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S U M M A R Y
The rank-sum multiple change-point method is a robust statistical procedure designed to search
for the optimal number and the location of change points in an arbitrary continue or discrete
sequence of values. As such, this procedure can be used to analyse time-series data. Twelve
years of robust data sets for the Séchilienne (French Alps) rockslide show a continuous increase
in average displacement rate from 50 to 280 mm per month, in the 2004–2014 period, followed
by a strong decrease back to 50 mm per month in the 2014–2015 period. When possible
kinematic phases are tentatively suggested in previous studies, its solely rely on the basis of
empirical threshold values. In this paper, we analyse how the use of a statistical algorithm for
change-point detection helps to better understand time phases in landslide kinematics. First, we
test the efficiency of the statistical algorithm on geophysical benchmark data, these data sets
(stream flows and Northern Hemisphere temperatures) being already analysed by independent
statistical tools. Second, we apply the method to 12-yr daily time-series of the Séchilienne
landslide, for rainfall and displacement data, from 2003 December to 2015 December, in
order to quantitatively extract changes in landslide kinematics. We find two strong significant
discontinuities in the weekly cumulated rainfall values: an average rainfall rate increase is
resolved in 2012 April and a decrease in 2014 August. Four robust changes are highlighted
in the displacement time-series (2008 May, 2009 November–December–2010 January, 2012
September and 2014 March), the 2010 one being preceded by a significant but weak rainfall
rate increase (in 2009 November). Accordingly, we are able to quantitatively define five
kinematic stages for the Séchilienne rock avalanche during this period. The synchronization
between the rainfall and displacement rate, only resolved at the end of 2009 and beginning
of 2010, corresponds to a remarkable change (fourfold increase in mean displacement rate)
in the landslide kinematic. This suggests that an increase of the rainfall is able to drive an
increase of the landslide displacement rate, but that most of the kinematics of the landslide is
not directly attributable to rainfall amount. The detailed exploration of the characteristics of
the five kinematic stages suggests that the weekly averaged displacement rates are more tied to
the frequency or rainy days than to the rainfall rate values. These results suggest the pattern of
Séchilienne rock avalanche is consistent with the previous findings that landslide kinematics
is dependent upon not only rainfall but also soil moisture conditions (as known as being more
strongly related to precipitation frequency than to precipitation amount). Finally, our analysis
of the displacement rate time-series pinpoints a susceptibility change of slope response to
rainfall, as being slower before the end of 2009 than after, respectively. The kinematic history
as depicted by statistical tools opens new routes to understand the apparent complexity of
Séchilienne landslide kinematic.

Key words: Creep and deformation; Europe; Geomechanics; Statistical methods; Time-
series analysis.

C© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1231

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/213/2/1231/4858391 by C

N
R

S - ISTO
 user on 19 O

ctober 2021

mailto:amorese@ipgp.fr


1232 D. Amorese et al.

1 I N T RO D U C T I O N

The mitigation of landslide hazard is receiving tremendous atten-
tion in many parts of the World. Two main approaches help to
assess the risk: the static approach (prevention) consists in map-
ping of the landslide susceptibility, whereas the dynamic approach
aims to predict the spatial-temporal progress of landslides through
monitoring and mathematical/physical models. The role played by
antecedent rainfall in the triggering of landslide is not a matter of
debate (Van Asch et al. 1999; Godt et al. 2006): it prompts sev-
eral authors (Ray & Jacobs 2007; Ponziani et al. 2012; Brocca
et al. 2012) to propose rainfall and soil moisture thresholds in the
design of early warning system. Thus, most landslide warning sys-
tems use thresholds that are tied to recent precipitation amounts
and durations. Baum & Godt (2010) in their compilation study
for precipitation thresholds across the USA reported that, at every
scale (including county and nation), there is no consensus on these
values: variations of several orders of magnitude are frequently ob-
served. Our study proposes a slight different approach: we do not
focus on rainfall events that resulted or did not result in landslide.
Our attention is primarily focused on surface landslide displace-
ment values (and associated rainfall series). Indeed, it has been
shown that a more accurate prediction of the occurrence of failure
can be obtained by measuring the landslide displacement rates than
by analysing rainfall intensity-duration diagrams (Federico et al.
2004). Actually, as for rainfall, there is no consensus on velocity
threshold values for alerts: for instance, for creeping-type rock-
slides, the critical values may differ by an order of magnitude from
one site to another, from tens to several hundred mm d−1 (Crosta &
Agliardi 2003). We conduct an analysis that is related to this critical
issue of the definition of thresholds, but assessing the reliability
of the correlation between the probability of occurrence of a land-
slide and rainfall measurements is not our primary objective. When
a landslide is monitored, there is interest in determining whether
changes in displacement measurements are the results of random
chaotic processes or indicate significant and lasting changes in the
underlying physics (or in the way data are collected/processed). If
the change is significant, then identifying when it occurs and quan-
tifying its significance can be important breakthroughs toward the
identification of the triggering processes and the onset of possible
early warning strategies. Incidentally, analysing the dynamics of
landslide is a pre-requisite in the most sophisticated applications of
the statistical impulse response model for the prediction of land-
slide velocities (Abellán et al. 2015; Bernardie et al. 2015). The
analysis of the time evolution and/or the cross-correlation of mea-
surements collected on landslides is part of the ordinary course of
research on solid flow hazards (Hungr et al. 2005; Helmstetter &
Garambois 2010; Crosta et al. 2014; Rianna et al. 2014; Benoit
et al. 2015; Schlögel et al. 2015; Confuorto et al. 2017). But so
far, no reproducible method of analysis has been applied on these
kinds of data for the determination of successional stages. In this
paper, a non-parametric technique for the detection of changes in
time-series, first introduced by Lanzante (1996), is applied to the
time-series of the Séchilienne landslide. The purpose of this study
is to improve the description of the landslide kinematics (definition
of motion acceleration or deceleration stages) and then to better
assess which factors (average rainfall rate, rainfall frequency and
intense rainfall event) influence the Séchilienne landslide evolu-
tion. In the first part of this work, the efficiency and outcomes of
the methodology are tested on natural and synthetic data sets. Then,
landslide displacement and rainfall series are analysed. Eventu-
ally, this approach allows to sort out a list of features of the five

kinematic stages of the Séchilienne rock avalanche in the 2003–
2015 period.

