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Abstract

We address the following general question: given a graph class C on which we can solve
Maximum Matching in (quasi) linear time, does the same hold true for the class of graphs
that can be modularly decomposed into C ? A major difficulty in this task is that the Maxi-
mum Matching problem is not preserved by quotient, thereby making difficult to exploit the
structural properties of the quotient subgraphs of the modular decomposition. So far, we are
only aware of a recent framework in [Coudert et al., SODA’18] that only applies when the
quotient subgraphs have bounded order and/or under additional assumptions on the nontriv-
ial modules in the graph. As a first attempt toward improving this framework we study the
combined effect of modular decomposition with a pruning process over the quotient subgraphs.
More precisely, we remove sequentially from all such subgraphs their so-called one-vertex exten-
sions (i.e., pendant, anti-pendant, twin, universal and isolated vertices). Doing so, we obtain a
“pruned modular decomposition”, that can be computed in O(m log n)-time. Our main result
is that if all the pruned quotient subgraphs have bounded order then a maximum matching can
be computed in linear time. This result is mostly based on two pruning rules on pendant and
anti-pendant modules – that are adjacent, respectively, to one or all but one other modules in
the graph. Furthermore, these two latter rules are surprisingly intricate and we consider them
as our main technical contribution in the paper.

We stress that the class of graphs that can be totally decomposed by the pruned modular
decomposition contains all the distance-hereditary graphs, and so, it is larger than cographs. In
particular, as a byproduct of our approach we also obtain the first known linear-time algorithms
for Maximum Matching on distance-hereditary graphs and graphs with modular-treewidth
at most one. Finally, we can use an extended version of our framework in order to compute
a maximum matching, in linear-time, for all graph classes that can be modularly decomposed
into cycles. Our work is the first to explain why the existence of some nice ordering over the
modules of a graph, instead of just over its vertices, can help to speed up the computation of
maximum matchings on some graph classes.

Keywords: maximum matching; FPT in P; modular decomposition; pruned graphs; one-vertex
extensions; P4-structure.
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1 Introduction

Can we compute a maximum matching in a graph in linear-time? – i.e., computing a maximum
set of pairwise disjoint edges in a graph. – On one hand, despite considerable years of research and
the design of elegant combinatorial and linear programming techniques, the best-known algorithms
for this fundamental problem have stayed blocked to an O(m

√
n)-time complexity [30, 46]. On the

other hand, the Maximum Matching problem has several applications [9, 19, 43, 50], some of
them being relevant only for specific graph families. For instance, there exists a special matching
problem arising in industry that can be rephrased as finding a maximum matching in a given convex
bipartite graph [34]. It may then be tempting to use some well-structured graph classes in order to
overcome this superlinear barrier for particular cases of graphs. We follow this well-established line
of research (e.g., see [10, 13, 17, 21, 29, 28, 34, 37, 38, 41, 45, 47, 53, 55, 54]). Our work will combine
two successful approaches for this problem, namely, the use of a vertex-ordering characterization for
certain graph classes, and a recent technique based on the decomposition of a graph by its modules.
We detail these two approaches in what follows, before summarizing our contributions.

1.1 Related work

A cornerstone of most Maximum Matching algorithms is the notion of augmenting paths [4, 24].
– See [27, 42, 48] for some other approaches based on matrix multiplication. – Roughly, given some
matching F in a graph, an F -augmenting path is a simple path between two exposed vertices (i.e.,
not part of V (F )) in which the edges belong alternatively to F and not to F . The symmetric
difference between F and any F -augmenting path leads to a new matching of greater cardinality
|F |+ 1. Therefore, the standard strategy in order to solve Maximum Matching is to repeatedly
compute a set of vertex-disjoint augmenting paths (w.r.t. the current matching) until no more such
path can be found. However, although we can compute a set of augmenting paths in linear-time [31],
this is a tedious task that involves the technical notion of blossoms and this may need to be repeated
Ω(
√
n) times before a maximum matching can be computed [37]. One way to circumvent this issue

for a specific graph class is to use the structural properties of this class in order to compute the
augmenting paths more efficiently.

For instance, a well-known greedy approach consists in, given some total ordering (v1, v2, . . . , vn)
over the vertices in the graph, to consider the exposed vertices vi by increasing order, then to try
to match them with some exposed neighbour vj that appears later in the ordering [21]. The can-
didate vertex vj can be chosen either arbitrarily or according to some specific rules depending on
the graph class we consider. On the positive side, variants of the greedy approach have been used
in order to compute maximum matchings in quasi linear-time on some graph classes that admit a
vertex-ordering characterization, such as: interval graphs [47], convex bipartite graphs [34], strongly
chordal graphs [17], cocomparability graphs [45], etc. But on the negative side, the greedy approach
does not look promising for chordal graphs (defined by the existence of a perfect elimination order-
ing) since computing a maximum matching in a given split graph is already O(n2)-time equivalent
to the same problem on general bipartite graphs [17].

More related to our work are the reduction rules, presented in [38], for the vertices of degree
at most two. Indeed, since a pendant vertex in any path, and in particular in an augmenting one,
can only be an endpoint, it can be easily seen that we can always match a pendant vertex with
its unique neighbour w.l.o.g. A slightly more complicated reduction rule is presented for degree-
two vertices in [38]. Nevertheless, no such rule is likely to exist already for degree-three vertices
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since Maximum Matching on cubic graphs is linear-time equivalent to Maximum Matching on
general graphs [5]. Our initial goal was to extend similar reduction rules to module-orderings –
defined next – of which vertex-orderings are a particular case.

Modular Decomposition. A module in a graph G = (V,E) is any vertex-subset X such that
every vertex of V \X is either adjacent to every of X or nonadjacent to every of X. Trivial examples
of modules are ∅, V and {v} for every v ∈ V . Roughly, the modular decomposition of G is a recursive
decomposition of G according to its nontrivial modules [36]. We postpone its formal definition until
Section 2. For now, we only want to stress that the vertices in the “quotient subgraphs” that are
outputted by this decomposition represent modules of G.

The use of modular decomposition in the algorithmic field has a rich history. The successive
improvements on the best-known complexity for computing this decomposition are already interest-
ing on their own since they required the introduction of several new techniques [14, 16, 35, 44, 52].
There is now a practical linear-time algorithm for computing the modular decomposition of any
graph [52]. Furthermore, the story does not end here since modular decomposition was also ap-
plied in order to solve several graph-theoretic problems (e.g., see [1, 7, 13, 15, 26, 32]). Our main
motivation for considering modular decomposition in this note is its recent use in the field of param-
eterized complexity for polynomial problems. – For some earlier applications to NP-hard problems,
see [32]. – More precisely, let us call modular-width of a graph G the minimum k ≥ 2 such that
every quotient subgraph in the modular decomposition of G is either “degenerate” (i.e., complete or
edgeless) or of order at most k. With Coudert, we proved in [13] that many “hard” graph problems
in P – for which no linear-time algorithm is likely to exist – can be solved in kO(1)(n+m)-time on
graphs with modular-width at most k. In particular, we proposed an O(k4n + m)-time algorithm
for Maximum Matching.

One appealing aspect of our approach in [13] was that, for most problems studied, we obtained a
linear-time reduction from the input graph G to some (smaller) quotient subgraph G′ in its modular
decomposition. – We say that the problem is preserved by quotient. – This paved the way to the
design of efficient algorithms for these problems on graph classes with unbounded modular-width,
assuming their quotient subgraphs are simple enough w.r.t. the problem at hands. We illustrated
this possibility through the case of (q, q− 3)-graphs (i.e., graphs where no set of at most q vertices,
q ≥ 7, can induce more than q − 3 paths of length four). However, this approach completely fell
down for Maximum Matching. Indeed, our Maximum Matching algorithm in [13] works on
supergraphs of the quotient graphs that need to be repeatedly updated every time a new augmenting
path is computed. Such approach did not help much in exploiting the structure of quotient graphs.
We managed to do so for (q, q− 3)-graphs only through the help of a deeper structural theorem on
the nontrivial modules in this class of graphs. Nevertheless, to take a shameful example, it was not
even known before this work whether Maximum Matching could be solved faster than with the
state-of-the art algorithms on the graphs that can be modularly decomposed into paths!

1.2 Our contributions

We propose pruning rules on the modules in a graph (some of them new and some others revisited)
that can be used in order to compute Maximum Matching in linear-time on several new graph
classes. More precisely, given a module M in a graph G = (V,E), recall that M is corresponding
to some vertex vM in a quotient graph G′ of the modular decomposition of G. Assuming vM is a
so-called one-vertex extension in G′ (i.e., it is pendant, anti-pendant, universal, isolated or it has
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a twin), we show that a maximum matching for G can be computed from a maximum matching
of G[M ] and a maximum matching of G \ M efficiently (see Section 4). Our rules are purely
structural, in the sense that they only rely on the structural properties of vM in G′ and not on any
additional assumption on the nontrivial modules. Some of these rules (e.g., for isolated or universal
modules) were first introduced in [13] — although with slightly different correctness proofs. Our
main technical contributions in this work are the pruning rules for, respectively, pendant and anti-
pendant modules (see Sections 4.2 and 4.3). The latter two cases are surprisingly the most intricate.
In particular, they require amongst other techniques: the computation of specified augmenting
paths of length up to 7, the addition of some “virtual edges” in other modules, and a careful
swapping between some matched and unmatched edges.

