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ABSTRACT

Action recognition based on the 3D coordinates of body skeleton joints is an important topic in com-
puter vision applications and humanrobot interaction. At present, most 3D data are captured using
recently introduced economical depth sensors. In this study, we explore a new method for skele-
ton-based human action recognition. In this novel framework, the normalized angles of local joints
are first extracted, and then the modified spherical harmonics (MSHs) are used to explicitly model
the angular skeleton by projecting the spherical angles onto the unit sphere basis. This process de-
composes the skeleton representation into a set of basis functions. A spatiotemporal system of the
spherical angles is adopted to construct the static pose and joint displacement over a human action
sequence. Consequently, the MSH coe�cients of the joints are used as the discriminative descriptor
of the sequence. The extreme learning machine (ELM) classifier and recently published 3D action
datasets are used to validate the proposed method. The experimental results show that the proposed
approach performs better than many classical methods.

1. Introduction

Action representation and recognition from 3D data are
among the topics widely discussed in pattern recognition. In
recent years, research trends have mainly shifted toward the
action recognition of sequences captured by RGB-D cameras.
These ranging cameras feature the facility of 3D imaging tech-
nologies to provide 2D images and depth maps, and simplify
the acquisition of 3D human posture through skeleton joints
(Shotton et al.) . Moreover, the popularity of low-cost depth
sensors, such as the Kinect sensor, has led to the development
of e�cient methods for specific action recognition applications
(Raptis et al., 2011; Wang et al., 2012). The studies recently
conducted by (Alnowami et al., 2012; Obdrzalek et al., 2012;
Yao et al., 2011) indicate that, compared with traditional 2D
image data, the representation of skeleton joints only for ac-
tion recognition provides better results. Therefore, the current
study uses skeleton joint data as an initial input for skeleton
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representation. With RGB-D stationary sensors, the sequences
of depth maps can be registered as a set of skeleton joints in
3D coordinates (Shotton et al.). In other words, the applica-
tion of RGB-sensors allows human action recognition prob-
lems to be handled directly as 3D positions of joints, which
cannot be realized with a silhouette-based imagery system. Im-
portantly, depth sensors not only achieve fast capturing speed
and good view invariance, but they also provide accurate depth
maps (Li et al., 2010; Xia et al., 2012). Skeleton-based ac-
tion recognition methods typically rely on the direct use of
either the absolute position of skeleton joints or the connec-
tion between these joints (rigid segments between joints). Joint
position approaches consider the human skeleton simply as a
set of articulated points, in which only the skeleton joints are
used to abstract body motion in 3D space. Likewise, these ap-
proaches investigate human motion either by individual joints
or are relational between joints using various features, includ-
ing joint positions (Hussein et al., 2013; Raptis et al., 2008),
joint orientations with respect to a reference coordinate axis
(Xia et al., 2012) and pairwise relative joint positions (Wang
and Lee, 2009; Yang and Tian, 2012).

With the e↵orts of numerous researchers to reliably im-
prove skeleton-based recognition algorithms, research attention
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is now directed toward using skeleton joint data to recognize
human actions. Loss of accuracy and e↵ective feature rep-
resentation remains a major problem in the field. This issue
should be addressed to robustly handle the task of human ac-
tion recognition by either improving the discriminative feature
descriptions or pose representation or by relying on additional
post-processing of skeletal data. Several di�culties remain in
undertaking recognition tasks based on 3D joint representation
(e.g., occlusion of body parts, lack of precision, and errors in
data acquisition).

In this study, we present a novel skeleton joint-based repre-
sentation of 3D human action in a spatiotemporal manner. We
employ the spherical angles of body joints computed from the
3D coordinates of skeleton joints. The proposed feature rep-
resentation is a combination of the modified spherical harmon-
ics (MSHs) and the spatiotemporal model of sequence level.
To estimate the human pose, the spherical harmonics (SHs) of
spherical angles provide a distinctive feature description. As
such, the problem of skeleton joint representation is addressed
in a spatiotemporal approach using MSHs. The proposed model
simply incorporates two mechanisms to e�ciently capture the
temporal dynamic of joints, namely, the application of MSHs
in the computed spherical angles of each pose and the construc-
tion of MSHs in a hierarchical scheme. MSHs are computed in
multi-levels, in which each level encodes the time window of
an action sequence.

