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The rotation effects on centrifugally driven instabilities in curved channel flow with a finite gap 
are investigated. An inviscid criterion of stability is formulated to explain the behavior of the 
flow when rotation and curvature effects compete to either stabilize or destabilize the flow. The 
stability of curved Poiseuille flow with finite gap size is studied, and it is shown that the 
asymmetry between the directions of rotation is enhanced when the gap size increases. 

I. INTRODUCTION 

The importance of flows with curved streamlines has 
drawn much attention from scientists since the end of last 
century because of their applications in everyday life and in 
technology. A decisive step toward an understanding of in- 
stabilities in curved geometries has been done by Taylor’ 
who studied the stability of Couette flow between indepen- 
dently rotating cylinders. Though they have not received 
comparable interest, open flows in curved channels are pro- 
gressively well understood. The Poiseuille flow induced by 
an external pressure gradient in a curved channel formed by 
two concentric cylinders has been investigated theoretical- 
1~“~~ and experimentally.5-7 The combination of the Couette 
and Poiseuille flows has been achieved in a so-called Taylor- 
Dean system and has shown to be rich in patterns, in particu- 
lar stationary axisymmetric and traveling inclined rolls have 
been observed’ according to theoretical predictions.’ All 
these instabilities are due to the curvature of streamlines in- 
ducing a centrifugal force which unbalances the radial pres- 
sure gradient. As a result, longitudinal rolls are formed and 
superimposed upon the base flow. 

Another source of longitudinal rolls is the rotation of 
the flow system around its own axis. Indeed, the plane chan- 
nel flow, which is stable to spanwise intinitesimal perturba- 
tions, becomes unstable under slow rotation about its own 
axis and longitudinal rolls appear in the flo~.“‘-*~ Positive 
rotation (i.e., the rotation vector is parallel to the shear vor- 
ticity) of the boundary layer over a plane plate is destabiliz- 
ing while negative rotation stabilizes the Bow.‘” Therefore, 
the rotation of the flow system generates a Coriolis force 
which has a destabilizing or stabilizing effect on the flow 
depending on its interaction with the shear force. Thus, there 
is a similarity between streamline curvature and the flow 
rotation. 

The interaction between rotation and streamline curva- 
ture may generate new patterns and, in particular, oscilla- 
tory modes. In fact, the stability analysis of a curved Poi- 
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seuille channel flow rotating around its own axis has led to 
the following theoretical results:” in the control parameter 
space there are two branches of stability, one corresponding 
to stationary modes induced by centrifugal force, the other 
to stationary modes induced by rotation. These results were 
confirmed experimentally.‘5 In the neighborhood of the 
point where the two branches intersect, oscillatory modes 
were predicted but not observed. The curved channel flow 
rotating around its own axis exhibits patterns similar to 
those observed in a Taylor-Dean system.8*9 

In this paper, we are concerned with isothermal centri- 
fugal instabilities under the Coriolis force created by rota- 
tion of the frame of reference about the axis of flow geome- 
try. In Sec. II, we give the linear stability equations of a 
rotating curved channel flow with a finite gap. The results of 
the linear stability analysis are summarized in Sec. III and 
discussed in Sec. IV. For a better understanding of the mech- 
anism responsible for the rotationally and centrifugally driv- 
en instabilities, we reformulate the Rayleigh circulation cri- 
terion, including rotation effects. A comparison with the 
Taylor-Dean system is done explicitly. The rotation effects 
on Couette flow and on boundary-layer flow over a curved 
plate are briefly considered using the Rayleigh criterion. A 
short review of a few hydrodynamic systems which exhibit 
Hopf bifurcation from the base state is given before our con- 
cluding remarks. 

II. LINEAR STABILITY OF ROTATING CURVED 
CHANNEL FLOW 

We consider a Newtonian incompressible fluid of den- 
sityp and kinematic viscosity fin the curved channel formed 
by two coaxial cylinders of radius R and R -I- d (Fig. 1). In a 
rotating frame of reference, the flow velocity v and pressure 
P fields are described by the following equations:16 

dv --+ (vV)v-2vx$t= -V p +YAv, 
0 

(1) 
P 

div v = 0; (2) 
here Pis the sum of the usual pressure term and the centrifu- 
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FIG. 1. Sketch of the flow geometry: flow between two fixed coaxial cylin- 
drical surfaces under constant external pressure gradient. The rotation axis 
coincides with that of the system. 