Then, we are left with pruning every quotient subgraph in the modular decomposition by
sequentially removing the one-vertex extensions. We prove that the resulting “pruned quotient
subgraphs” are unique (independent from the removal orderings) and that they can be computed
in quasi linear-time using a trie data-structure (Section 3). Furthermore, many interesting graph
classes are totally decomposable w.r.t. this new “pruned modular decomposition”, namely, every
graph that can be decomposed into: trees, distance-hereditary graphs [3], tree-perfect graphs [8],
etc. These classes are further discussed in Section 5. Note that for some of them, such as distance-
hereditary graphs, we so obtain the first known linear-time algorithm for Maximum Matching.
With slightly more work, we can extend our approach to every graph that can be modularly
decomposed into cycles (Section 5.2). The case of graphs that can be modularly decomposed into
series-parallel graphs [25], or more generally the graphs of bounded modular treewidth [49], is left
as an interesting open question.

Definitions and our first results are presented in Section 2. We introduce the pruned modular
decomposition in Section 3, where we show that it can be computed in quasi linear-time. Then, the
core of the paper is Section 4 where the pruning rules are presented along with their correctness
proofs. In particular, we state our main result in Section 4.4. Applications of our approach to
some graph classes are discussed in Section 5. Finally, we conclude in Section 6 with some open
questions.

2 Preliminaries

For the standard graph terminology, see [6, 20]. We only consider graphs that are finite, simple
(hence without loops or multiple edges), and unweighted – unless stated otherwise. Furthermore
we make the standard assumption that graphs are encoded as adjacency lists. In what follows, we
introduce our main algorithmic tool for the paper as well as the graph problems we study.

Modular decomposition

We define a module in a graph G = (V,E) as any subset M ⊆ V (G) such that for any u, v ∈ M
we have NG(v) \M = NG(u) \M . Said otherwise, every vertex of V \M is either adjacent to
every vertex of M or nonadjacent to every vertex of M . There are trivial examples of modules
such as ∅, V, and {v} for every v ∈ V . Other less trivial examples of modules are the connected
components of G and, similarly, the co-connected components of G. Let P = {M1,M2, . . . ,Mp}
be a partition of the vertex-set V . If for every 1 ≤ i ≤ p, Mi is a module of G, then we call P a
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modular partition of G. By abuse of notation, we will sometimes identify a module Mi with the
induced subgraph Hi = G[Mi], i.e., we will write P = {H1, H2, . . . Hp}.

The quotient subgraph G/P has for vertex-set P, and there is an edge between every two
modules Mi,Mj ∈ P such that Mi ×Mj ⊆ E. Conversely, let G′ = (V ′, E′) be a graph and let
P = {H1, H2, . . . Hp}. be a collection of subgraphs. The substitution graph G′(P) is obtained from
G′ by replacing every vertex vi ∈ V ′ with a module inducing Hi. In particular, for G′ = G/P we
have that G′(P) = G.

The modular decomposition of G is a compact representation of all the modules in G (in O(n+
m)-space), that can be recursively defined as follows. First we say that G is prime if its only
modules are trivial (i.e., ∅, V, and the singletons {v}). Roughly, the modular decomposition of
G is a tree-like collection of prime quotient subgraphs of G. In order to make this more precise,
let us introduce a few more notions. We call a module M strong if it does not overlap any other
module, i.e., for any module M ′ of G, either one of M or M ′ is contained in the other or M and
M ′ do not intersect. Let M(G) be the family of all inclusion wise maximal strong modules of G
that are proper subsets of V . The family M(G) is a modular partition of G [36], and so, we can
define G′ = G/M(G). The following structure theorem is due to Gallai.

Theorem 1 ( [33]). For an arbitrary graph G exactly one of the following conditions is satisfied.

1. G is disconnected;

2. its complement G is disconnected;

3. or its quotient graph G′ is prime for modular decomposition.

Then, the modular decomposition of G is formally defined as follows. We output the quotient
graph G′ and, for any strong module M ∈ M(G) that is nontrivial (possibly none if G = G′), we
also output the modular decomposition of G[M ]. Observe that, by Theorem 1, the subgraphs from
the modular decomposition are either edgeless, complete, or prime for modular decomposition. See
Fig. 1 for an example.
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Figure 1: A graph and its modular decomposition.

The modular decomposition of a given graph G = (V,E) can be computed in linear-time [52].
We stress that there are many graph classes that can be characterized using the modular decom-
position [2]. In particular, G is a cograph if and only if every quotient subgraph in its modular
decomposition is either complete or disconnected [12].
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Maximum Matching

A matching in a graph is defined as a set of edges with pairwise disjoint end vertices. The maximum
cardinality of a matching in a given graph G = (V,E) is denoted by µ(G). We consider the problem
of computing a matching of maximum cardinality.

Problem 1 (Maximum Matching).

Input: A graph G = (V,E).

Output: A matching of G with maximum cardinality.

We remind the reader that Maximum Matching can be solved in O(m
√
n)-time on general

graphs — although we do not use this result directly in our paper [30, 46]. Furthermore, let
G = (V,E) be a graph and let F ⊆ E be a matching of G. We call a vertex matched if it is incident
to an edge of F , and exposed otherwise. Then, we define an F -augmenting path as a path where
the two ends are exposed, and the edges belong alternatively to F and not to F . It is well-known
and easy to check that, given an F -augmenting path P = (v1, v2, . . . , v2`), the matching E(P )∆F
(obtained by symmetric difference on the edges) has larger cardinality than F .

Lemma 1 (Berge, [4]). A matching F in G = (V,E) is maximum if and only if there is no
F -augmenting path.

In this paper, we will consider an intermediate matching problem, first introduced in [13].

Problem 2 (Module Matching).

Input: A graph G′ = (V ′, E′) with the following additional information;

• a collection of subgraphs P = {H1, H2, . . . ,Hp};
• a collection F = {F1, F2, . . . , Fp},

with Fi being a maximum matching of Hi for every i.

Output: A matching of G = G′(P) with maximum cardinality.

A natural choice for Module Matching would be to take P =M(G). However, we will allow
P to take different values for our reduction rules. In particular, by setting G′ = G, P = V and F
a collection of empty matchings, one obtains that Module Matching is a strict generalization of
Maximum Matching.

Additional notations. Let 〈G′,P,F〉 be any instance of Module Matching. The order of
G′, equivalently the cardinality of P, is denoted by p. For every 1 ≤ i ≤ p let Mi = V (Hi)
and let ni = |Mi| be the order of Hi. We denote δi = |E(Mi,Mi)| the size of the cut with all
the edges between Mi and NG(Mi). In particular, we have δi =

∑
vj∈NG′ (vi)

ninj . Let us define

∆m(G′) =
∑

i δi. We will omit the dependency in G′ if it is clear from the context. Finally, let
∆µ = µ(G)−

∑
i µ(Hi).

Our framework is based on the following lemma (inspired from [13]).
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Lemma 2. Let G = (V,E) be a graph. Suppose that for every H ′ in the modular decomposition of
G we can solve Module Matching on any instance 〈H ′,P,F〉 in time T (p,∆m,∆µ), where T is
a subadditive function1. Then, we can solve Maximum Matching on G in time O(T (O(n),m, n)).

Proof. Let N be the sum of the orders of all the subgraphs in the modular decomposition of G.
Next, we describe an algorithm for Maximum Matching that runs in time O(T (N,m, µ(G))).
The latter will prove the lemma since we have N = O(n) [36]. We prove our result by induction
on the number of subgraphs in the modular decomposition of G. For that, let G′ = (M(G), E′) be
the quotient graph of G. There are two cases.

Suppose G = G′, or equivalently the modular decomposition of G is reduced to G′. Then,
solving Maximum Matching for G is equivalent to solving Module Matching on 〈G,M(G),F〉
withM(G) = V and F being a collection of n empty matchings. By the hypothesis it can be done
in time T (p,∆m,∆µ), where p = |V (G′)|. In this situation we get p = |V | = N , ∆m = |E| = m,
∆µ = µ(G). Since T is subadditive by the hypothesis, we have that Maximum Matching can be
solved in this case in time O(T (N,m, µ(G))).

Otherwise, G 6= G′. Let M(G) = {M1,M2, . . . ,Mp}. For every 1 ≤ i ≤ p, we call the
algorithm recursively on Hi = G[Mi] and we so obtain a maximum matching Fi for this subgraph.
By the induction hypothesis, this step takes times O(

∑p
i=1 T (Ni,mi, µ(Hi))), with Ni being the

sum of the orders of all the subgraphs in the modular decomposition of Hi and mi = |E(Hi)|.
Furthermore, let F = {F1, F2, . . . , Fp}. Observe that we have

∑p
i=1Ni = N − p,

∑p
i=1mi =

m − ∆m and
∑p

i=1 µ(Hi) = µ(G) − ∆µ. In order to compute a maximum matching for G, we
are left with solving Module Matching on 〈G′,M(G),F〉, that takes time T (p,∆m,∆µ) by the
hypothesis. Overall, since T is subadditive, the total running time is an O(T (N,m, µ(G))).

An important observation for our subsequent analysis is that, given any module M of a graph
G, the internal structure of G[M ] has no more relevance after we computed a maximum matching
FM for this subgraph. More precisely, we will use the following lemma:

Lemma 3 ( [13]). Let M be a module of G = (V,E), let G[M ] = (M,EM ) and let FM ⊆ EM be a
maximum matching of G[M ]. Then, every maximum matching of G′M = (V, (E \ EM ) ∪ FM ) is a
maximum matching of G.

By Lemma 3 we can modify our algorithmic framework as follows. For every instance 〈G′,P,F〉
for Module Matching, we can assume that Hi = (Mi, Fi) for every 1 ≤ i ≤ p.

Data structures. Finally, let 〈G′,P,F〉 be any instance for Module Matching. A canonical
ordering of Hi (w.r.t. Fi) is a total ordering over V (Hi) such that the exposed vertices appear first,
and every two vertices that are matched together are consecutive. In what follows, we will assume
that we have access to a canonical ordering for every i. Such orderings can be computed in time
O(

∑
i |Mi|+ |Fi|) by scanning all the modules and the matchings in F , that is an O(∆m) provided

G′ is connected.
Furthermore, let F be a (not necessarily maximum) matching for the subdivision G = G′(P).

