x| θ -sgn(y)|y| θ ∈ L p/θ (M, τ ) and |x| θ -|y| θ p/θ C p,θ x -y θ p , sgn(x)|x| θ -sgn(y)|y| θ p/θ C p,θ x -y θ p .
Proof. This is a matter of approximations.

We start by giving arguments to get the result when x, y ∈ M sa and x -y ∈ L p (M). First note that if a bounded sequence (x n ) n ∈ M sa goes to x for the strong-topology then (f (x n )) n also goes to f (x) for the strong-topology (Lemma 4.6 in [START_REF] Takesaki | Theory of operator algebras. I[END_REF]). Take any finite projection γ ∈ M and (q n ) n a sequence of finite projections that goes to 1 strongly, it follows that (γf (q n xq n )γ) n goes to γf (x)γ in L 2 . since L 2 ⊂ L 0 is continuous, we get that in the topology of L 0 , lim n γf (q n xq n )γ = γf (x)γ and similarly for y.

As q n xq n and q n yq n are in L p , we get γ(f (q n xq n ) -f (q n yq n ))γ p/θ C p,θ q n (x -y)q n θ p C p,θ x -y θ p . Using the Fatou lemma, we obtain γ(f (x) -f (y))γ p/θ C p,θ x -y θ p . It is a simple exercise to check that if z ∈ L sa 0 is so that sup γzγ p/θ C where the sup runs over all finite projections, then z ∈ L p/θ with norm less than C. This allows to conclude.

Next take any x, y ∈ L 0 such that x -y ∈ L p . Let q n = 1 |x| n ∧ 1 |y| n , then q n is an increasing sequence of projections to 1 with τ (1 -q n ) → 0 as x, y ∈ L 0 . Moreover q n xq n ∈ M goes to x in L 0 (similarly for y) (see [START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF] page 20). By the continuity of the functional calculus in L 0 , (f (q n xq n )) and (f (q n yq n )) go to f (x) and f (y). Once again with the help of the Fatou lemma and the previous case

f (x) -f (y) p/θ lim inf f (q n xq n ) -f (q n yq n ) p/θ C p,θ lim inf q n (x -y)q n θ p C p,θ x -y θ p .

Ando's inequality in type III algebras

Before going to type III algebras, we need to extend Ando's inequality to weak-L p spaces. We will use the K-interpolation method see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF].

As usual, given two compatible quasi-Banach spaces X 0 and X 1 , we let for t > 0 and x ∈ X 0 +X 1

K t (x, X 0 , X 1 ) = inf{ x 0 X0 + t x 1 X1 ; x = x 0 + x 1 }.
For 0 < η < 1 and 0 < q ∞ set x η,q = t -η K t (x, X 0 , X 1 ) Lq(R + ,dt/t) = ∞ 0 (t -η K t (x, X 0 , X 1 )) q dt t 1/q , with the obvious modification when q = ∞.

The interpolated space (X 0 , X 1 ) η,q is {x ∈ X 0 + X 1 | x η,q < ∞} with (quasi)-norm . η,q . If (M, τ ) is a semi-finite von Neumann algebra, and x ∈ L 0 (M, τ ) we denote as usual its decreasing rearrangement by µ t (x) (see [START_REF] Fack | Generalized s-numbers of τ -measurable operators[END_REF]).

The noncommutative Lorentz spaces L p,q (M, τ ) for 0 < p < ∞ and 0 < q ∞ are defined as in the commutative case. The space L p,q (M, τ ) consists of all measurable operators x ∈ L 0 (M, τ ) so that x Lp,q = t 1/p µ t (f ) Lq(R + ,dt/t) < ∞. With the (quasi)-norm . Lp,q , it becomes a (quasi)-Banach space.

The results about real interpolation of commutative L p -spaces ([7] Theorem 5.3.1) remain available for semi-finite von Neumann algebras. Indeed for any 0 < p 0 < p 1 ∞, for all t > 0, x ∈ L p0 (M, τ )+L p1 (M, τ ), the quantities K t (x, L p0 (M, τ ), L p1 (M, τ )) and K t (µ(x), L p0 (R + ), L p1 (R + )) are equivalent with constants depending only on p 0 and p 1 , see [START_REF] Xu | Noncommutative Lp-spaces[END_REF] for details. As a consequence, we get that for p 0 = p 1 ∞ and 0 < q ∞, 0 < η < 1 with 1 p = 1-η p0 + η p1 , (L p0 (M, τ ), L p1 (M, τ )) η,q = L p,q (M, τ ) with equivalent norms (depending only on the parameters but not on (M, τ )).

We drop the reference to (M, τ ) to lighten notation. When x = x * ∈ L p0 + L p1 , we can also consider

K sa t (x, L p0 , L p1 ) = inf{ x 0 p0 + t x 1 p1 ; x = x 0 + x 1 with x i = x * i }. Lemma 4.1. Let 0 < p 0 < p 1 ∞, t > 0 and x ∈ (L p0 + L p1 ) sa , then K sa t (x, L p0 , L p1 ) K t (x, L p0 , L p1 ) K sa t (x, L p0 , L p1 )/2 max{1/p0,1}-1 . Proof. This is a standard fact. Let x = a 0 + a 1 with a i ∈ L pi such that a 0 p0 + t a 1 p1 K t (x, L p0 , L p1 ) + . Then x = b 0 + b 1 with b i = (a i + a * i )/2. We have b i pi 2 1/pi-1 a i pi if p i < 1 or b i pi
a i pi otherwise, hence we get the result letting ε → 0.