gal energy term ( - $a’?) associated with the rotation of 
the frame of reference as a whole. Experiments are mostly 
performed in two cases: ( 1) the rotation axis coincides with 
that of the local shear vorticity, in which case, it does not 
affect the base flow but modifies only the radial pressure 
gradient; and (2) the rotation axis is orthogonal to that of 
the hydrodynamical system and the base flow acquires two 
velocity components. 17.r8 

In the following we will consider the rotation of the 
channel around its own curvature axis; so the base flow solu- 
tion is unaffected by the rotation and remains two dimen- 
sional for low velocities: V = [ 0, V(Y) ,O] , the expression for 
II’(Y) is given in Ref. 16. The radial variable Y can be scaled as 
follows: Y = R ( 1 + Sx) , where S = d /R is the curvature pa- 
rameter or the scaled gap size. In units of the mean velocity 
v, = (l/d)J-R R + ‘v(r)& across the channel radial section, 
the azimuthal velocity profile reads 

U’(x) = --F-l *+ 
[ c 

y&y ‘+ log(l +a) , 
( > c 1 

(3) 
where 

F(S) = - ( +++- (1+s)210ga(l+6) 
> S2(2-tS) ’ 

(4) 

withc= l/(1 +8x). 
In order to study the linear stability of the flow, we su- 

perimpose a perturbed flow field (v’q’) to the base flow field 
(V,P). The governing equations for the perturbations are 
obtained by substitution of v = V -t v’,p = P +p’ into Eqs. 
( 1) and (2) and neglecting all quadratic terms in the pertur- 
bations. If the time, the axial coordinate, and the perturba- 
tive pressure are expressed, respectively, in units of d ‘/Y? d, 
and p (v/d)‘, and scaling the azimuthal variable 8 and the 
velocity as follows, 

8 = Py, v’ = (u,S -. %,u) (v/d), 

we obtain the following nondimensional equations: 

(Lo -+ d2)u + 2c’S$ - 2 De(cV+ Ro)v = - s, 

(5) 

(Lo + c2S2)u + 2c2S2 $- + De[DV 

+S(cV+2Ro)]u= -c8%, (6) 

Lw=-A2L 
0 

az ’ 
(7) 

g+&+~+~=o, (8) 

where D = d /dx and the linear operator 

Lo =&+cDe v:--$-$--cSe--csl$. 
aY 

Thus, the problem is characterized by a triplet of param- 
eters: the dimensionless curvature factor S = d/R, the Dean 
number De = ( V, d /Y)S”‘, and the rotation number 
Ro = OR /V,,, . We have defined the rotation number as the 
ratio between two characteristic velocities, but it is related to 
that used in the previous studies, l5 by 
Ro = Od /V, = S Ro. In Eqs. (5) and (6), the rotation 
terms are added to those accounting for the centrifugal insta- 
bility. Then, one would expect that the Coriolis force and the 
centrifugal force act either to enhance or to cancel each oth- 
er. 

In order to study the conditions under which infinitesi- 
mal perturbations will develop in the flow, we expand the 
perturbations in the Fourier-Laplace modes of the form: 
exp [st + i(qz + py ) ] where p and q are the azimuthal and 
axial wave numbers, respectively. The axial wave number q 
is real because the perturbations must be bounded at infinity 
in the axial direction. In open flows such as those with a 
boundary layer, the azimuthal wave numberp may be a com- 
pIex quantity the real part of which describes the spatial 
growth of the amplitude of perturbations.” 

The marginal stability state corresponds to those pertur- 
bations with Re(s) = 0: the stationary perturbations 
(s = 0) and the oscillatory perturbations (s = iw #O). Sub- 
stitution of the Fourier-Laplace modes in the perturbation 
equations with homogeneous boundary conditions leads to 
an eigenvalue problem. This consists in finding a relation 
between the flow parameters (Ro,De,S) and the perturba- 
tion characteristics (s,q,p) of the type 

F( Ro,De,S;s,q,p) = 0. 

This eigenvalue problem is solved numerically by the meth- 
od which has been proposed by Roberts” and has been SUG 
cessfully used to study the linear stability of many hydrody- 
namic systems among which are the Taylor-Couette2’ and 
Taylor-Dean* problems. 