We will make the standard assumption that, for every v ∈ V (G), we can decide in constant-time
whether v is matched by F , and if so, we can also access in constant-time to the vertex matched
with v.

1We stress that every polynomial function is subadditive.
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3 A pruned modular decomposition

In this section, we introduce a pruning process over the quotient subgraphs, that we use in order
to refine the modular decomposition.

Definition 1. Let G = (V,E) be a graph. We call v ∈ V a one-vertex extension if it falls in one
of the following cases:

• NG[v] = V (universal) or NG(v) = ∅ (isolated);

• NG[v] = V \ u (anti-pendant) or NG(v) = {u} (pendant), for some u ∈ V \ v;

• NG[v] = NG[u] (true twin) or NG(v) = NG(u) (false twin), for some u ∈ V \ v.

A pruned subgraph of G is obtained from G by sequentially removing one-vertex extensions (in
the current subgraph) until it can no more be done. This terminology was introduced in [39], where
they only considered the removals of twin and pendant vertices. Also, the clique-width of graphs
that are totally decomposed by the above pruning process (i.e., with their pruned subgraph being
a singleton) was studied in [51] 2. Our contribution in this part is twofold. First, we show that the
gotten subgraph is “almost” independent of the removal ordering, i.e., there is a unique pruned
subgraph of G (up to isomorphism). The latter can be derived from the following (easy) lemma:

Lemma 4. Let G = (V,E) be a graph and let v, v′ ∈ V be one-vertex extensions of G. Suppose
that v and v′ are not pairwise twins. Then, v′ is also a one-vertex extension of G \ v.

Proof. We need to consider several cases. If v′ is either isolated or universal in G then it stays
so in G \ v. If v′ is pendant in G then it is either pendant or isolated in G \ v. Similarly, if v′ is
anti-pendant in G then it is either anti-pendant or universal in G \ v. Otherwise, v′ has a twin u
in G. By the hypothesis, u 6= v′. Then, we have that u, v stay pairwise twins in G \ v′.

Corollary 2. Every graph G = (V,E) has a unique pruned subgraph up to isomorphism.

Proof. Suppose for the sake of contradiction that G has two non-isomorphic pruned subgraphs.
W.l.o.g., G is a minimum counter-example. In particular, for every one-vertex extension v of G, we
have that G \ v has a unique pruned subgraph up to isomorphism. Therefore, there exist v, v′ ∈ V
such that: v, v′ are one-vertex extensions of G, and the pruned subgraphs of G \ v and G \ v′ are
non isomorphic. We claim that v is not a one-vertex extension of G\v′ (resp., v′ is not a one-vertex
extension of G \ v). Indeed, otherwise, both the pruned subgraphs of G \ v and of G \ v′ would be
isomorphic to the pruned subgraphs of G \ {v, v′}. By Lemma 4, it implies that v, v′ are pairwise
twins in G. However, since G\v and G\v′ are isomorphic, so are their respective pruned subgraphs.
A contradiction.

For most classes of graphs that we consider in this note, the pruned subgraph is trivial (reduced
to a singleton) and can be computed in linear-time. For purpose of completeness, we observe in
what follows that the same can be done for any graph (up to a logarithmic factor).

Proposition 1. For every G = (V,E), its pruned subgraph can be computed in O(n+m log n)-time.

2Anti-twins are also defined as one-vertex extensions in [51]. Their integration to this framework remains to be
done.
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Proof. By Corollary 2, we are left with greedily searching for, then eliminating, the one-vertex
extensions. We can compute the ordered degree sequence of G in O(n + m)-time. Furthermore,
after any vertex v is eliminated, we can update this sequence in O(|N(v)|)-time. Hence, up to
a total update time in O(n + m), at any step we can detect and remove in constant-time any
vertex that is either universal, isolated, pendant or anti-pendant. Finally, in [39] they proposed a
trie data-structure supporting the following two operations: suppression of a vertex; and detection
of true or false twins (if any). The total time for all the operations on this data-structure is in
O(n+m log n) [39].

From now on, we will term “pruned modular decomposition” of a graph G the collection of
the pruned subgraphs for all the quotient subgraphs in the modular decomposition of G. Note
that there is a unique pruned modular decomposition of G (up to isomorphism) and that it can
be computed in O(n + m log n)-time by Proposition 1 (applied to every quotient subgraph in the
modular decomposition separately).

Remark 1. A careful reader could object that most cases of one-vertex extensions (universal,
isolated, twin) imply the existence of non trivial modules. Therefore, such vertices should not exist
in the prime quotient subgraphs of the modular decomposition. However, they may appear after
removal of pendant or anti-pendant vertices (see Fig. 2).

pendant pendant universal universal isolated

Figure 2: The bull is totally decomposable by the pruned modular decomposition.

4 Reduction rules

In this section, we consider any instance 〈G′,P,F〉 of Module Matching. We suppose that v1,
the vertex corresponding to M1 in G′ is a one-vertex extension Under this assumption, we present
reduction rules to a smaller instance 〈G∗,P∗,F∗〉 where |P∗| < |P|. Some of the rules we propose
next were first introduced in [13], namely for universal and isolated modules (explicitly) and for
false or true twin modules (implicitly). We state these above rules in Section 4.1 for completeness of
the paper. Our main technical contributions are the reduction rules for pendant and anti-pendant
modules (presented in Sections 4.2 and 4.3, respectively), which are surprisingly the most intricate.
Finally, we end this section stating our main result (Theorem 4).

4.1 Simple cases

We start with two cases that can be readily solved, namely:

Reduction rule 1 (see also [13]). Suppose v1 is isolated in G′.
We set G∗ = G′ \ v1, P∗ = P \ {H1}, and F∗ = F \ {F1}.

Indeed, note that in this above case a maximum matching of G is the union of F1 with any
maximum matching of the subdivision G∗(H∗).
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Reduction rule 2. Suppose v1, v2 are false twins in G′.
We set G∗ = G′ \ v1, P∗ = {H1 ∪H2} ∪ (P \ {H1, H2}), F∗ = {F1 ∪ F2} ∪ (F \ {F1, F2}).

Indeed, note that in this above case, M1 ∪M2 is a module of G. Furthermore, since there is no
edge between M1 and M2 we have that F1 ∪F2 is a maximum matching of G[M1 ∪M2] = H1 ∪H2.
Hence, the above reduction rule is correct.

Then, before we state the two other reduction rules in this section, we need to introduce the
following two local operations on a matching (they will be used for all the remaining reduction
rules). To our best knowledge, these two following operations were first introduced in [53] for the
computation of maximum matchings in cographs. We give a sligthly generalized presentation of
these rules. In what follows, let F ⊆ E be a matching and let M ⊆ V be a module.

Operation 1 (MATCH(M,F )). While there are x ∈M, y ∈ N(M) exposed, we add {x, y} to F .

Operation 2 (SPLIT(M,F )). While there exist x, x′ ∈M, y, y′ ∈ N(M) such that x and x′ are
exposed, and {y, y′} ∈ F , we replace the edge {y, y′} in F by the two new edges {x, y}, {x′, y′}.

We stress that the MATCH and SPLIT operations correspond to special cases of F -augmenting
paths, of respective lengthes 1 and 3. Given F and M , the “MATCH and SPLIT” technique con-
sists in applying MATCH(M,F ), which results in a new matching F ′, then applying SPLIT(M,F ′).
We refer to [13, 29, 28, 53] for applications of this technique to some graph classes. In particular,
we will use the following lemma for our analysis:

Lemma 5 ( [13]). Let G = G1 ⊕G2 be the join of two graphs G1, G2 and let F1, F2 be maximum
matchings for G1, G2, respectively. For F = F1∪F2, applying the “MATCH and SPLIT” technique
to V (G1), then to V (G2) leads to a maximum matching of G.

Based on the above lemma, we can readily solve two more cases, namely:

Reduction rule 3. [see also [13]] Suppose v1 is universal in G′.
We set G∗ = G \ v1, P∗ = P \ {H1}, F∗ = F \ {F1}.
Furthermore, let F ∗ be a maximum matching of the subdivision G∗(P∗) = G[V \M1]. We

apply Lemma 5 to G = G[M1]⊕G[V \M1] with F1, F
∗ in order to compute a maximum-cardinality

matching of G.

Observe that this above rule is similar to Reduction rule 1, however it requires an additional
post-processing step.

Reduction rule 4. Suppose v1, v2 are true twins in G′. Let F ∗2 be the matching of G[M1 ∪M2] =
H1 ⊕H2 that is obtained from F1, F2 by applying Lemma 5.

We set G∗ = G \ v1, P∗ = {H1 ⊕H2} ∪ (P \ {H1, H2}), F∗ = {F ∗2 } ∪ (F \ {F1, F2}).

Complexity analysis. Reduction rules 1 and 2 take constant-time. The complexity of Reduction
rules 3 and 4 is dominated by the Match and Split operations. Furthermore, every such operation
adds, in constant-time, one or two edges in the matching with exactly one end in M1. It implies
that there cannot be more than O(n1) operations. Observe that ∆mG′ −∆mG∗ ≥ n1n2 = Ω(n1).
As a result, Reduction rules 3 and 4 take O(∆mG′ −∆mG∗)-time.
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4.2 Anti-pendant

Suppose v1 is anti-pendant in G′. W.l.o.g., v2 is the unique vertex that is nonadjacent to v1 in G′.
By Lemma 3, we can also assume w.l.o.g. that E(Hi) = Fi for every i. In this situation, we start
applying Reduction rule 1, i.e., we set G∗ = G′ \ v1, P∗ = P \ {H1}, F∗ = F \ {F1}. Then, we
obtain a maximum-cardinality matching F ∗ of G \M1 (i.e., by applying our reduction rules to this
new instance). Finally, we compute from F1, F

∗ a maximum-cardinality matching of G, using an
intricate procedure. We detail this procedure next.