Remark 4.2. Similarly one can easily show that for x 0, K t (x, L p0 , L p1 ) is equivalent to inf{ x 0 p0 + t x 1 p1 ; x = x 0 + x 1 with x i 0}. Lemma 4.3. Let 0 < p 0 < p 1 ∞ and θ ∈]0, 1[ and x, y ∈ (L p0 + L p1 ) sa . Then for all t > 0 and f (s) = |s| θ or f (s) = sgn(s)|s| θ :

K t θ (f (y) -f (x), L p0/θ , L p1/θ ) C p0,p1,θ K t (y -x, L p0 , L p1 ) θ .
Proof. Thanks to the previous Lemma, it suffices to do it with K sa t instead of K t . Choose selfadjoint operators δ 0 ∈ L p0 and δ 1 ∈ L p1 so that y -x = δ 0 +δ 1 and δ 0 p0 +t δ 1 p1 2K sa t (x -y, L p0 , L p1 ).

Set

a 0 = f (y) -f (x + δ 1 ) = f (y) -f (y -δ 0 ) and a 1 = f (x + δ 1 ) -f (x), then f (y) -f (x) = a 0 + a 1 . By Theorem 3.4 for p i , we obtain a i pi/θ C pi,θ δ i θ pi . Since, a 0 p0/θ + t θ a 1 p1/θ C p0,p1,θ ( δ 0 1 + t δ 1 p1
) θ , we have found a suitable decomposition to conclude. Proposition 4.4. For all 0 < p < ∞, 0 < q ∞ and 0 < θ < 1, there exists C p,q,θ > 0 such that for x, y ∈ L sa p , with f (s) = |s| θ or f (s) = sgn(s)|s| θ : f (y) -f (x) L p/θ,q C p,q,θ y -x θ L p,qθ .

Proof. Put p 0 = p/2, p 1 = 2p and η = 2/3 so that 1 p = 1-η p0 + η p1 . We have

f (y) -f (x) L p/θ,q p/θ,q t -η K t (f (y) -f (x), L p0/θ , L p1/θ ) Lq(R + ,dt/t) , y -x L p,qθ p,qθ u -η K u (y -x, L p0 , L p1 ) L qθ (R + ,du/u) .
But by Lemma 4.3

t -η K t (f (y) -f (x), L p0/θ , L p1/θ ) Lq(R + ,dt/t) C p,θ t -η K t 1/θ (y -x, L p0 , L p1 ) θ Lq(R + ,dt/t) . But by a change of variable u = t 1/θ : t -η K t 1/θ (y -x, L p0 , L p1 ) θ Lq(R + ,dt/t) = θ 1/q u -η K u (y -x, L p0 , L p1 ) θ L qθ (R + ,du/u)
and we get the estimate.

We can conclude with the proof of Theorem 3.2 for type III algebras.

Proof. Assume that M is given with a n.s.f. weight ϕ with modular group σ. Let R = M σ R be its core (with the dual action σ), this is a semi-finite von Neumann algebra with a trace τ such that τ • σt = e -t τ . Then by definition L p (M, ϕ) is isometrically a subspace of L p,∞ (R, τ ), more precisely

L p (M, ϕ) = {x ∈ L 0 (R, τ ) | σt (x) = e -t/p x, ∀t ∈ R} ⊂ L p,∞ (R, τ
), with by definition x p = x Lp,∞(R) (see [START_REF] Terp | L p -spaces associated with von Neumann algebras[END_REF] Definition 13 and Lemma 5 or Lemma B in [START_REF] Kosaki | On the continuity of the map ϕ → |ϕ| from the predual of a W * -algebra[END_REF]).

Thus Theorem 3.2 for type III algebras follows from Proposition 4.4 for the weak-L p spaces noticing that f (L p (M, ϕ)) ⊂ L p/θ (M, ϕ) as σt is a representation and f is θ-homogeneous.

Further comments

By very classical arguments using the Cayley transform see [START_REF] Éric | Hölder estimates for the noncommutative Mazur maps[END_REF], estimates for the functional calculus are equivalent to some for commutators or anticommutators. Let M p,q denote the Mazur map for p < q given by M p,q (f ) = f |f | (p-q)/q . The 2 × 2-tricks from [START_REF] Éric | Hölder estimates for the noncommutative Mazur maps[END_REF] also give Proposition 5.2. Let 0 < p ∞ and 0 < θ < 1, then there exists a constant C p,θ so that for x, y ∈ L p (M):

M p,p/θ (x) -M p,p/θ (y)] p/θ C p,θ x -y θ p .