111. RESULTS 
We have calculated the critical points as functions of the 

rotation ratio for different values of the gap size SE [ 0, 1 ] . The 
topology of the neutral stability curve has been given in de- 
tail in Ref. 15. Here we will only focus on the variation of 
instability onset parameters, due to the finite gap size. The 
resulting phase diagram (Ro,De, ) contains two stationary 
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FIG. 2. Phase diagram (Bo,De, 1: different regimes shown for 6 = 0.001. 

DC?,* 
mode branches that intersect in the vicinity of Ro = - 6 
(Fig. 2). In that region, critical states are oscillatory i5 as in 
the Taylor-Dean problem,8 however, the extent of this re- 
gion in the phase diagram does not vary sensitively with the 
curvature parameter 6. In the absence of rotation, i.e., for 
Ro = 0, we have found that the finite gap size of the curved 
channel delays the instability threshold in agreement with 
previous results.22 

Higher rotation rates ( [ Ro I> 1 j restabilize the flow and 
the value of Ro* at which restabilization begins depends on 
the gap size S. We have observed that, in the case of small gap 
size (6 < 0.01 j, the threshold of the instability decreases for 
]Ro] < l/2 which expresses a destabilization etfect, but for 
JRo] > l/2, the threshold increases strongly and the flow is 
restabilized. The quantity Rio* = l/2 is independent of 8 for 
small gap size. For moderate and large gap size (S>O.Ol j, 
the quantity Ro* becomes sensitive to the gap size S [Fig. 
3(a) ] and the correspondent critical parameters 
De: = De, (Ro*> and qr = qC (R-o*) are also dependent 
upon 6 [Figs. 3(b) and 3(c)]. 

For highest rotation rates, the Coriolis force restabilizes 
the flow and leads to the Taylor-Proudman two-dimension- 
al regime as in the straight rotating Poiseuille channel 
flow.” The asymptotic value of Ro + at which there is a 
complete restabilization depends on the curvature param- 
eter S: for small gap size 6 < 0.01, it is given approximately 
by ]Ro + 1 = 3, but for wide gap, the quantity [Ro + 1 de- 
creases with 6. The Taylor-Proudman regime corresponds 
to small Rossby numbers (high rotation ratio Ro) and to 
small Ekman number values (large Dean number) .= 

IV. DISCUSSION 
A. Generalization of Rayleigh’s circulation criterion 

In order to better understand the mechanism responsi- 
ble fez the different stability branches of the phase diagram 
De, (Ro) and the origin of the oscillatory modes, we formu- 
late a stability criterion including both Coriolis and centrifu- 
gal force effects. This is done by using a displaced particle 
argurnent.24 

--I 
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0 I * . - = ..‘.1 * - - ‘.“‘I - . -* -fl 
,OOOl ,001 ,Ol .I 

(b) 6 

9: 

(cl 

8 

5- 

4 . . . . . . ..I . . . . . . ..I . . . . . . . . . . . . ..m 
.OOOl ,001 ,Ol -1 1 

6 

FIG. 3. Wide gap size effects on critical parameters at the restabilization 
point: (a) go*(S); (b) De:(S); Cc) q:(S). 

A fluid particle with velocity V, is displaced from its 
original position r to the new position r + dr so fast that the 
viscous dissipation does not take place [ dr/u, Q (dr) ‘/v, U, 
is the displacement speed], then the angular momentum of 
the displaced particle is conserved and the displaced particle 
acquires velocity V’ at the new position (Fig. 4). In the ab- 
sence of rotation, the velocity V’ would be given by 
V’ = V, r/( r + dr), but we have to add a velocity contribu- 

1201 Phys. Fluids A, Vol. 4, No. 6, June 1992 Mutabazi, Normand, and Wesfreid 1201 

Downloaded 11 Apr 2007 to 141.43.136.78. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



r+dr 

FIG. 4. Sketch for formulation of generalized inviscid Rayleigh discrimi- 
nant using the displaced particle argument: shown are Coriolis and centrifu- 
gal accelerations of the particle at positions r and I + dr. 