First phase: Pre-processing. Our correctness proofs in what follows will assume that some
additional properties hold on the matched vertices in F ∗. So, we start correcting the initial matching
F ∗ so that it is the case. For that, we introduce two “swapping” operations. Recall that v2 is the
unique vertex that is nonadjacent to v1 in G′.

Operation 3 (REPAIR). While there exist x2, y2 ∈M2 such that {x2, y2} ∈ F2 and y2 is exposed
in F ∗, we replace any edge {x2, w} ∈ F ∗ by {x2, y2}.

This above operation ensures that all the vertices matched by F2 are also matched by F ∗. In
particular, for every {x2, y2} ∈ F2 we have either {x2, y2} ∈ F2 or (since we assume E(H2) = F2)
there exist w,w′ /∈ M2 such that {x2, w}, {y2, w′} ∈ F ∗. We stress that this above operation does
not modify the cardinality of the matching.

Operation 4 (ATTRACT). While there exist x2 ∈ M2 exposed and {u,w} ∈ F ∗ such that
u ∈ NG(M2), w /∈M2, we replace {u,w} by {u, x2}.

Said otherwise, we give a higher priority on the vertices in M2 to be matched. Again, we
stress that this above operation does not modify the cardinality of the matching. Furthermore,
Operations 3 and 4 are non conflicting since for Attract we only consider exposed vertices in M2

(i.e., not in V (F2)) and matched edges with their both ends in NG(M1) = V \M2.

Let F (0) = F1 ∪ F ∗. Summarizing, we get:

Definition 2. A matching F of G is good if it satisfies the following two properties:

1. every vertex matched by F1 ∪ F2 is also matched by F ;

2. either every vertex in M2 is matched, or there is no matched edge in NG(M2)×NG(M1).

Fact 1. F (0) is a good matching of G.

Main phase: a modified Match and Split. We now apply the following three operations
sequentially:

1. Match(M1, F
(0)) (Operation 1). Doing so, we obtain a larger matching F (1).

Fact 2. F (1) is a good matching of G.

Proof. We still have V (F1 ∪ F2) ⊆ V (F (1)) since we only increase the matching by using
augmenting paths. Furthermore, we do not create any new exposed vertex in M2, nor any
new matched edge in NG(M2)×NG(M1), and so, the second property also stays true. �
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2. Split(M1, F
(1)) (Operation 2). Doing so, we obtain a larger matching F (2).

Fact 3. F (2) is a good matching of G.

3. the operation Unbreak, defined in what follows (see also Fig. 3 for an illustration):

M

M

N(M )

1

1

2

x

x y z

u w

1

2 2 2

Figure 3: An augmenting path of length 5 with ends x1, x2. Matched edges are drawn in bold.

Operation 5 (Unbreak). While there exist x1 ∈M1 and x2 ∈M1 ∪M2 exposed, and there
also exist {y2, z2} ∈ F2 \ F (2), we replace any two edges {y2, u}, {z2, w} ∈ F (2) by the three
edges {x2, u}, {y2, z2} and {w, x1}.

We stress that the two edges {y2, u}, {z2, w} ∈ F (2) always exist since F (2) is a good matching
of G. Furthermore doing so, we obtain a larger matching F (3).

The resulting matching F (3) is not necessarily maximum. However, this matching satisfies the
following crucial property:

Lemma 6. No vertex of M1 can be an end in an F (3)-augmenting path.

Proof. Let x1 ∈ M1 be exposed. Suppose by contradiction x1 is an end of some F (3)-augmenting
path P = (x1 = u1, u2, . . . , u2`). W.l.o.g., P is of minimum length. We will derive a contradiction
from the following invariants:

Claim 1. The following properties hold for every 0 ≤ j ≤ 3:

1. F (j) is a good matching of G;

2. If u2i, u2i+1 ∈ NG(M1) and {u2i, u2i+1} ∈ F (3) then we also have {u2i, u2i+1} ∈ F (j);

3. F1 ⊆ F (j).

Proof. The proof readily follows from the same arguments as for Fact 2. Since we only increase the
successive matchings using augmenting paths, we keep the property that V (F1 ∪ F2) ⊆ V (F (j)).
In fact, since we only consider the exposed vertices in M1 for our operations, we have the stronger
Property 3 that F1 ⊆ F (j). Furthermore, our successive operations do not create any new exposed
vertex in M2 nor any new matched edge in NG(M1) × NG(M1), and so, both Properties 1 and 2
also hold. �

In what follows, we divide the proof in three claims.

Claim 2. u2` ∈M1 ∪M2.
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Proof. Suppose for the sake of contradiction u2` /∈ M1 ∪M2, or equivalently u2` ∈ N(M1). Then,
we could have continued the first step Match(M1, F

(0)) by matching x1, u2` together, that is a
contradiction. �

Next, we derive a contradiction by proving u2` /∈M1 ∪M2.

Claim 3. u2` /∈M1.

Proof. Suppose for the sake of contradiction u2` ∈M1. There are two cases.

1. Case u2, u3 ∈ N(M1). Since {u2, u3} ∈ F (3) we have by Claim 1 {u2, u3} ∈ F (1). In particular,
we could have replaced {u2, u3} by {u2, x1}, {u3, u2`} during the second step of the main phase
(i.e., Split(M1, F

(1))), that is a contradiction.

2. Thus, let us now assume u2 ∈ N(M1) (necessarily) but u3 /∈ N(M1). By minimality of P , we
have u4 /∈ N(M1) (otherwise, P ′ = (x1, u4, u5, . . . , u2`) would be a shorter augmenting path
than P ). We claim that it implies u3 /∈M1. Indeed, otherwise we should also have u4 ∈M1,
and so, {u3, u4} ∈ F1 since we assume that M1 induces a matching. However, {u3, u4} /∈ F (3),
whereas we have by Claim 1 that F1 ⊆ F (3). A contradiction. Therefore, as claimed, u3 /∈M1.
We deduce from the above that u3 ∈ M2. Similarly, since u4 /∈ N(M1) ⊇ N(M2) we get
u4 ∈ M2. Altogether combined (and since M2 induces a matching), {u3, u4} ∈ F2 \ F (3).
Then, we could have continued the step Unbreak with x1 ∈M1 and u2` ∈M1 exposed, and
{u3, u4} ∈ F2 \ F (3), that is a contradiction.

As a result, u2` /∈M1. �

Claim 4. u2` /∈M2.

Proof. Suppose for the sake of contradiction u2` ∈M2. First we prove u2, u3 ∈ N(M1). Indeed, since
u1 is exposed and F1 ⊆ F (3) by Claim 1 we have that u2 ∈ N(M1). Furthermore, if u3 /∈ N(M1)
then we could prove as before (Claim 3, Case 2) {u3, u4} ∈ F2 \F (3); it implies that we could have
continued the step Unbreak with x1 ∈ M1 and u2` ∈ M2 exposed, and {u3, u4} ∈ F2 \ F (3), that
is a contradiction. Therefore, as claimed, u2, u3 ∈ N(M1).

Now, consider the edge {u2`−2, u2`−1} ∈ F (3). Since u2` ∈ M2 is exposed and by Claim 1 we
have V (F2) ⊆ V (F (3)), u2` /∈ V (F2). Furthermore, since E(H2) = F2 we have u2`−1 /∈ M2. There
are two cases.

1. Suppose u2`−2 ∈ M1. Since u2`−2 is matched to u2`−1 /∈ M1 and F1 ⊆ F (3) by Claim 1, we
have that u2`−2 /∈ V (F1). Furthermore, we claim that the edge {u2`−2, u2`−1} was added to
the matching during the second step of the main phase (i.e., Split(M1, F

(1))).

In order to prove this subclaim, we only need to decide the first step where u2`−2 was matched
to any vertex; indeed, our above operations can only consider vertices in M1 that are exposed.
We observe that u2`−2, u2`−1 could not possibly be matched together during the first step
since otherwise, we could have also matched u2`−1 with u2`, thereby contradicting that F ∗

is a maximum-cardinality matching of G \ M1. In addition, recall that we proved above
u2, u3 ∈ N(M1). It implies that u2`−2, u2`−1 were matched together during the second step
since, otherwise, this second step could have continued with x1, u2`−2 ∈ M1 exposed and
{u2, u3} ∈ F (1). Therefore, this claim is proved.
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Then, before the second step of the main phase happened, vertex u2`−1 was matched to some
other vertex in NG(M1). However, since u2`−1 ∈ NG(M2) and u2` ∈M2 is exposed the latter
contradicts that F (1) is good, and so, Claim 1.

2. Thus from now on assume u2`−2 /∈M1. By Claim 1 we have that F (3) is good, and so, since
u2`−1 ∈ NG(M2) and u2` ∈ M2 is exposed we have u2`−2 ∈ M2. Furthermore, u2`−3 /∈ M2

since, otherwise, the final step of the main phase (Unbreak) could have continued with
x1 ∈ M1 and u2` ∈ M2 exposed, and {u2`−3, u2`−2} ∈ F2 \ F (3), that is a contradiction.
However, it implies that P ′ = (x1 = u1, u2, u3, . . . , u2`−3, u2`) is a shorter augmenting path
than P , thereby leading to another contradiction.

As a result, u2` /∈M2. �

Overall since u2` ∈M1∪M2 by Claim 2 but u2` /∈M1∪M2 by Claims 3 and 4, the above proves
that x1 cannot be an end in any F (3)-augmenting path.