2 S T U DY S I T E A N D DATA

The Séchilienne landslide is located on the southern slope of the
Mont-Sec Massif in the Dauphiné region (French Alps). The most
unstable part of the landslide (estimated volume: 3 ×106 m3) is
threatening the main communication axis between major alpine
cities, Grenoble and Briançon cities, and including key access to
both regional ski resorts and northern Italy region. Formation of
a landslide dam lake into the downslope Romanche river valley is
another possible major issue of the earthfall. The survey of the site
began in 1985, including dense displacement and weather measure-
ments. The surface strain monitoring of the Séchilienne landslide
in fully operated by the CEREMA (Centre d’Etudes et d’Expertise
sur les Risques, l’Environnement, la Mobilité et l’Aménagement)
of Lyon (Kasperski et al. 2010). In this study, we use displace-
ment data from the most active zone of the landslide, that is, those
acquired by extensometer 13 (Fig. 1). We investigate lengthening
values that have been collected every day by the extensometer 13
from 2003 December 1 to 2015 December 31 for a total of 4337
recordings. The Vizille weather station (latitude: 45.0802◦ N; longi-
tude: 5.7694◦ E; elevation: 290 m) maintained by Sébastien Pierart
(ROMMA association) is located about 3.5 km NW of the land-
slide and operated on the whole time period. It is also sampled at a
daily rate. Several authors (Durville et al. 2009; Chanut et al. 2013;
Vallet et al. 2013) raised the importance of the sampling rate for
the analysis of the Séchilienne data. Durville et al. (2009), for ex-
ample, performed analyses for annual, monthly, 10 d and daily data,
respectively. Chanut et al. (2013) smoothed the displacement data
over 2 or 4 weeks and at the same time, these authors computed
weighted cumulative sums over months for the rainfall data. Vallet
et al. (2013) emphasized that the monthly resolution is too low to
resolve the impact of rainfall events on displacement rates. These
same authors stressed that hourly time steps are unsuitable to capture
the inertia of the hydrosystem that impacts landslide displacement
rates, which was demonstrated by Helmstetter & Garambois (2010).
For all these reasons, we investigate here two data rates: daily and
weekly (7-d) accumulated values.

3 N O N - PA R A M E T R I C A N D
F R E Q U E N T I S T C H A N G E - P O I N T
A NA LY S I S

3.1 Method

Different approaches have been developed to deal with the change-
point determination problem (see Horváth & Rice 2014). Indeed, the
detection of changes within series of observations arises in various
branches of applied sciences: computer science for the detection of
network intrusions and frauds (Yamanishi et al. 2000), bioinformat-
ics for gene identification (Erdman & Emerson 2007), finance for
modeling, public health for routine disease surveillance (Salmon
et al. 2014), ocean engineering for wave heights analysis (Killick
et al. 2010), climatology for radiosonde data analysis (Lanzante
1996), seismology for earthquake rates (Touati et al. 2016), etc.

Lanzante (1996) fully described the procedure that we adopted
for the analysis of our landslide data time-series. This is an ite-
rative method designed to search for multiple change points
in an arbitrary time-series. This approach, which uses resistant,
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The Séchilienne rock avalanche time-series 1233

Figure 1. The Séchilienne rock avalanche location map. (a) Location of the studied area in SW of France. (b) Location of Séchilienne landslide on IGN
RGEAlti 5 m dem. (c) SPOT 2014 image of the Séchilienne landslide. The extensometers 13 and 16 are displayed in white circles. The instable area is in yellow
line. The projection used is Lambert Conformal Conic 93 and the Geographic Coordinate System is the GCS RGF 1993.
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robust and non-parametric statistical techniques, has already been
applied successfully for the analysis of climate (Lanzante 1996;
Lanzante et al. 2003) or seismological data (Amorèse 2007). Lan-
zante’s method is an extension of the change-point test (Siegel &
Castellan Jr 1988). The test follows the classic Wilcoxon–Mann–
Whitney (WMW) non-parametric test, also referred to as Wilcoxon
rank sum test (Wilcoxon 1945) or the Mann–Whitney U test (Mann
& Whitney 1947). Only when the assumption of homogeneity of
variances is made, the WMW test can be viewed as a median test.
Nevertheless, the WMW test is basically a test for the difference
of the sums of ranks of the observations under study. In Lanzante’s
method, it is in that light that the WMW test must be viewed, with
the assumption that the difference in the sums of ranks mirrors the
difference between statistical populations. Thus, the assumption of
homogeneity of variances (identically distributed data) is not re-
quired in this application of the WMW statistics. The method can
be called the rank-sum multiple change-point method (hereafter
RSMCPM).

At each point i in the series of n points, the sum of the ranks (SRi)
from the beginning of the series to that point is calculated. Since the
sum of the ranks depends on the number of points, SRi is adjusted.
Then, an adjusted value for the sum of the ranks, SAi, is:

SAi =| (2SRi ) − i(n + 1) | (1)

In the right-hand side of equation (1), i(n + 1), is connected with

E(Wi ) = i(n + 1)/2 (2)

which is the expected value of the rank sum for the i first observed
ranks out of a total of n points. The next step of the procedure is to
find the maximum of SAi to divide the series into two segments. The
point n1 being where the value of SAi is maximum, the following
variables are defined:

W = SRn1 (3)

and

n2 = n − n1. (4)

After this, the WMW test is used to decide whether or not the
null hypothesis (that there is no change in the sequence at n1) is
rejected, in favour of the alternative hypothesis. In this study, the
chosen level of significance is 5 per cent as the generally accepted
and expected alpha (type I error rate) value in most disciplines for
statistical tests. The RSMCPM is applied to a given series as long
as the statistical significance of each new change point is less than
the specified significance level. For each iteration, a list of N change
points is delivered that defined N + 1 segments. At each iteration,
the series is adjusted by subtracting the median of its segment from
each point.