V e 

tion from Coriolis acceleration so that, to the first order in 
dr, V’ = Vi - (2fi + V, /r)dr. The radial pressure gradi- 
ent acting at the displaced particle at this position r + dr is 

1 dP’ 

I 
= 2aLv + VfZ -- 

p ar r+dr (r+dr) ’ 

This pressure gradient is to be compared with the radial 
pressure gradient of the nonperturbed flow particle at the 
same position 

B. Small gap approximation and the low rotation regime 
In the small gap approximation for moderate values of 

the rotation number Ro - 0( 1 ), the discriminant becomes 

Q,(x) = 26(Ro + V,)DV,, (11) 
where V, = 6x( 1 - x) is the base flow velocity profile in the 
small gap approximation. The above discriminant should be 
considered the Rayleigh discriminant for the equivalent ve- 
locity pro$Ze V, = V, $ Ro. The condition Q(x) = 0 gives 
the frontiers between potentially unstable and potentially 
stable layers of the fluid in the channel width [Fig. 5 (a) 1. 
For Ro>O, the flow consists of two layers, with the one close 
to the outer cylindrical wall (X = 1) centrifugally unstable 

1 dP -____ 
p dr r+dr 

where V, = V( r + dr) = V(r) + (d V/dr) dr. The restor- 
ing force per unit volume acting on the displaced particle is 
dF = (dP/dr - dP’/dr) 1 r + dr. After few algebraic calcula- 
tions, one obtains dF = p<D (r)dr + O( dJ), where 

Q(r) =2!.3(~+2Q)+6~+2~($+~). 

(9) 
The quantity Q(r) can be called the generalized Rayleigh 
discriminant. The first two terms give the Rayleigh discrimi- 
nant for rotating plane channel flow (coupling between rota- 
tion and absolute shear vorticity in the inertial frame of ref- 
erence) as formulated in Ref. 24. The last two terms give the 
Rayleigh discriminant for centrifugal instability without ro- 
tation and the intermediate term is the coupling between 
rotation and curvature. The condition for amplifying pertur- 
bations driven by either the centrifugal force or Coriolis 
force is given by Q,(r) < 0. The flow is therefore subdivided 
into layers of different stability depending on the sign of 
a(r): it will be unstable in the region where CD(r) < 0 and 
stable when Q(r) > 0. To have a better insight of this insta- 
bility mechanism, the discriminant Q(r) is written in the 
form Q(r) = ( V,/d)% (x), where the nondimensional 
discriminant is given by 

Q(x) = 2S{(Ro + cV)[DVf &cV+ 2 Ro)]}. (10) 

Of interest are the following special cases: the small gap ap- 
proximation limit (6 -, 0) for low and high rotation regimes, 
and wide gap for high rotation regime. 
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FIG. 5. Different stability layers of the flow after the generalized Rayleigh 
circulation criterion: (a) for small values of Ro, two unstable layers (the 
inner corresponds to rotation-induced perturbations and the outer to centri- 
fugally driven perturbations) alternate with two stable layers as in the Tay- 
lor-Dean system: (b) for large negative Ro, the only potentially unstable 
layer corresponds to rotation-induced instability and decreases as \Rol in- 
creases; (c) for positive Ro, the only unstable layer corresponds to centrifu- 
gal instability and decreases as Ro increases. 
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even in the absence of rotation. Adding rotation will then 
enhance the effect of the centrifugal force to induce instabil- 
ity. For Ro < - 1.5, the flow also consists of two layers, with 
the one close to the inner cylindrical wall (x = 0) unstable to 
rotation-induced perturbations even in the absence of the 
curvature (plane Poiseuille channel l-low). The centrifugal 
force enhances the Coriolis force inducing the instability. 
For intermediate values ROE[ - 1 S,O], there are two poten- 
tially unstable layers alternating with two stable layers [Fig. 
5(a) 1. In that case, the competition of the destabilizing 
mechanisms in the two layers leads to the occurrence of the 
oscillatory modes. The rotation annihilates the effect of the 
curvature when the net flux of the equivalent velocity across 
the gap is zero: 1,: V, dx = 0, this happens when the rotation 
ratio Ro = - 1. In the phase diagram (Ro,De, ), the stabil- 
ity branches intersect near the point Ro = - S. This ex- 
plains why Matsson and Alfredsson” found, for the gap size 
S = 0.025, the cr@cal oscillatory modes in the neighbor- 
hood of the point Ro = - 0.028. 

The general linear stability equations (5)-( 8) reduce in 
this case to 

[DZ-42-iDe(~+pV,)](D2--)u 

+ipDeD2V,u-22qZDe V,u=O, (12) 

[~2-~-~De(Z++VV,)]u-DeDV,u=0, (13) 

where iii = o/De - p Ro. These equations describe centri- 
fugal or rotation-induced instability in the flow whose base 
flow is described by the equivalent velocity profile V,. 