Finalization phase: breaking some edges in F1. Intuitively, the matching F (3) may not be
maximum because we sometimes need to borrow some edges of F1 in augmenting paths. So, we
complete our procedure by performing the following two operations:

• Let U1 = N(M1) \ V (F (3)), i.e., U1 contains all the exposed vertices in N(M1). Consider the
subgraph G[M1 ∪ U1] = G[M1]⊕G[U1]. The set U1 is a module of this subgraph. We apply
Split(U1, F

(3)) in G[M1 ∪ U1]. Doing so, we obtain a larger matching F (4).

Fact 4. F (4) is a good matching of G.

• Then, we apply the operation LocalAug, defined next (see also Fig. 4 for an illustration):

M

M

N(M )

1

1

2

x

x y z

a b

1

2 2 2

y1

c

Figure 4: An augmenting path of length 7 with ends x2, c. Matched edges are drawn in bold.

Operation 6 (LocalAug). While there exist x2 ∈ M2 and c ∈ N(M1) exposed, and there
also exist {x1, y1} ∈ F (4) and {y2, z2} ∈ F2 \ F (4), we do the following:

– we remove {x1, y1} and any edge {a, y2}, {b, z2} from F (4);

– we add {x2, a}, {y2, z2}, {b, x1} and {y1, c} in F (4).

We stress that the two edges {y2, a}, {z2, b} ∈ F (4) always exist since F (4) is a good matching
of G. Furthermore doing so, we obtain a larger matching F (5).

Lemma 7. F (5) is a maximum-cardinality matching of G.
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Proof. Suppose for the sake of contradiction that there exists an F (5)-augmenting path P =
(u1, u2, . . . , u2`). W.l.o.g., P is of minimum size. We divide the proof into the following claims.

Fact 5. F (5) is a good matching of G.

Claim 5. u1, u2` /∈M1

Proof. Suppose for the sake of contradiction u1 ∈M1 (the case u2` ∈M1 is symmetrical to this one).
Since F (3) and F (5)⊕P are matchings, the symmetric difference F (3)⊕(F (5)⊕P ) is a disjoint union
of alternating cycles, alternating paths and isolated vertices. In particular, since F (5) ⊕ P can be
obtained from F (3) by using augmenting paths, the symmetric difference F (3)⊕(F (5)⊕P ) is exactly
a disjoint union of isolated vertices and of augmenting paths that can be used for obtaining F (5)⊕P
from F (3). One of these paths must contain u1. As a result, there is also an F (3)-augmenting path
with an end in M1, thereby contradicting Lemma 6. The latter proves, as claimed, u1, u2` /∈M1. �

Claim 6. There is no exposed vertex in N(M1).

Proof. Suppose for the sake of contradiction N(M1) 6⊆ V (F (5)). In particular N(M1) 6⊆ V (F (4)).
We will prove in this situation there can be only one vertex in N(M1) that is left exposed by F (4).
Then, we will derive a contradiction by proving that we can apply the LocalAug operation.

First, we observe that the main phase of our procedure must terminate after its very first step
Match(M1, F

(0)). Indeed, after this step there can be no more exposed vertex in M1, and so, the
other rules cannot apply. Then, we apply the operation Split(U1, F

(3)) in G[M1 ∪ U1] in order to
further match some vertices in N(M1) to the vertices in M1. Doing so, we get the following two
important properties for F (4):

1. if a vertex of N(M1) is matched to a vertex of M1, then this vertex was left exposed by F ∗;

2. F ∗ ⊆ F (4).

Let Q = (w1, w2, . . . , w2q) be a minimum-length F (4)-augmenting path. Such path exist since F (5),
and so, F (4), is not maximum. Let i0 be the minimum index i such that wi ∈ M1. The latter
is well-defined since otherwise, by the above Property 2 Q would be an F ∗-augmenting path in
G \M1, thereby contradicting the maximality of F ∗. Furthermore, w1, w2q /∈ M1, and so, i0 > 1
(the proof is the same as for Claim 5). More generally, we have that i0 is even since, if it were
not the case, by the above Property 1 we would have that (w1, w2, . . . , wi0−1) is an F ∗-augmenting
path in G \M1, thereby again contradicting the maximality of F ∗. There are two cases:

1. Case there exists an edge {x1, y1} ∈ F1 ∩ F (4). Then, there is exactly one exposed vertex
c ∈ NG(M1) (otherwise, the step Split(U1, F

(3)) in G[M1 ∪ U1] could have been continued).
W.l.o.g., w1 6= c. Since w1 /∈ M1, it implies w1 ∈ M2. We consider the alternating subpath
(w1, w2, w3) in Q. Since w2 /∈ M1 and i0 is even, we have w3 /∈ M1 by minimality of i0.
Furthermore, since w1 ∈ M2 is exposed, w2 ∈ N(M2) is matched to w3 and F (4) is good by
Fact 4, w3 /∈ N(M1). Altogether combined, w3 ∈M2. We also have w4 ∈M2 since otherwise,
Q′ = (w1, w4, w5, . . . , w2q) would be a shorter augmenting path than Q, thereby contradicting
the minimality of Q. As a result, {w3, w4} ∈ F2 \ F (4). However, in this case the step
LocalAug will be applied, e.g. with w1 ∈M2 and c ∈ N(M1) exposed, {x1, y1} ∈ F1 ∩ F (4)

and {w3, w4} ∈ F2 \ F (4). In particular, c is matched by F (5), that is a contradiction.
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2. Case F1 ∩ F (4) = ∅. In particular, wi0+1 /∈ M1. Let j0 be the maximum j ≥ i0 + 1
such that wi0+1, wi0+2, . . . , wj /∈ M1. We have j0 < 2q since otherwise, by the above
Property 1 (wi0+1, . . . , w2q) would be an F ∗-augmenting path in G \ M1, thereby contra-
dicting the maximality of F ∗. Thus, wj0+1 ∈ M1. Furthermore, j0 is even since other-
wise, Q′ = (w1, . . . , wi0−1, wj0+1, . . . , w2q) would be a shorter F (4)-augmenting path than
Q, thereby contradicting the minimality of Q. However, then we have by the above Prop-
erty 1 (wi0+1, . . . , wj0) that is an F ∗-augmenting path in G \M1, thereby contradicting the
maximality of F ∗.

Overall, the above proves as claimed that there is no exposed vertex in N(M1). �

It follows from Claims 5 and 6 that u1, u2` ∈ M2. Furthermore we have u1 ∈ M2 is exposed,
{u2, u3} is matched and u2 ∈ NG(M2). Since F (5) is good by Fact 5 we have u3 /∈ N(M1).
Equivalently, u3 ∈M1 ∪M2. The following claim will be instrumental in deriving a contradiction.

Claim 7. F2 ⊆ F (5).

Proof. Suppose for the sake of contradiction there exists {x2, y2} ∈ F2 \ F (5). We prove that
F2 \F (5) ⊆ F2 \F ∗. Indeed, after the two first steps of the main phase we have F2 \F (2) = F2 \F ∗.
The operation Unbreak adds edges of F2 into the matching, hence F2 \ F (3) ⊆ F2 \ F ∗. Then,
after the operation Split(U1, F

(3)) in G[M1 ∪U1] we have F2 \F (4) = F2 \F (3) ⊆ F2 \F ∗. Finally,
the operation LocalAug adds edges of F2 into the matching, hence F2 \ F (5) ⊆ F2 \ F ∗.

However, since F (0) is good, we have V (F2) ⊆ V (F ∗). It implies there exist w,w′ ∈ N(M2) such
that {x2, w}, {y2, w′} ∈ F ∗. In particular we have that (u1, w, x2, y2, w

′, u2`) is an F ∗-augmenting
path in G \M1, thereby contradicting the maximality of F ∗. �

Now, there are two cases.

• Case u3 ∈ M2. We have u4 /∈ N(M2) since otherwise, P ′ = (u1, u4, u5, . . . , u2`) would be
a shorter augmenting path than P , thereby contradicting the minimality of P . Therefore,
{u3, u4} ∈ F2 \ F (5). The latter contradicts Claim 7.

• Case u3 ∈ M1. By maximality of F ∗, u2 was matched in F ∗ (otherwise, we could have
added {u1, u2} in F ∗). Therefore, the edge {u2, u3} was not matched during the operation
Match(M1, F

(0)) nor during the operation Split(U1, F
(3)) in G[M1∪U1]. Furthermore, this

edge was not matched during the operation Split(M1, F
(1)) either since otherwise, u2 would

have been matched in F (1) with some other vertex in N(M1); since u1 ∈ M2 is exposed and
u2 ∈ N(M2), the latter would contradict that F (1) is good (Fact 2). As a result, the edge
{u2, u3} was matched during the Unbreak operation or the LocalAug operation. Both
subcases imply the existence of some edge {x2, y2} ∈ F2 \ F ∗. As in the previous case, the
latter contradicts the maximality of F ∗.

Complexity analysis. Each step of our procedure is corresponding to a while loop. In order to
execute any loop in constant-time we need constant-time access to the following objects:

• exposed vertices in M1,M2 or N(M1). Recall that we have access to a canonical ordering for
every module (i.e., see Section 2). Hence, constant-time access to the exposed vertices can
be ensured up to O(p)-time preprocessing, where p = |V (G′)|.
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• matched edges with at least one end in N(M1). We assume that for every matched vertex
u, we can output in constant-time the unique edge of the matching that contains u. Thus,
constant-time access to these matched edges can be ensured up to O(|NG(M1)|)-time.

We also need constant-time access to the subset of these matched edges that have their other
end: also in NG(M1); in NG(M2); or in V (F2). This takes additional O(|NG(M1)|)-time
preprocessing.

• matched edges in F1. For that, it suffices to scan the canonical ordering of M1, that takes
O(n1)-time.

• finally, unmatched edges in F2. For that, we enumerate the matched edges with their ends in
NG(M2) and M2. Doing so, since E(H2) = F2, we can enumerate for every such end in M2

the unique unmatched edge in F2 to which it is incident.