Additionally to change-point significance probabilities and fol-
lowing Lanzante (1996), a signal-to-noise ratio (SNR) which quan-
tifies the magnitude of each discontinuity is computed. For a given
change point, this ratio appraises the variability associated with the
shift in level between the adjacent segments relative to the variability
within each segment:

SNR = S2
CP

S2
N

(5)

where S2
CP is the variance owing to the shift in level between the

segments adjacent to the change point and S2
N is the noise variance.

The value of S2
CP is (Lanzante 1996):

S2
CP = n1(X̄1 − X̄ )2 − n2(X̄2 − X̄ )2

n − 1
(6)

where n1 and n2 are the number of values in the left and right
segments (segments are right-closed and left-open intervals) re-
spectively (n1 + n2 = n). X̄1 and X̄2 are the estimates of the mean
values in these two segments. X̄ is the overall mean:

X̄ = n1 X̄1 + n2 X̄2

n
. (7)

The noise variance, S2
N , is the variance of the combination of the two

segments after they were normalized by subtracting X̄1 or X̄2 from
all of the values in the left or right segment. It should be noted that
the length for determining the SNR can be customized: 50 points
away from the change point is the value recommended by Lanzante
(1996). Larger values are prone to weaken the force and usefulness
of SNR values. The SNR can be used to eliminate change points
which are too ‘weak’. Lanzante (1996) proposed an SNR value of
at least 0.05 or 0.1 for ‘important’ change points.

In the comparison process of a part of the time-series with what
has occurred before (or what will occur after), it is easy to un-
derstand that the centre of a segment which has a trend can be
falsely identified as a change point, since the trend alters mean
values. To overcome this drawback, Lanzante (1996) proposed a
straightforward and effective solution: after each new change point
is identified, both the S2

N (as described above) and a so-called ‘trend
noise variance’ are computed and compared. If the trend slope is
b, the trend noise variance, S2

TN, is the variance of the combina-
tion of the two segments after they were normalized by subtracting
b(xi − xCP) from all of the values yi in the left and the right segments
(xi and xCP are the x-values of yi and of the suspected change point,
respectively). If the S2

TN value is larger than the S2
N value, then the

change point is validated, since the variability remains apparent in
the trend noise variance (which is meant to be corrected from the
trend bias). Otherwise (S2

TN < S2
N ), a trend reduction is applied (by

subtracting b(xi − xCP) from yi) before the suspected change point
is tested again.

Several parameters can be customized in the RSMCPM. The
results of this study were obtained using values that we have defined
as ‘default values’ for the algorithm:

(i) The default value for the significance level is 0.05 (Fisher
1925).

(ii) The default maximum number of points for the calculation
of the SNR value is 50 points on both sides of the change point,
which means a maximum number of 100 points for the calculation.

(iii) The default maximum number of iterations is 5. The max-
imum number of iterations is unrelated to the possible number of
change points: it concerns the maximum number of adjustments
that are allowed until a new change point is detected.

(iv) The default minimum number of points at each end of the
series is 2.

(v) The default number of points (inter-change-point gap) be-
tween two consecutive change points is 2.

(vi) The default threshold difference between S2
TN and S2

N is 0.
This means that the trend reduction is applied whenever the dis-
continuity noise variance is larger than the trend noise variance.
The larger the value of this threshold, the more restricted is the
application of the trend reduction.

Since a decade, many approaches and software have addressed
the determination of change points in univariate and/or multivariate
time-series. Some Bayesian methods require independent Gaus-
sian observations (Barry & Hartigan 1993; Erdman & Emerson
2007). As we will show in the next section, the condition of normal-
ity is not matched for our extensometer displacement data series.
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This limitation precludes the sustainable usage of the Erdman &
Emerson’s method (2007) for our data set, whereas our technique
works properly. Both type and shape of the probability distributions
are not problematic for the RSMCPM. Nevertheless, this technique
cannot be applied to continuous cumulative data, because, in com-
mon with many other methods of statistical inference, the WMW
test also requires independence within groups (Hollander & Wolfe
1973). As a final technical remark, one must note that the RSMCPM
does not perform better than others technique when trying to detect
change points close to the ends of the series. Actually, if the sum of
the size of the two samples under comparison is smaller than 10, no
matter how much the two groups differ, the WMW test loses power
(ability to reject a false null hypothesis): in this case, it fails to
reach statistical significance at the level α = 0.01 for the two-sided
problem. Thus, even a very strong change point may not be detected
if it occurs in the ends of the series under study. Nevertheless, we
guess the RSMCPM does not worse than other statistical methods
when dealing with series ends.

3.2 Method validation on geophysical time-series

Before processing our landslide data, we validate the use of our
rank-sum change-point detection algorithm on benchmark data: (i)
the synthetic combination of normal distributions, investigated by
James & Matteson (2014), (ii) the annual January to June streamflow
amounts for the Romaine river in Quebec, that has been explored
by means of a Bayesian change-point approach in Perreault et al.
(2000), and (iii) the Northern Hemisphere temperature from proxy
data, A.D. 200–1995 (Jones & Mann 2004; Matyasovszky 2011).