The calculation of the eigenfunctions for stationary axi- 
symmetric perturbations (o = 0 =p) shows that for 
Ro > - 1, the center of the instability activity belongs to the 
centrifugally unstable layer and that for Ro < - 1, it be- 
longs to the rotation unstable layer. Therefore, for 
- l/26 < Ro < - 1.5, the centrifugal effects enhance the 

instability due to the rotation while for O<Ro < l/26, the 
rotation enhances the centrifugal instability. 

The analogy with the Taylor-Dean system (flow be- 
tween two horizontal coaxial rotating cylinders with an ex- 
ternal pressure gradient) should be developed. The special 
case of zero net azimuthal flow studied in Ref. 9 is described 
in the small gap approximation by equations similar to Eqs. 
(12) and (13) with the bulk base flow given by 
V,,(x) = 3( 1 +,LL)x’ - 2(2 +,u)x + 1, wherep is thero- 
tation ratio of the cylinders. In particular, the two systems 
become dynamically equivalent for Ro = - 1 and p = 1 
when the velocity profiles coincide [ V,, (x) = - V,(x) ] . 
The base bulk flow velocity profile in the Taylor-Dean sys- 
tem and the equivalent velocity profile in the rotating curved 
channel flow have alternating potentially unstable and stable 
layers in the gap. Interaction between destabilizing mecha- 
nisms may lead to oscillatory instability. In spite of this simi- 
larity, there are also some differences between these two sys- 
tems: there is no coupling between the rotation ratio p and 
the curvature factor 6 and the instabilities occurring in the 
Taylor-Dean system are purely of the centrifugal nature. 

C. Small gap approximation and high rotation regime 
In the small gap approximation and for large vaIues of 

the rotation number such as S Ro - 0( 1 ), the Rayleigh dis- 
criminant becomes 

G(x) = 26 Ro(DV, + 26 Ro). (14) 
Analysis of this expression indicates that instability will 

take place in the channel provided 1 Ro I< 3/6. In fact, for 
large negative Ro, the unstable layer is given by 0 <x <x,, 
and its extension decreases with increasing Ro until it van- 
ishes at the inner boundary (x = 0) as Ro-+ - 3/6 [Fig. 
5 (b) 1. For large positive Ro, the unstable layer is given by 
x0 = l/2 - S Ro/6 < x < 1 and its extension decreases with 
increasing Ro until it vanishes at the outer boundary 
(x = 1) as Ro + 3/S [Fig. 5 (c) 1. In all these cases, the flow 
is unstable to axisymmetric perturbations governed by the 
following equations: 

(D2 - q2)2u - 2q’De Ro u = 0, (15) 
(0’ - q2)u - De(DV, + 26 Ro)u = 0. (16) 

The last system is the same as the one describing rotating 
plane channel flow” where DV, = 6( 1 - 2x). The critical 
value De, increases with 6 Ro, i.e., there is a restabilization 
effect due mainly to the term 2S Ro in Eq. ( 19). This term 
expresses the coupling between the curvature and large val- 
ues of the rotation ratio. The asymptotic behavior of the 
stability branches in the phase diagram (S Ro,De, ) may be 
found by using the dynamical similarity of Eqs. ( 15) and 
( 16) with Taylor-Couette system equations. l6 In fact, with 
the correspondence 

1 -/~++6/(3 - S]Roj), Tct41Ro](3 --SIRo[)De2 

wherep is the rotation ratio of cylinders and T is the Taylor 
number in the Taylor-Couette system, one obtains the fol- 
lowing asymptotic relations of the critical parameters for 
S/R01 -+3: 

39.7 
De’= ,Ro,‘“(l -(jS[Ro,,3)5/2 ’ qc--3 ly;o, 

(17) 

For 1 Ro] > 36, the flow has no potentially unstable layer 
in the gap and no perturbations can deveIop in the flow. It 
remains two dimensional in the Taylor-Proudman regime. 
In fact, except for small values of Ro, the critical wave num- 
ber increases monotonically with ]Ro] for large values so 
that the Taylor-Proudman regime corresponds to a flow 
with vanishing disturbance wavelength. 