Altogether combined, after a pre-processing in time O(|NG[M1]|), any loop of the procedure can
be executed in constant-time. Note that O(|NG[M1]|) = O(δ1) = O(∆m(G′)−∆m(G∗)).

We observe that after any loop, a new edge is added to the matching with exactly one end in
M1. Furthermore, this edge is never removed from the matching at an ulterior step. Hence, the
total number of loops is an O(|NG[M1]|). Overall, the total running-time of the procedure is in
O(|NG[M1]|), that is in O(∆m(G′)−∆m(G∗)).

4.3 Pendant

Suppose v1 is pendant in G′. W.l.o.g., v2 is the unique vertex that is adjacent to v1 in G′. This
last case is arguably more complex than the others since it requires both a pre-processing and a
post-processing treatment on the matching.

We note that a particular subcase was solved in [13], namely, when M2 is a trivial module.
However, our techniques for the general case are quite different than the techniques in [13].

First phase: greedy matching. We apply the Match & Split technique to M1. Doing so,
we obtain a set F1,2 of matched edges between M1 and M2. We remove V (F1,2), the set of vertices
incident to an end of F1,2, from G. Then, two situations can occur. In the first situation, this initial
pre-treatment suffices in order to prune M1 (pathological cases). Otherwise, at most one exposed
vertex remains in M1; we arbitrarily break an edge of F2 to match such vertex. More precisely,
there are three cases.

• If M2 ⊆ V (F1,2) then M1\V (F1,2) is now an isolated module. We can apply Reduction rule 1.

• If M1 ⊆ V (F1,2) then M1 is already eliminated. Let F ∗2 contain the edges of F2 that are not
incident to a vertex of M2 ∩ V (F1,2).

We set G∗ = G′ \ v1, P∗ = {H2 \ V (F1,2)} ∪ (P \ {H1, H2}),F∗ = {F ∗2 } ∪ (F \ {F1, F2}).

• The interesting case is when both M1 \V (F1,2) and M2 \V (F1,2) are nonempty. In particular,
suppose there remains an exposed vertex x1 ∈ M1 \ V (F1,2). Since M2 \ V (F1,2) 6= ∅, there
exists {x2, y2} ∈ F2 such that x2, y2 /∈ V (F1,2). We remove x1 from M1, x2 from M2, {x2, y2}
from F2 and then we add {x1, x2} in F1,2.
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Our first result in this section is that there always exists an optimal solution that contains F1,2.
This justifies a posteriori the removal of V (F1,2) from G.

Lemma 8. There is a maximum-cardinality matching of G that contains all edges in F1,2.

Proof. Let M1 = (u1, u2, . . . , un1) and M2 = (w1, w2, . . . , wn2) be canonically ordered w.r.t. F1, F2

(cf. Sec. 2). Furthermore, let u1, u2, . . . , uk be the maximal sequence of exposed vertices in M1

with k ≤ n2. We observe that F1,2 is obtained by greedily matching ui with wi.
Then, let F be any maximum-cardinality matching of G that can be obtained from F1,2 using

augmenting paths. By construction, u1, u2, . . . , uk are matched by F . In particular, since every
ui is isolated in H1 = G[M1], it is matched by F to some vertex in M2. So, let A2 ⊆ M2 be
the vertices matched by F with a vertex in V \M2 (possibly, in M1). Since M2 is a module, we
can always assume that A2 induces a suffix (w1, w2, . . . , wj) of the canonical ordering (i.e., see [13,
Lemma 5.1]). Finally, let B2 ⊆ V \M2, |B2| = |A2|, be the set of vertices matched by F with a
vertex of A2. Note that we have u1, u2, . . . , uk ∈ B2. Since M2 is a module, there are all possible
edges between A2 and B2. As a result, we can always replace the matched edges between A2, B2

by any perfect matching between these two sets without changing the cardinality of F . It implies
that we can assume w.l.o.g. every ui is matched to wi.

We stress that during this phase, all the operations except maybe the last one increase the
cardinality of the matching. Furthermore, the only possible operation that does not increase the
cardinality of the matching is the replacement of an edge in F2 by an edge in F1,2. Doing so, either
we fall in one of the two pathological cases M1 ⊆ V (F1,2) or M2 ⊆ V (F1,2) (easy to solve), or then
we obtain through the replacement operation the following stronger property:

Property 1. All vertices in M1 are matched by F1.

We will assume Property 1 to be true for the remaining of this section.

Second phase: virtual split edges. We complete the previous phase by performing a Split
between M2,M1 (Operation 2). That is, while there exist two exposed vertices x2, y2 ∈ M2 and
a matched edge {x1, y1} ∈ F1 we replace {x1, y1} by {x1, x2}, {y1, y2} in the current matching.
However, we encode the Split operation using virtual edges in H2.

Formally, we add a virtual edge {x2, y2} in H2 that is labeled by the corresponding edge
{x1, y1} ∈ F1. Let H∗2 and F ∗2 be obtained from H2 and F2 by adding all the virtual edges.
We set G∗ = G′ \ v1, P∗ = {H∗2} ∪ (P \ {H1, H2}) and F∗ = {F ∗2 } ∪ (F \ {F1, F2}).

Intuitively, the virtual edges are used in order to shorten the augmenting paths crossing M1.

Third phase: post-processing. Let F ∗ be a maximum-cardinality matching of the subdivision
G∗(P∗) (i.e., obtained by applying our reduction rules to the new instance). We construct a
matching F for G as follows.

1. We add in F all the non virtual edges in F ∗.

2. For every virtual edge {x2, y2}, let {x1, y1} ∈ F1 be its label. If {x2, y2} ∈ F ∗ then we add
{x1, y2}, {x2, y1} in F , otherwise we add {x1, y1} in F . In the first case, we say that we
confirm the Split operation, whereas in the second case we say that we cancel it.

18



3. Finally, we complete F with all the edges of F1 that do not label any virtual edge (i.e., unused
during the second phase).

Lemma 9. F is a maximum-cardinality matching of G.

Proof. Suppose for the sake of contradiction that F is not maximum. Let P = (u1, u2, . . . , u2`)
be a shortest F -augmenting path. In order to derive a contradiction, we will transform P into an
F ∗-augmenting path in G∗(P∗). For that, we essentially need to avoid passing by M1, using instead
the virtual edges. In the first part of the proof, we show that P intersects M1 in at most one edge
(Claim 11). We need a few preparatory claims in order to prove this result.

First we observe that the two ends of P cannot be in M1:

Claim 8. M1 ⊆ V (F ). In particular, u1, u2` /∈M1.

Proof. According to Property 1, all vertices in M1 are matched by F1. Our procedure during the
third phase ensures that V (F1) ⊆ V (F ), and so, M1 ⊆ V (F ). �

Then, we prove that for every {x1, y1} ∈ F we have either x1, y1 /∈ V (P ) or {x1, y1} ∈ E(P ).
This result follows from the combination of Claims 9 and 10.

Claim 9. Let {x1, y1} ∈ F . Either x1, y1 ∈ V (P ) or x1, y1 /∈ V (P ).

Proof. Suppose for the sake of contradiction x1 ∈ V (P ) but y1 /∈ V (P ). Up to reverting the path
P we have x1 = u2i+1 for some i. Then, since we have y1 /∈ V (P ) and M1 induces a matching,
u2i+2 /∈ M1. It implies u2i+2 ∈ M2. Furthermore, our construction ensures that u2i (the vertex
matched with x1) was left exposed by F2. Indeed, u2i must be an end of a virtual edge (cf. Second
phase). Since E(H2) = F2 it implies u2i−1 /∈ M2. Finally, since u2i−1 ∈ NG(M2) and M2 is
a module, P ′ = (u1, u2, . . . , u2i−1, u2i+2, . . . , u2`) is a shorter augmenting path than P , thereby
contradicting the minimality of P . �

Claim 10. Let ui, uj ∈ V (P ) ∩M1, j > i, such that {ui, uj} ∈ F1. Then, j = i+ 1.

Proof. The result trivially holds if {ui, uj} ∈ F . Thus, we assume from now on {ui, uj} /∈ F . We
need to consider the following cases:

• Case i odd, j even. Since P ′ = (u1, u2, . . . , ui−1, ui, uj , uj+1, . . . , u2`) is also an augmenting
path, we get j = i+ 1 by minimality of P .

• Case i odd, j odd. Note that uj+1 /∈ M1 since we assume {ui, uj} ∈ F1 and M1 in-
duces a matching. Then, since uj+1 ∈ NG(M1) and M1 is a module we have that P ′ =
(u1, u2, . . . , ui−1, ui, uj+1, . . . , u2`) is a shorter augmenting path than P , thereby contradict-
ing the minimality of P .

• Case i even, j even. Note that ui−1 /∈ M1 since we assume {ui, uj} ∈ F1 and M1 in-
duces a matching. Then, since ui−1 ∈ NG(M1) and M1 is a module we have that P ′ =
(u1, u2, . . . , ui−1, uj , uj+1, . . . , u2`) is a shorter augmenting path than P , thereby contradict-
ing the minimality of P .
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• Case i even, j odd. As before, we have ui−1, uj+1 /∈ M1, that implies ui−1, uj+1 ∈ M2. We
observe that {ui+1, uj−1} is a virtual edge labeled by {ui, uj}. In particular, ui+1, uj−1 are
isolated in M2, and so, ui+2, uj−1 /∈ M2. It implies, since ui+2, uj−1 ∈ NG(M2) and M2 is a
module, P ′ = (u1, u2, . . . , ui−1, ui+2, . . . , uj−1, uj+1, . . . , u2`) is shorter augmenting path than
P , thereby contradicting the minimality of P .