Fig. 2 shows the results of the RSMCPM, as applied to a synthetic
combination of normal distributions. This is a modified version
of the data example from James & Matteson’s (2014) study: a
sequence of 100 independent samples from normal distributions
(N (0, 1), N (0, 3), N (2, 1) and N (2, 4)). The notation N (μ, σ )
means normally distributed with mean μ and standard deviation σ .
We slightly upgrade this synthetic test by adding an extra N (0, 3)
very short (10 samples) segment at the end of the initial sequence.
This extra tip is added (Fig. 2a) in order to assess the detection
capability for a breakpoint close to series’ end, where an edge effect
may be significant. In Fig. 2(b), a 5 per cent slope is added to the
synthetic series of Fig. 2(a) to simulate a series with upward trend.
As can be seen (Fig. 2a), the method has difficulty identifying
changes in standard deviation (the first breakpoint is missed), but
it is perfectly successful for the detection of the change in mean at
index 200. Even close to the series’ end (Fig. 2a), the final breakpoint
(index 400) is detected. Nevertheless, the results for this point are
not accurate (index 389). When the series shows a trend (Fig. 2b),
the first breakpoint is mislocated and the final breakpoint is missed,
but there is no detection of extra change points. As comparison
across approaches, a divisive hierarchical estimation algorithm for
multiple change-point analysis (James & Matteson 2014) is applied
and gives the results displayed in Figs 2(c) and (d). By doing so, we
mimic one of the examples proposed by James & Matteson (2014)
to illustrate the use of their divisive algorithm, except that these
authors did not examined the case in which the data show a trend.
We show that the James & Matteson’s (2014) algorithm misses the
second and the last breakpoints in Fig. 2(c) and it detects many
fictitious breakpoints in the series that shows a trend (Fig. 2d).

As a second example, we partly revisited the 1970–2000 stream-
flow time-series for Northern Quebec Labrador region (Perreault
et al. 2000). These authors used a Bayesian change-point analysis

to suggest a change in the average streamflow of rivers that occurred
in 1984. Fig. 3(a) displays the marginal posterior probability den-
sity function of the change point for the Romaine river, as obtained
from the Bayesian change-point analysis (Perreault et al. 2000). The
RSMCPM (Fig. 3b) achieves similar results than Perreault et al.’s
(2000) results but we resolve an additional breakpoints in 1976 with
a significant SNR (0.32). One must note that the 1984 change point
is quantified by a strong SNR value (2.35).

As a third test, we use the temperature time-series (A. D.
200–1995) for the Northern Hemisphere (Jones & Mann 2004;
Matyasovszky 2011). The list of abrupt changes detected in the
Northern Hemisphere temperature values for the period 200–1995
includes the years 825, 1296, 1387, 1656, 1749 and 1883 (Fig. 4a).
These values are obtained from the kink point analysis conducted
by Matyasovszky (2011). The coldest and the warmest intervals
in the past centuries are conventionally labeled the Little Ice Age
(LIA) and the Medieval Warm Period (MWP). There is no broadly
accepted definition of these climate epochs (Bradley et al. 2003).
Matyasovszky (2011) pinpoints two phases in the LIA: a stronger
and longer period (1387–1656) and a weaker and shorter time in-
terval (1749–1883). For Matyasovszky (2011), the MWP lies be-
tween years from 795 to 1120. Our method detects six breakpoints
(Fig. 4b). They show rather compelling (larger than 0.05) SNR val-
ues (they are ranging from 0.06 to 0.97). Nevertheless, a warmer
temperature segment is found from 780 to 1119 and the possibility of
three distinct phases in the LIA (1252–1444, 1444–1718 and 1718–
1845) is not ruled out. The results from the RSMCPM agree well
with the definition of the LIA proposed by Matyasovszky (2011).
Moreover, our results are highly consistent with the definitions sug-
gested by Yan et al. (2015). For these authors, the beginning of the
MWP is A.D. 800 and they suggest that the transition between MWP
and LIA should be linked to the timing of 1246 A.D. being the last
time in which the perihelion of the Sun–earth orbit coincided with
Northern Hemisphere winter solstice.

The three comparisons show that the RSMCPM algorithm is able
to yield useful and convincing results. The method provides three
main advantages for landslide displacement rate analysis:

(i) It holds few assumptions, especially the non-Gaussian char-
acter of data does not affect results.

(ii) The existence of a trend in the serial data is not a critical
issue.

(iii) SNR values are helpful in inferring hierarchies in change
points.

4 R E S U LT S

The cumulative displacement curve from extensometer 13 at
Séchilienne (Fig. 5) shows very gradual daily variations: the av-
erage displacement rate is about 3.5 ± 2.9 (SD) mm d−1. The
median is 2.4 mm d−1. The average rate is rather small compared
to its variability. This high variability does not result from extreme
values: the interquartile range, which is a resistant estimate of the
dispersion, is still 3.2 mm d−1 for the Séchilienne data, as to com-
pare with the 3.5 and 2.4 mm d−1 average and median values.
Extensometer measurements may be daily disturbed by the weather
(wind, frost) and it is hardly surprising that these data show rel-
atively large dispersion values. Daily variations of displacements
are overall very gradual but the series show local abrupt changes
(Fig. 5). In the daily displacement curve (Fig. 6a), four change
points are identified, respectively located at 2008.400 (2008 May
26), 2010.812 (2010 October 24), 2012.728 (2012 September 23)
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1236 D. Amorese et al.