D. Wide gap size and rotation regimes 

For wide gap size S > 0.01, the behavior of stability 
branches for the low rotation regime is similar to that of the 
small gap approximation. But for higher values Ro, the cou- 
pling between rotation and curvature leads to the asymmetry 
between positive and negative rotation directions (Fig. 3). 
In that case, phase diagrams (S Ro,De, ) show that the flow 
is most stable for negative Ro. 
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E. Coriolis effects on other hydrodynamic instabilities 
For the circular Couette flow in the rotating frame of 

reference, for moderate rotation number values, the profile is 
modified as follows: V,(x)=V(x)+Ro=l+Ro 
- ( 1 - ,u)x, where ,U is the rotation ratio of the cylinders. 

The generalized Rayleigh criterion and the asymptotic sta- 
bility equations (15) and (16) indicate that the flow will be 
unstable for - 1 < Ro < ( 1 - ,~)/26. There is no experi- 
mental evidence of this result. A more interesting case is the 
Taylor-Couette flow subjected to a rotation whose axis is 
perpendicular to the flow axis. This case provides a rich var- 
iety of bifurcations observed in experiments and in theoreti- 
cal studies. “,‘* 

The rotation of the boundary-layer flow on a concave 
wall enhances the centrifugal instability for moderately posi- 
tive values of Ro and acts against it for moderately negative 
values. The boundary-layer flow over a convex plate that is 
centrifugally stable becomes unstable to rotation-induced 
perturbations for - 1 < Ro < 0 if, while applying the gener- 
alized Rayleigh criterion for boundary layers of small thick- 
ness, one approximates the boundary-layer flow velocity 
profile by a piecewise function.” 

Recently, a lot of numerical simulations have been made 
for rotating square channel flowZ6 and rotating rectangular 
channel flow.” The combined effect of the Coriolis accelera- 
tion and centrifugal acceleration on flow in ducts has been 
studied.28 All these simulations show that rotation induces 
longitudinal cells in the flow. Rotation of circular pipe flow 
about its axis causes destabilization of the laminar Hagen- 
Poiseuille flo~,~~ while it suppresses the turbulence and re- 
duces the hydraulic 10~s.~’ 

For thermal convection in fluids with small Prandtl 
numbers, rotation may induce time-dependent modes at the 
onset of instabilities. l6 In binary mixtures, rotation delays 
the onset of convection and distorts the convective cells.31 
However, the coupling mechanisms between rotation and 
thermal convection are different from those occurring in ro- 
tating curved channel flows. 

F. Oscillatory modes in flows with two control 
parameters 

In the context of hydrodynamic stability, systems with a 
transition from the base state to a time-dependent state 
(Hopf bifurcation) have drawn much attention, because the 
transition to chaos in those systems is faster than in those 
with a transition to a stationary state. We list here some of 
those systems in which competition between several destabi- 
lizing mechanisms lead to oscillatory instability: the hydro- 
magnetic Taylor-Couette system,32 convection in-thermo- 
capillary liquid layers,33 thermal convection in an internally 
heated water layer around its density maximum,34 thermal 
convection in binary fluid mixtures,35 thermal convection in 
two superposed fluid layers, 36 the Taylor-Dean system de- 
scribed above, and the rotating curved channel flow. The 
interaction occurs between either an external field (rotation, 
magnetic field) and a driving mechanism in the flow system 
or between two driving mechanisms inherent to the flow 

(e.g., Taylor and Dean instabilities in a Taylor-Dean sys- 
tem) . Even if intuitively it is understood that in the vicinity 
of a codimension-two point (where two stationary neutral 
curves intersect in the phase diagram), oscillatory modes 
may occur. Though this has been mathematically de- 
scribed,37 the understanding of the physical process that 
generates the oscillations is still an open problem. 

v. CONCLUSlON 
The rotating curved channel flow with a finite gap size 

has been investigated. For small gap size (8 < 0.01)) the 
asymptotic behavior of the stability branches for negative 
and positive Ro exhibits a reasonable symmetry. For large 
gap size, the stability branches exhibit asymmetry which 
grows with the gap size S. A generalized Rayleigh criterion 
of stability has been formulated and gives a framework to 
understand the stability diagram when rotation and curva- 
ture effects compete to induce instability. 

Curved streamline flows under rotation are often met in 
technical problems like rotating machines, in geophysical 
applications,24 and in chromatography (field flow fraction- 
ation) .38 
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