This improves the estimates for M p,q when p < q of Theorem 4.1 in [START_REF] Pisier | The non-commutative Khintchine inequalities for 0 < p < 1[END_REF] and gives the expected Hölder continuity.

Remark 5.3. The above two propositions are valid for all von Neumann algebras. For semi-finite ones, similar estimates are true for the Lorentz norms as in Proposition 4.4.

Contrary to the case p 1, at least for p 1/2, there is no constant C p so that for all 0 < θ < 1,

x θ -y θ x-y

x 1,y 1 pcb

C p .
Indeed if this is so, then taking θ = 1 -ε, x = e t/ε , y = e s/ε by Lemma 2.5, letting ε → 0, we would get that e -max{t,s} t,s 0 pcb C p . Using that 2 max{x, y} = |x -y| + x + y, we would deduce that e -|t-s| 0 t,s 1 pcb

C p .
By easy arguments going from a discrete situation to a continuous one, one can deduce that the same matrix has to be a Schur multiplier on S p (L 2 [0, 1]). The constant kernel 1 on [0, 1] 2 is in S p (L 2 [0, 1]) with norm one, thus we would get that e -|x-y| 0 x,y 1 S p (L2[0,1])

C p .
The operator T on L 2 [0, 1] with kernel K(x, y) = e -|x-y| is obviously positive and Hilbert-Schmidt with HS norm less than 1. One easily checks that the eigenvectors f λ associated to λ must satisfy λf = λf -2f . Letting λ = 2 1+α 2 with α > 0, the only possibilities are f λ (x) = ae iαx +be -iαx . But T (e iαx ) = 2 1+α 2 e iαxe -x 1+iα -e x e -1+iα 1-iα . Thus, λ is a eigenvalue iff e 2iα = 1-iα 1+iα 2

.

Set tan θ = α with θ ∈]0, π/2[, so that e 2iα = e -4iθ . The equation tan t = -2t+kπ admits a unique solution θ k in ]0, π/2[ for k > 0 so that tan θ k ≈ kπ. We deduce that the set of eigenvalues of T is ( 2 1+tan(θ k ) 2 ) k 1 with associated eigenvector f λ (x) = e iαx -1+iα 1-iα e -iαx . Thus T / ∈ S p (L 2 [0, 1]) when p 1/2.

As f λ / f λ 2 is uniformly bounded in C[0, 1], we can also deduce using Lemma 2.3 that for p > 1/2 e -max{t,s} 0 t,s 1 pcb < ∞ and e -max{t,s} t,s 0 pcb < ∞.

About Corollary 2.11, it is easier to see that the norm cannot be independent of 0 < θ < 1 for p 1. Indeed the multiplier x-y x+y x 1,y 1

, or equivalently x-y x+y x 0,y 0 using homogeneity, is not bounded for p = 1 (hence also for p < 1) as shown in [START_REF] Davies | Lipschitz continuity of functions of operators in the Schatten classes[END_REF].

  will use the notation S p I,J for the Schatten p-class on B( 2 (J), 2 (I)), this is naturally a subspace of L p (B( 2 (I ∪ J)), tr), where tr is the usual trace. Thus by S p I,J [L p (M)], we will mean the corresponding subspace of L p (B( 2 (I ∪J))⊗M, tr⊗ϕ 0 ), one can think of it as matrices indexed by I × J with coefficients in L p (M). We will often use non countable sets like I =]0, 1].

Proof.

  Without loss of generality we may assume a b. By a change of variable x ↔ a(1 + x) and y ↔ a(t + y), with t = b/a, it boils down to show that (1+x) θ ±(t+y) θ 1+t+x+y x 0,y 0 pcb is bounded independently of t ∈]0, 1]. We use a dyadic decomposition related to max{x, y}. Assume x ∈ I k = [2 k , 2 k+1 [ and y ∈ J k = [0, 2 k [. Then by homogeneity and a change of variables x ↔ 2

Theorem 3 . 2 .

 32 Let 0 < θ < 1 and 0 < p ∞ then there exists C p,θ so that for any von Neumann algebra M, and x, y ∈ L p (M) sa one has (5) |x| θ -|y| θ p/θ C p,θ x -y θ p , sgn(x)|x| θ -sgn(y)|y| θ p/θ

  |x| θ1 -|y| θ1 p/θ1 C p,θ1 x -y θ1 p and |z| θ2 -|t| θ2 p/(θ1θ2) C p/θ1,θ2 z -t θ2 p/θ1 , then one gets with z = |x| θ1 , t = |y| θ1 : |x| θ1θ2 -|y| θ1θ2 p/(θ1θ2) C p/θ1,θ2 C θ2 p,θ1 x -y θ1θ2 p .

Proposition 5 . 1 .

 51 Let 0 < p ∞ and 0 < θ < 1, then there exists a constant C p,θ so that forx ∈ L p (M) sa and b ∈ M with f (s) = |s| θ or f (s) = sgn(s)|s| θ : [f (x), b] p/θ C p,θ [x, b] θ p b 1-θ . If x, y ∈ L p (M) + and b ∈ M, then bx θ ± y θ b p/θ C p,θ bx ± yb θ p b 1-θ .