Figure 2. Simulated independent Gaussian observations with changes in mean or variance. (a) Change-point locations estimated by the rank sum method.
Solid vertical lines indicate the true change-point locations. Estimated change-point locations are marked by numbers (1, 2 and 3). (b) Change-point locations
estimated by the rank sum method when a 5 per cent trend is added to the series in (a). (c) Change-point locations estimated by the E-Divisive method. In
this part of the figure, dashed vertical lines indicate the estimated change-point locations. For details, please refer to fig. 1 in James & Matteson (2014). (d)
Change-point locations estimated by the E-Divisive method when a 5 per cent trend is added to the series in (a).

and 2014.193 (2014 March 12). The SNR values for these change
points are 1.01, 0.40, 0.49 and 3.63, respectively (Table 1). These
results suggest that all the change points are important (SNR values
larger than 0.05). In order to smooth down the daily fluctuations, we
apply the RSMCPM to weekly (7 d) displacement data (Fig. 6a). In
the weekly displacement curve (Fig. 6b and Table 2), four change
points are identified, respectively, located at 2008.400 (2008 May
26), 2009.914 (2009 November 30), 2009.971 (2009 December 21)
and 2012.712 (2012 September 17). One of these change points is
minor, as it shows an SNR value of 4 × 10−3 (2009.914, Table 2).

One must note that the change points from daily windows, with
the two largest SNR values, do fit the one of the weekly window
(2008 May and 2012 September). As an aside, for daily window
data, Shapiro–Wilk normality tests (Shapiro & Wilk 1965) reveal
that the data of each segment are unlikely to be Gaussian (the
p-value for the tests are all smaller than 2 × 10−10). This finding
provides sound justification for using the RSMCPM rather than a
change-point detection method that requires data normality.

The average rainfall rate is about 2.5 ± 4.8 (SD) mm d−1. For this
data set too, the variability is high compared with the mean value:
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The Séchilienne rock avalanche time-series 1237

Figure 3. Annual January to June streamflow amounts for the Romaine river
in Quebec. (a) Change-point locations estimated by the Bayesian change-
point analysis. The ‘Posterior Means’ displays the data along with the poste-
rior mean of each position. The peak value of the posterior probability marks
the change-point location. For details, please refer to Erdman & Emerson
(2007). (b) Change-point locations estimated by the rank sum method. Es-
timated change-point locations are marked by numbers (1 and 2).

the coefficient of variation (cv, ratio of the standard deviation to the
mean) of the series is about 1.9. Values in the daily rainfall data se-
ries are varying quickly (Fig. 7a). A Wald–Wolfowitz test (Wald &
Wolfowitz 1943), designed to check independence and stationarity,
confirms that the daily series is not stationary. Change points (or
trends) are signs of non-stationarity. Nevertheless, local homogene-
ity in the time-series, as evidenced by the Wald–Wolfowitz test, is
required to allow their detection. This may explain the RSMCPM
fails in detecting any change point in the daily rainfall series (the
figure is not shown). In the weekly rainfall curve (Fig. 7b), the
RSMCPM is successful and detects five change points located at
2007.289 (2007 April 16), 2007.864 (2007 November 12), 2009.875

Figure 4. Northern Hemisphere temperature from proxy data, A.D. 200–
1995. (a) Change-point locations estimated by the kink point analysis.
A cubic smoothing spline fits the data (solid line) and reveals the kink
points. Dashed vertical lines indicate the estimated change-point locations.
(b) Change-point locations estimated by the rank sum method. The grey
shaded zones represent the Medieval Warm Period (MWP) and the Little
Ice Age (LIA) as defined as the 800–1246 and 1246–1850 time intervals,
respectively.

(2009 November 16), 2012.253 (2012 April 02) and 2014.590 (2014
August 04), respectively (Table 2). Three points are increases and
two are decreases. Only one increase (2009.875), the smallest one,
correlates in time with a displacement rate change. It suggests other
control parameters for the 2008 and 2012 change points we resolved
in weekly displacement rates.

Data from another extensometer (extensometer 16; see (Fig. 1
for location) help to improve our understanding of the results: our
procedure highlights similar change points in the two daily and
weekly displacement series for both extensometers (Figs 6 and 8 and
Tables 1 and 2). This outcome provides further evidence that re-
sults of our procedure are robust. Nevertheless, the series for
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1238 D. Amorese et al.

Figure 5. Cumulative displacement plot at Séchilienne extensometer 13.

extensometer 16 show fewer change points than the series for
extensometer 13: for the daily series, only two minor change points
are detected, located in 2014 March (2014 March 08 and 11). For
the weekly series, the extensometer 16 show paramount change
points: they both show SNR values larger than 1 (1.17 and 1.59,
respectively). The first change point is perfectly coincident with
one change point of the weekly series for extensometer 13 (2009
November 30). The second change point (2014 March 10) is con-
comitant with the change points of 2014 March in the daily series.
To summarize, four pivotal times are highlighted in the Séchilienne
displacement time-series: 2008 May, 2009 November–December,
2012 September and 2014 March. The strongest change points (SNR
values greater than 1) are always common to several series (exten-
someters 13 and 16 or daily and weekly series): 2008.400, 2009.914,
2014.188 and 2014.193. The largest SNR values for these points
are 1.01, 1.17, 1.59 and 3.63, respectively. Several change points in
the daily and weekly series for the extensometer 13 (Tables 1 and 2)
may be considered as local features: 2010.812 (2010 October 24),
2012.712 (2012 September 17 in the weekly series) and 2012.728
(2012 September 23 in the daily series).