Overall the first case implies, as claimed, j = i+ 1, whereas all other cases lead to a contradiction.
Therefore, j = i+ 1. �

Finally, our last preparatory claim is that P can cross the module M1 in at most one edge.

Claim 11. |E(P ) ∩ F1| ≤ 1.

Proof. Suppose by contradiction there exist {ui, ui+1}, {uj , uj+1} ∈ F1 ∩ E(P ), for some i < j.
Since M1 induces a matching, ui−1, uj−1 /∈M1. There are three cases.

• Case i, j even. Then, P ′ = (u1, . . . , ui−1, uj , uj+1, . . . , u2`) is a shorter augmenting path than
P , thereby contradicting the minimality of P .

• Case i, j odd. Then, P ′ = (u1, . . . , ui, uj−1, uj , . . . , u2`) is a shorter augmenting path than P ,
thereby contradicting the minimality of P .

• Case i even, j odd (Case i odd, j even is symmetrical to this one). Then,
P ′ = (u1, . . . , ui−1, uj+1, . . . , u2`) is a shorter augmenting path than P , thereby contradicting
the minimality of P .

We note that in order to prove this result, we did not use the fact that M1 is pendant. �

Let {ui0 , ui0+1} be the unique edge in E(P )∩F1. Such edge must exist since otherwise, P would
also be an F ∗-augmenting path. In order to derive a contradiction, we are left to replace {ui0 , ui0+1}
with a virtual edge. We prove next that it can be easily done if i0 is odd, i.e., {ui0 , ui0+1} /∈ F .
Indeed, in such case we observe that {ui0−1, ui0+2} is the virtual edge that is labeled by {ui0 , ui0+1}.
Furthermore, {ui0−1, ui0+2} ∈ F ∗ since we confirmed the Split. Therefore, we will assume from
now on that i0 is even, i.e., {ui0 , ui0+1} ∈ F .

We will need the following observation:

Claim 12. The vertices ui0−1, ui0+2 are the only vertices in M2 ∩ V (P ).

Proof. Suppose for the sake of contradiction this is not the case. By symmetry, we can assume the
existence of an index j < i0 − 1 such that uj ∈ M2. Furthermore, j is even since otherwise, P ′ =
(u1, . . . , uj , ui0 , ui0+1, . . . , u2`) would be a shorter augmenting path than P , thereby contradicting
the minimality of P . For the same reason as above, we also have uj+1 /∈ M2. However, since
uj+1 ∈ NG(M2) and M2 is a module, it implies that P ′ = (u1, . . . , uj , uj+1, ui0+2, . . . , u2`) would
be a shorter augmenting path than P , thereby contradicting the minimality of P . �

There are three cases.

1. Case ui0−1, ui0+2 /∈ V (F ∗2 ) (left unmatched by F ∗2 ). There exists a virtual edge {x2, y2} that is
labeled by {ui0 , ui0+1} (otherwise, the second phase could have continued with ui0−1, ui0+2 and
{ui0 , ui0+1}). The two of x2, y2 cannot be matched together in F ∗ since we have {ui0 , ui0+1} ∈
F . Nevertheless, since x2, y2 are adjacent in the subdivision G∗(P∗), at least one of the two
vertices, say x2, is matched by F ∗. There are two subcases.
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(a) Subcase y2 is exposed. Let {w, x2} ∈ F ∗. Since w 6= x2 we have w /∈ M2. Then,
P ∗ = (u1, u2, . . . , ui0−1, w, x2, y2) is an F ∗-augmenting path, thereby contradicting the
maximality of F ∗.

(b) Subcase y2 is matched. Let {w, x2}, {w′, y2} ∈ F ∗. As before, w,w′ /∈ M2. Then,
P ∗ = (u1, u2, . . . , ui0−1, w, x2, y2, w

′, ui0+2, . . . , u2`) is an F ∗-augmenting path, thereby
contradicting the maximality of F ∗.

2. Case {ui0−1, ui0+2} ∈ F ∗2 . We have {ui0−1, ui0+2} /∈ F ∗. Hence, we have that P ∗ =
(u1, u2, . . . , ui0−1, ui0+2, . . . , u2`) is an F ∗-augmenting path, thereby contradicting the maxi-
mality of F ∗.

3. Case {ui0−1, w} ∈ F ∗2 for some w 6= ui0+2. There are two subcases.

(a) Subcase w is exposed. Then, P ∗ = (u1, u2, . . . , ui0−1, w) is an F ∗-augmenting path,
thereby contradicting the maximality of F ∗.

(b) Subcase w is matched. Let {w,w′} ∈ F ∗. As before, w′ /∈M2. Then,
P ∗ = (u1, u2, . . . , ui0−1, w, w

′, ui0+2, . . . , u2`) is an F ∗-augmenting path, thereby contra-
dicting the maximality of F ∗.

Summarizing, by the contrapositive we get F ∗ maximum for G∗(P∗) =⇒ F maximum for G.

Complexity. The complexity of this reduction rule is essentially dominated by Match and Split
operations. Therefore, the total running time is an O(δ1), that is in O(∆m(G′)−∆m(G∗)).

4.4 Main result

Our framework consists in applying any reduction rule presented in this section until it can no more
be done. Then, we rely on the following result:

Theorem 3 ( [13]). For every 〈G′,P,F〉, we can solve Module Matching in O(∆µ · p4)-time.

We are now ready to state our main result in this paper.

Theorem 4. Let G = (V,E) be a graph. Suppose that, for every prime subgraph H ′ in the modular
decomposition of G, its pruned subgraph has order at most k. Then, we can solve Maximum
Matching for G in O(k4 · n+m log n)-time.

Proof. By Lemma 2, it suffices to solve Module Matching for any 〈H ′,P,F〉, with H ′ in the
modular decomposition of G, in time O(p + ∆m · log p + k4 · ∆µ). For that, we start computing
the pruned subgraph Hpr of H, and a corresponding pruning sequence. By Proposition 1, it can
be done in O(p + ∆m · log p)-time. Then, we follow the pruning sequence and at each step, we
apply the reduction rule that corresponds to the current one-vertex extension. Doing so, we pass
by various intermediate instances 〈Hj ,Pj ,F j〉. For any rule we apply, the pre-processing time for
passing from 〈Hj ,Pj ,F j〉 to the next instance 〈Hj+1,Pj+1,F j+1〉 is an O(∆m(Hj)−∆m(Hj+1)).
Similarly, the post-processing time for computing a solution for 〈Hj ,Pj ,F j〉 from a solution for
〈Hj+1,Pj+1,F j+1〉 is an O(∆m(Hj)−∆m(Hj+1)). Therefore, the total running time for applying
all the reduction rules is an O(∆m). Finally, we are left with solving Module Matching on a
reduced instance 〈Hpr,Ppr,Fpr〉. We stress that if H ′ is degenerate (complete or edgeless) then
Hpr is trivial, otherwise by the hypothesis Hpr has order at most k. As a result, by Theorem 3 we
can solve Module Matching on the reduced instance in O(∆µ · k4)-time.
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5 Applications

We conclude this paper presenting applications of our main result to some graph classes (Theo-
rem 4). Some interesting refinements of our framework are also presented in Section 5.2.

5.1 Graphs totally decomposable by the pruned modular decomposition

Cographs are exactly the graphs that are totally decomposable by modular decomposition [12]. We
show that three distinct generalizations of cographs in the literature are totally decomposable by
the pruned modular decomposition.

Distance-hereditary graphs. A graph G = (V,E) is distance-hereditary if it can be reduced
to a singleton by pruning sequentially the pendant vertices and twin vertices [3]. Conversely, G is
co-distance hereditary if it is the complement of a distance-hereditary graph, i.e., it can be reduced
to a singleton by pruning sequentially the anti-pendant vertices and twin vertices. In both cases,
the corresponding pruning sequence can be computed in linear-time [18, 22]. Therefore, we can
derive the following result from our framework:

Proposition 2. We can solve Maximum Matching in linear-time on graphs that can be modularly
decomposed into distance-hereditary graphs and co-distance hereditary graphs.

In particular, we can solve Maximum Matching in linear-time on distance-hereditary graphs
and co-distance hereditary graphs.

We stress that even for distance-hereditary graphs, we may need to use the reduction rule of
Section 4.3 for pendant modules. Indeed, as we follow the pruning sequence, we may encounter twin
vertices and merge them into a single module. Hence, even in the simpler case of distance-hereditary
graphs, we need to handle with modules instead of just handling with vertices. In the same way,
even for co-distance hereditary graphs, we may need to use the reduction rule of Section 4.2 for
anti-pendant modules.

Trees are a special subclass of distance-hereditary graphs. We say that a graph has modular
treewidth at most k if every prime quotient subgraph in its modular decomposition has treewidth
at most k3. In particular, graphs with modular treewidth at most one are exactly the graphs that
can be modularly decomposed into trees. We stress the following consequence of Proposition 2:

Corollary 5. We can solve Maximum Matching in linear-time on graphs with modular-treewidth
at most one.

The case of graphs with modular treewidth k ≥ 2 is left as an intriguing open question.

Tree-perfect graphs. Two graphs G1, G2 are P4-isomorphic if there exists a bijection from G1

to G2 such that, for every induced P4 in G1, its image in G2 also induces a P4 [11]. The notion of
P4-isomorphism plays an important role in the study of perfect graphs. A graph is tree-perfect if it
is P4-isomorphic to a tree [8]. We prove the following result:

Proposition 3. Tree-perfect graphs are totally decomposable by the pruned modular decomposition.
In particular, we can solve Maximum Matching in linear-time on tree-perfect graphs.

3Our definition is more restricted than the one in [49] since they only impose the quotient subgraph G′ to have
bounded treewidth.
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Our proof is based on a deep structural characterization of tree-perfect graphs [8]. Before stating
this characterization properly, we need to introduce a few additional graph classes.