5 D I S C U S S I O N A N D C O N C LU S I O N

For the three calibration data sets we perform, the RSMCPM is
undoubtedly efficient in addressing properly the double challenge
of the multiple change-point problem: finding the optimal number
and finding the location of change points. The procedure is effective
even under adverse conditions: the first (synthetic) example shows
that the procedure is successful in detecting change points close to
a series’ end and when there is a trend in the series. The second
example illustrates how the technique is conducive in detecting
change points in sparse series. The last example reveals that the
method may be helpful when change points in a series are subject
to various interpretations, as is the case for historical climate data.
The main objective of the study is to apply the change-point method
to a landslide displacement and rainfall time-series and to compare
the results with previous analysis. For the time range spanning from
2003 to 2013, Chanut et al. (2013) labeled five different phases in

Figure 6. Displacement plots for the Séchilienne extensometer 13. (a)
Change point detected by the rank sum method in the daily displacement
time-series. The change points are, respectively, located at 2008.400 (2008
May 26), 2010.812 (2010 October 24), 2012.728 (2012 September 23) and
2014.193 (2014 March 12). (b) Change points detected by the rank sum
method in the weekly displacement time-series. The change point are, re-
spectively, located at 2008.400 (2008 May 26), 2009.914 (2009 November
30), 2009.971 (2009 December 21) and 2012.712 (2012 September 17).

the landslide displacement rate: three slow ones (called R2, R3 and
R5, showing displacement rates about or less than 50 mm month−1)
and two fast ones (R4 and R6 showing displacement rates equal
or larger than 100 mm month−1). Chanut et al. (2013) set the start
times of R3, R4, R5 and R6 on 2005, 2008, 2009 and 2010 January,
respectively [fig. 4 in Chanut et al. (2013)]. No indication is given
by Chanut et al. (2013) on the way these phases are identified. The
RSMCPM partly mirrors the segmentation of the series proposed
by Chanut et al. (2013) (Fig. 9 and Tables 2 and 3), as the two study
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Table 1. Statistics of the change points for each series (daily bins). β is for the ‘biweight mean’.

Data Date SNR Left β Left β Right β Right β

set (decimal/ymd) value (mm d−1) (mm month−1) (mm d−1) (mm month−1)

Ext 13 2008.400/2008 May 26 1.01 1.6 48.2 3.4 103.0

Ext 13 2010.812/2010 Oct 24 0.40 3.4 103.0 5.3 163.0

Ext 13 2012.728/2012 Sept 23 0.49 5.3 163.0 8.7 266.2

Ext 16 2014.182/2014 Mar 08 <2.3 × 10−5 4.0 122.6 3.7 111.3
Ext 16 2014.190/2014 Mar 11 0.03 3.7 111.3 1.4 41.9
Ext 13 2014.193/2014 Mar 12 3.63 8.7 266.2 1.6 48.2

Table 2. Statistics of the change points for each series (weekly bins). β is for the ‘biweight mean’.

Data Date SNR Left β Left β Right β Right β

set (decimal/ymd) value (mm week−1) (mm month−1) (mm week−1) (mm month−1)

Rainfall 2007.289/2007 Apr 16 0.04 12.5 54.7 18.0 78.5

Rainfall 2007.864/2007 Nov 12 0.01 18.0 78.5 15.7 68.4

Ext 13 2008.400/2008 May 26 0.47 11.2 48.9 19.1 83.3

Rainfall 2009.875/2009 Nov 16 0.0007 15.7 68.4 16.4 71.4

Ext 13 2009.914/2009 Nov 30 0.004 19.1 83.3 21.5 93.9
Ext 16 2009.914/2009 Nov 30 1.17 19.8 86.3 43.7 190.3
Ext 13 2009.971/2009 Dec 21 0.05 21.5 93.9 36.0 157.0

Rainfall 2012.253/2012 Apr 02 0.06 16.4 71.4 22.8 99.5

Ext 13 2012.712/2012 Sept 17 0.09 36.0 157.0 25.1 109.3

Ext 16 2014.188/2014 Mar 10 1.59 43.7 190.3 9.9 43.3

Rainfall 2014.590/2014 Aug 04 0.05 22.8 99.5 18.2 79.3

periods do not overlap exactly (2003–2013 and 2004–2015). Our
S1 slow stage covers the timespan of the Chanut et al.’s (2013) R2
and R3 slow phases. Our moderately fast S2 stage can be related
to the R4 and R5 phases (however, any slow phase such as R5 is
not highlighted by the RSMCPM during the S2 stage). The fast
S3 stage begins almost at the same time as the R6 phase. Since
the study series is longer than Chanut et al.’s (2013) and continues
beyond 2013, we detect two additional stages: the very fast stage
S4, beginning at the end of 2012 and the slow phase S5, beginning
at the start of 2014. Fig. 9 summarizes this stage analysis.

The RSMCPM does not have, as any statistical tools, the capacity
to explain the origin of a shift in the study time-series. Neverthe-
less, it provides information on key stages for temporal change in
the landslide kinematics. Except for the 2009 November 16 weak
breakpoint in the rainfall series, there is no relationship between the
rainfall and the displacement breakpoints: the 2012 April 02 change
point in the rainfall data highlights an increase of 39 per cent for the
biweight mean (Tukey 1960) of rainfall, but there is no equivalent
change in displacement rate for the weekly series comparable to that
in rainfall. The 2014 August 04 change point in the rainfall data is
located long after the 2014 March 10/12 decrease in displacement
rate (from 190–270 to 40–50 mm month−1). Minor change points
in the rainfall data like the 2007 April 16 and the 2007 November
12 discontinuities are not associated with any change point in the
displacement series (Fig. 9 and Tables 2 and 3). In the same way,
the 2008 May 26 increase in displacement rate is observed with no
significant changes in rainfall to be related to (Figs 5 and 6). All this
suggests that an increase of the rainfall is able to induce an increase
of the landslide displacement rate (that is the case for the 2009
November–December breakpoint), but that most of the dynamics of
the landslide is not directly attributable to rainfall increase/decrease.
The detailed exploration of the characteristics of the five kinematic

stages (Fig. 10) suggests that the displacement rate is tied in with
the rainfall intensity but clearly there is no one-to-one correspon-
dence between the displacement rate and a given rainfall amount
(as an example, points S2 and S3 show almost the same rainfall
rates for very different displacement velocities in Fig. 10a). This
is consistent with displacements weakly correlated with rainfall on
Séchilienne site (Chanut et al. 2013; Klein et al. 2013).

The relation of the mean displacement rate with the rainfall fre-
quency is more pronounced than with the rainfall intensity (Figs 10a
and b). In Fig. 10(a), point S3 (stage S3) shows a larger displacement
rate for a lower rainfall intensity than point S2 (stage S2). The rela-
tion becomes monotonic for the frequency of rainy days (Fig. 10b).
Except for the last stage (S5), it appears that the mean displacement
rate is directly connected to the frequency of rainy days (Fig. 10b).
This observation appears consistent with the previous finding that
landslide kinematics is dependent upon not only rainfall but also
soil moisture conditions (Ponziani et al. 2012; Brocca et al. 2016;
Greco & Bogaard 2016; Bogaard & Greco 2017). The correlation
between the frequency of rainfall events and soil moisture levels is
an unremarkable fact and several environmental studies confirmed
that soil moisture is more strongly related to precipitation frequency
than precipitation amount (e.g. Piao et al. 2009; Wu et al. 2012).
The last stage (stage S5) seems to be located in an unexpected place
of our bivariate plot: it shows almost the same mean displacement
rate than stage S1 for a quite larger frequency of rainfall events.
We can guess that the fracture opening within the rockslide and the
resulting fall in pore pressure hinders the displacement during this
last stage.

A remarkable shift in the displacement rate from S2 to S3 is
evident in Fig. 10: the Séchilienne rock avalanche reached a new
level of displacement rates in 2010. It is important to recognize
that in 2009 September, the French government declared a state
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1240 D. Amorese et al.

Figure 7. Rainfall plots for the Vizille weather station. (a) Daily rainfall.
(b) Change point detected by the rank sum method in the weekly rainfall
time-series. The change points are located at 2007.289 (2007 April 16),
2007.864 (2007 November 12), 2009.875 (2009 November 16), 2012.253
(2012 April 02) and 2014.590 (2014 August 04), respectively.

of drought emergency for the administrative region in which the
Séchilienne rock avalanche is situated. In this way, stage 2 is asso-
ciated with the period billed as the driest period for the study time
range (2004–2015). This is consistent with our rain information du-
ring S2 showing both small rainfall and small rainy day frequency
(Fig. 10). There can be questions about a possible non-linear re-
sponse of the landslide to precipitation trigger after the drought.
The change point that starts S3 stage is strong. The occurrence of
a stage (S3) with very high displacement rates specifically just af-
ter the period of severe drought may be not without significance.
Whereas Cappa et al. (2014) underlined a background seasonality
of dry and wet seasons on displacement rates, our change-point
analysis emphasizes the impact of an exceptional dry year on the

Figure 8. Displacement plots for the Séchilienne extensometer 16. (a)
Change point detected by the rank sum method in the daily displacement
time-series. The change points are, respectively, located at 2014.182 (2014
March 08) and 2014.190 (2014 March 11). (b) Change point detected by the
rank sum method in the weekly displacement time-series. The change points
are, respectively, located at 2009.914 (2009 November 30) and 2014.188
(2014 March 10).

landslide kinematics. As such the second part of 2009 is a period of
weak brittle deformation (few quakes and rockfalls) as suggested
by Fig. 2 (p. 28) in the SLAMS project’s final report (Garambois
2014). Fig. 11 clearly shows that the response of the landslide to
precipitation trigger is stronger after the 2009 drought.

Rainfall is a well-identified cause of landslide triggering
(Hufschmidt & Crozier 2008; Tatard et al. 2010; Greco & Bo-
gaard 2016). For the Séchilienne landslide, we already know that
rockfalls and microseismicity are correlated with a vanishing value,
if any, for time lag with rainfall (Helmstetter & Garambois 2010;
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The Séchilienne rock avalanche time-series 1241

Figure 9. The stage timeline. Filled triangles just above the x-axis show
the start times of the kinematic stages suggested by Chanut et al. (2013).
The dashed line indicates the breakpoint sequence for the daily series of
extensometer 13.

Klein et al. 2013). Our comparison of rainfall and displacement
rate breakpoints is deficient (it is likely that the RSMCPM may
not pickup all the possible breakpoints in the rainfall series, as the
WMW test is implemented to reduce the risk of false positive),
nevertheless it is notable that very intense rainfall events broke out:

(i) just before the 2008 May 26 increase in displacement, from
May 24 to 26 (64 mm collected over three successive days);

(ii) on 2009 November–December, in the time period of the 2009
November 30 and the 2009 December 21 increases in displacement
rates. From November 28 to 29 and from December 21 to December
24, about 90 mm were collected (46 and 43 mm during each rainfall
event, respectively);

(iii) on September 22, before the 2012 September 23 displace-
ment rate breakpoint (about 100 mm rainfall were collected over
five successive days, from 2012 September 22 to September 26).

This is confirmed in an Event Coincidence Analysis performed
using the CoinCalc R package (Siegmund et al. 2017). We do not fail
to reject at the 0.05 level (the p-value for the precursor/trigger coin-
cidence significance test, from randomly shuffled series, is 0.001)
the null hypothesis that the observed number of coincidences be-
tween displacement breakpoints and heavy rainfall can be explained
by two independent series of randomly distributed events (Fig. 12).
The coincidence of the starts of displacement phases S2, S3 and S4
with heavy rainfall events is unquestionable (Fig. 12).

At any rate, our result are conclusive, as being able to quanti-
tatively define stages in an apparent continuous divergence of the
cumulative displacement. The ability to define stages in the 10 yr

Figure 10. Bivariate plots of the relations between displacement rates and
rain information for each displacement stage (S1–S5). Arrows follow the
time sequence. (a) Mean displacement rate-Mean rainfall. (b) Mean dis-
placement rate–Rainy day frequency. We define as a rainy day a day on
which the rainfall is larger than zero.

duration of the acceleration of Séchilienne rock avalanche displace-
ment (from 2004 to 2014) demonstrates the process is still sus-
ceptible to external forcing (e.g. rainy day frequency). The results
obtained from the retrospective use of our change-point analysis
show that averaging on different time windows helps in understan-
ding the kinematics of the Séchilienne rock avalanche. The odds are
pretty good this kind of innovative approach will be also profitable

Table 3. Kinematics stages in the last decade (displacement values are from the extensometer 13).