Figure 5: Examples of tree-perfect graphs [8]. The sets Q,R, S represent modules substituting the
vertices q, r, vn.

Given a vertex-ordering (v1, v2, . . . , vn) let N<i(vi) = N(vi) ∩ {v1, v2, . . . , vi−1}. A graph is
termed elementary if it admits a vertex-ordering (v1, v2, . . . , vn) such that, for every i:

N<i(vi) =

{
{v1, v2, . . . , vi−2} if i is odd

{vi−1} otherwise.

Note that such ordering as above is a pruning sequence by pendant and anti-pendant vertices.
The classes Cj , j = 1, 2, 3 contain all the graphs that can be obtained from an elementary graph,

with ordering (v1, v2, . . . , vn), by adding the three new vertices p, q, r and the following set of edges:

• (for all classes) {p, vi}, {q, vi}, {r, vi} for every i > 1 odd;

• (only for C1) {v1, q}, {p, r} and {v2, p};

• (only for C2) {p, q}, {p, r}, {q, r}, {v1, q} and {v2, r};

• (only for C3) {p, q}, {p, r} and {v1, r}.

The graphs H1, H2 are illustrated in Fig. 5

Tree-perfect graphs are fully characterized in [8], and a linear-time recognition algorithm can
be derived from this characterization. We will only use a weaker form of this result:

Theorem 6 ( [8]). A graph G = (V,E) is a tree-perfect graph only if every nontrivial module
induces a cograph and the quotient graph G′ is in one of the following classes or their complements:
trees; elementary graphs; C1 ∪ C2 ∪ C3; H1 or H2.

We can now apply Theorem 6 in order to conclude, as follows:

Proof of Proposition 3. Let G = (V,E) be a tree-perfect graph. By Theorem 6 every nontrivial
module induces a cograph. It implies that all the subgraphs in the modular decomposition of G,
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except maybe its quotient graph G′, are cographs, and so, totally decomposable by the modular
decomposition. We are left with proving that G′ is totally decomposable by the pruned modular
decomposition.

The latter is immediate whenever G is a tree, H1, H2 or a complement of one of these graphs.
Furthermore, we already observed that elementary graphs can be reduced to a singleton by pruning
pendant and anti-pendant vertices sequentially. Therefore elementary graphs and their comple-
ments are also totally decomposable by the pruned modular decomposition.

C

C

C1 2

3

pq rv v1 2

v v1 2

q r

p

v2 v1 r p q

Figure 6: Small tree-perfect graphs with 5 vertices.

Finally, we prove that graphs in C1 ∪ C2 ∪ C3 are totally decomposable (this will prove the same
for their complements). Recall that every graph G′ ∈ Cj , j = 1, 2, 3 can be obtained from an
elementary graph H with ordering (v1, v2, . . . , vn) by adding three new vertices p, q, r and a set of
specified edges. Furthermore, for every odd i, resp. for every even i, we have that vi is anti-pendant,
resp. pendant, in H \ {vi+1, . . . , vn}. Since p, q, r are made adjacent to every vi for i > 1 odd,
and nonadjacent to every vi for i > 2 even, this above property stays true in G′ \ {vi+1, . . . , vn}.
As a result, we can remove the vertices vn, vn−1, . . . , v3 sequentially. We are left with studying the
subgraph induced by p, q, r, v1, v2. The latter subgraph is a path if G′ ∈ C1 ∪ C3, otherwise it is a
house (cf. Fig. 6). In both cases, such subgraph can be totally decomposed by pruning pendant
and anti-pendant vertices sequentially.

Other generalizations. Finally, the c-decomposition is a lesser-known generalization of the
modular decomposition studied in [40, 51]. It was proved in [40] that the graphs totally decompos-
able by the c-decomposition are exactly the graphs that can be reduced to a singleton by pruning
pendant and universal vertices sequentially.

Proposition 4. We can solve Maximum Matching in linear-time on the graphs that are totally
decomposable by the c-decomposition.

5.2 The case of unicycles

We end up this section with a refinement of our framework for the special case of unicyclic quotient
graphs (a.k.a., graphs with exactly one cycle).

Proposition 5. We can solve Maximum Matching in linear-time on the graphs that can be
modularly decomposed into unicycles.

Proof. By Lemma 2, it suffices to show that on every instance 〈G′,P,F〉 such that G′ is a unicycle,
we can solve Module Matching in O(∆m)-time. Recall that G′ is a unicycle if it can be reduced
to a cycle by pruning the pendant vertices sequentially. Therefore, in order to prove the result, we
only need to prove it when G′ is a cycle.
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Given an edge e = {vi, vj} ∈ E(G′), our strategy consists in fixing the number µi,j of matched
edges with one end in Mi and the other end in Mj . By [13, Lemma 5.1], we can always assume that
the ends of these µi,j edges are the µi,j first vertices in a canonical ordering of Mi (w.r.t. Fi), and in
the same way, the µi,j first vertices in a canonical ordering of Mj (w.r.t. Fj). We can remove these
above vertices from Mi,Mj and update the matchings Fi, Fj accordingly. Doing so, we can remove
the edge {vi, vj} from G′. Then, since G′ \ e is a path, we can systematically apply the reduction
rule for pendant modules (Section 4.3). Overall, we test for all possible number of matched edges
between Mi and Mj and we keep any one possibility that gives the largest matching.

In order to apply our strategy, we choose any edge e such that |Mi| is minimized. Doing so,
there can only be at most O(ni) ≤ O(∆m/p) possibilities for µi,j , where p = |V (G′)|. However, we
are not done yet as we now need to test for every possibility in O(p)-time. A naive implementation
of this test, using the reduction rule of Section 4.3, would run in O(∆m)-time. We propose a faster
implementation that only computes the cardinality of the solution (i.e., not the matching itself).
The latter is enough in order to compute the optimum value for µi,j . Then, once this value is fixed,
we can run the naive implementation in order to compute a maximum-cardinality matching.

W.l.o.g., i = 1, j = p. For every t let nt = |Mt|. Furthermore, let µt = |Ft|. Note that
there are exactly nt − 2µt vertices in Mt that are left exposed by Ft. We also maintain a counter
µ representing the cardinality of the current matching. Initially µ = µi,j . Then, we proceed as
follows:

• We start removing the µi,j first vertices in a canonical ordering of Mi w.r.t. Fi. More
precisely, we decrease ni by µi,j . If µi,j ≤ ni − 2µi then we only removed exposed vertices
and there is nothing else to change. Otherwise, we also need to decrease µi by exactly
d(µi,j − ni + 2µi) /2e. We proceed similarly for Mj .

After that, we can remove e fromG′. We have thatG′/e is isomorphic to the path (v1, v2, . . . , vp).
This first step takes constant-time.

• Then, for every 1 ≤ t < p, we simulate the reduction rule of Section 4.3 sequentially. More
precisely:

1. Let kt = min{nt − 2µt, nt+1} be the maximum number of exposed vertices in Mt that
can be matched with a vertex of Mt+1 in the first phase. We decrease nt, nt+1 by kt.
Furthermore, the size µ of the current matching is also increased by kt.

If kt ≤ nt+1−2µt+1 then we only remove exposed vertices fromMt+1 and so, there is noth-
ing else to be done. Otherwise, we also need to decrease µt+1 by exactly d(kt − nt+1 + 2µt+1) /2e.
We fall in a degenerate case if kt = nt or kt = nt+1. In the former case, we do not
modify the value of µ, however in the latter case (Mt is now an isolated module) we can
increase this value by µt. For both degenerate cases, we continue directly to the next
vertex vt+1. Otherwise, we go to Step 2.

2. Let k′t = min{b(nt+1 − 2µt+1)/2c , µt} be the number of virtual edges that we create
during the second phase. We increase µt+1 by exactly k′t.

3. Finally, in order to simulate the third phase, we claim that we only need to increase µ
by exactly µt. Indeed, after a solution F ∗t was obtained for (vt+1, . . . , vp) the reduction
rule proceeds as follows. Either we confirm a Split operation, i.e., we replace a virtual
matched edge in F ∗t by two edges between Mt,Mt+1; or we cancel the Split operation,
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i.e., we add an edge of Ft in the current matching. In both cases, the cardinality of
the solution increases by one. Then, all the edges of Ft that were not used during the
second phase are added to the current matching. Overall, we have as claimed that the
cardinality of the solution increases by exactly µt.

The procedure ends for t = p. In this situation, the quotient subgraph is reduced to a single node,
and so, we only need to increase the current size µ of the matching by µp. Summarizing, since all
the steps of this procedure take constant-time, the total running-time is an O(p).

6 Open problems

The pruned modular decomposition happens to be an interesting add up in the study of Max-
imum Matching algorithms. An exhaustive study of its other algorithmic applications remains
to be done. Moreover, another interesting question is to characterize the graphs that are totally
decomposable by this new decomposition.

We note that our pruning process can be seen as a repeated update of the modular decomposition
of a graph after some specified modules (pendant, anti-pendant) are removed. However, we can
only detect a restricted family of these new modules (universal, isolated, twins). A fully dynamic
modular decomposition algorithm could be helpful in order to further refine our framework.

Finally, in a companion paper [23], we propose another approach for Maximum Matching
that is based on split decomposition, and that partly overlaps the cases seen in this paper. The
combination of both framework looks like a challenging task.
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[8] A. Brandstädt and V. Le. Tree-and forest-perfect graphs. Discrete applied mathematics, 95(1-3):141–
162, 1999.

[9] H. Bunke. Graph matching: Theoretical foundations, algorithms, and applications. In Proc. Vision
Interface, volume 2000, pages 82–88, 2000.

[10] M. Chang. Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs. In
International Symposium on Algorithms and Computation, pages 146–155. Springer, 1996.

26
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