Stage Starting time Mean rate Rate mad Rainy day Duration
(mm month−1) (mm month−1) frequency (yr)

S1 49 17 0.50
S2 2008 May 83 40 0.54 1.51
S3 2009 November–December 164 43 0.57 2.80
S4 2012 September 276 102 0.66 1.48
S5 2014 March 52 33 0.55
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Figure 11. Lagged scatter plot of displacement rates and rainfall (weekly
series) for each displacement stage (S1–S5). The lag is h = −1 (7 d). For
S3–S5 stages, the fitting line (in red) is steeper than for S1–S2 stages (in
blue). The black line is the regression line for all the points (S1–S5 stages).

Figure 12. Graphical comparison of the starts of the displacement phases
(top) and the heavy rainfall events (bottom). Above the time arrow, the
starts of displacement phases S2, S3 and S4 are marked (dates and inverted
triangles). Below the arrow, each vertical bar marks a day of heavy rainfall:
we have chosen to define a day of heavy rainfall as a day when rainfall
daily amounts are more than 17.6 mm. This value is the 0.98 quantile of the
distribution of the study rainfall data set. The coincidence of the starts of
displacement phases with heavy rainfall events is unquestionable.

for studies of the kinematics of volcanic or seismic areas. When
applied to the Séchilienne rock avalanche, the RSMCPM identifies
and quantifies five kinematic stages in the 2003–2015 period with
the following features:

(i) during these stages, the displacement rate values correlate
both with rainfall rate value and the rainy day frequency (Fig. 10).
The observed relationships allow us to suggest that the frequency of
rainy days is a key parameter that controls the displacement rates,
more clearly than the rainfall amount does;

(ii) the durations of stages are longer than 1.5 yr, in accordance
with the strong inertia of the rockslide displacement;

(iii) the onsets of stages (accelerating step) always coincide with
heavy rainfall episodes;

(iv) the interrelationship between displacement and rainfall rates
evolves over stages and time (Fig. 11). Accordingly, we suggest that
the beginning of 2010 marks a crucial moment in the acceleration
of the kinematics of the Séchilienne rock avalanche;

(v) in 2014 March (onset of the last stage), the possible fracture
opening within the rockslide and the resulting fall in pore pressure
slows the rockslide back to displacement rates of 2003.
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tionships between surface velocities and water input–statistical approach,
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monitoring and kinematics, in Proceedings of First Italian Workshop on
Landslides, Vol. 1, Naples, pp. 174–180, eds Picarrelli, L., Tommasi, P.,
Urciuoli, G. & Versace, P.

Erdman, C. & Emerson, J.W., 2007. bcp: an R package for performing a
bayesian analysis of change point problems, J. Stat. Softw., 23(3), 1–13.

Federico, A., Popescu, M., Fidelibus, C. & Interno, G., 2004. On the predic-
tion of the time of occurrence of a slope failure: a review, in Landslide:
Evaluation and Stabilization, Proceedings of the 9th International Sym-
posium on Landslides, Rio de Janeiro, pp. 979–1188, eds Lacerda, W.A.,
Ehrlich, M., Fontoura, S.A.B. & Sayao, A.S.F., A. A. Balkema, Leiden.

Fisher, R.A., 1925. Statistical Methods for Research Workers, Genesis Pub-
lishing Pvt Ltd.

Garambois, S., 2014. Compte-rendu de fin de projet ANR-09-
RISK-008 SLAMS. Available at: http://risknat.org/wp-content/uploads/
2015/12/SLAMS-Rapport-scientifique-combine-final2.pdf, last accessed
24 July 2016.

Godt, J.W., Baum, R.L. & Chleborad, A.F., 2006. Rainfall characteristics for
shallow landsliding in Seattle, Washington, USA, Earth Surf. Process.
Landf., 31(1), 97–110.

Greco, R. & Bogaard, T., 2016. The influence of non-linear hydraulic behav-
ior of slope soil covers on rainfall intensity-duration thresholds, in 12th
International Symposium on Landslides, pp. 1021–1025, CRC Press.

Helmstetter, A. & Garambois, S., 2010. Seismic monitoring of séchilienne
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Schlögel, R., Doubre, C., Malet, J.-P. & Masson, F., 2015. Landslide defor-
mation monitoring with alos/palsar imagery: a d-insar geomorphological
interpretation method, Geomorphology, 231, 314–330.

Shapiro, S.S. & Wilk, M.B., 1965. An analysis of variance test for normality
(complete samples), Biometrika, 52(3/4), 591–611.

Siegel, S. & Castellan Jr, N.J., 1988. Nonparametric Statistics for the Be-
havioral Sciences, McGraw-Hill, New York.

Siegmund, J.F., Siegmund, N. & Donner, R.V., 2017. Coincalc-a new r
package for quantifying simultaneities of event series, Comput. Geosci.,
98, 64–72.

Tatard, L., Grasso, J., Helmstetter, A. & Garambois, S., 2010. Character-
ization and comparison of landslide triggering in different tectonic and
climatic settings, J. geophys. Res., 115(F4), doi:10.1029/2009JF001624.

Touati, S., Naylor, M. & Main, I., 2016. Detection of change points in
underlying earthquake rates, with application to global mega-earthquakes,
Geophys. J. Int., 204(2), 753–767.

Tukey, J.W., 1960. A survey of sampling from contaminated distributions,
Contrib. Probab. Stat., 2, 448–485.

Vallet, A., Bertrand, C. & Mudry, J., 2013. Effective rainfall: a significant
parameter to improve understanding of deep-seated rainfall triggering
landslide–a simple computation temperature based method applied to
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