In the proposed representation of 3D human action, the se-
lected MSHs are adopted to characterize the features in multi-
levels and capture the harmonic frequency of function in a two-
sphere space S 2. Given this condition, the defined spherical
angle vector of the selected joints may be projected onto (S 2).
However, the principle computation required in this space is ex-
tremely large because each selected joint is sampled by the fea-
ture vectors of MJ = M1, ,Mk, M 2 RN⇤N ; where M is an MSH
matrix of k levels, J joint numbers, and N number of frames in
each level. Considering that the desired descriptor dimension-
ality aims to expedite the classification phase as well as reduce
the noise and redundant feature sizes, we apply dynamic time
wrapping (DTW) to determine the optimal alignment between
the sub-levels of hierarchical MSHs.

Unlike recent works that rely directly on individual joint
locations, our study is related to explicit skeleton model ap-
proaches. In particular, this study capitalizes on a new fea-
ture space that has not been previously considered. Therefore,
all the human skeleton joints are represented as a collection of
measured features in static pose and joint motion nature. An ac-
tion classification is performed using the extreme learning ma-
chine (ELM) classifier and SH-based skeleton representation.
The proposed method is evaluated based on recent skeleton-
based 3D action datasets.

In this paper, we present an improved skeleton representation
by applying the MSHs and spatiotemporal modeling of skeleton
joints along the sequence level. The ELM is also compared with
other classification algorithms using the same datasets.

2. Related Work

In this section, we briefly summarize various skeleton-based
human action recognition approaches. In particular, the meth-
ods related to our developed technique are reviewed because
they rely on skeleton joint data only. For a recent detailed sur-
vey on human motion analysis from depth data, see references
(Aggarwal and Xia, 2014), and (Ye et al., 2013). 3D pose-based
approaches have been explored by various researchers. (Yao
et al., 2011) indicated that the application of skeleton data (e.g.,
positions, velocities and angles of a joint from a human artic-
ulated body) outperforms gray-based features captured by 2D
cameras in an indoor environment scenario. In general, many
useful features can be initially extracted from RGB-D skeletal
data. The majority of these features can be divided into two:
those that are based on the angular characteristics of joints and
those that are based on the generic 3D coordinates of joints. In
certain action recognition methods, the features are developed
in complex models to form the representation of the motion se-
quences.

3D joint positions are commonly extracted as features
through four mechanisms. First, raw 3D data are recognized
directly without any further processing (Raptis et al., 2008;
Shimada and Taniguchi, 2008; Wang and Lee, 2009). Sec-
ond, these data are further processed to address certain chal-
lenges (Barnachon et al., 2013; Wang et al., 2012; Zhao et al.,
2013). Third, the distances between each joint can be used as
a distance-based feature vector for each frame (Antnio et al.,
2012). Fourth, the features for the selected joints can be simply
calculated with reference to the relative distance between joints
(Wang et al., 2012).

In (Hussein et al., 2013), the human body skeleton was in-
terpreted by directly constructing 3D skeleton joint locations
as covariance descriptors, and the temporal evolutions of the
action dynamic were modeled using a temporal hierarchy of
covariance descriptors. In (Lv and Nevatia, 2006), the 3D coor-
dinates of the joints were used for a skeleton representation of
the human body. Correspondingly, the temporal nature of the
action sequence was modeled with a generative discrete hidden
Markov model (HMM), and action recognition was performed
using the multiclass AdaBoost. The view-invariant representa-
tion of the human skeleton was proposed in (Xia et al., 2012)
by partitioning the 3D spherical coordinates into angular spaced
bins based on the aligned orientations with respect to a coordi-
nate system registered at the hip center. A generative HMM
classifier, which addresses the temporal nature of pose observa-
tions, was then used to classify each visual code word identified
with the cluster method.

The proposed work in (Wang et al., 2012) applied the idea of
the pairwise relative locations of joints to represent the human
skeleton. The temporal displacement of this representation was
characterized using the coe�cients of a Fourier pyramid hier-
archy. Moreover, the researchers proposed an action let-based
approach, in which the e↵ective joint combinations were se-
lected using a multiple kernel learning approach. In (Yang and
Tian, 2012), the skeleton joints were represented by combin-
ing the temporal and spatial joint relations. To explicitly model
the motion displacement, the researchers adopted a method for
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skeleton representation on the basis of relative joint positions,
temporal motion of joints and o↵set of joints with respect to
the reference frame. The resulting descriptors were projected
onto eigenvectors using Principle Component Analysis PCA .
In this case, each frame was described by an EigenJoint de-
scriptor, and action recognition was performed using the nave
Bayes nearest neighbor. The same scheme was used for the
skeleton representation in (Zhu et al., 2013), in which action
recognition was achieved by adopting the random forest clas-
sifier. The view-invariant action representation framework was
proposed by (Evangelidis et al., 2014). In this work, the quad-
based skeletal feature was adopted to encode the local relation
between joints in quadruple form. Consequently, the 3D sim-
ilarity invariance was achieved. The researchers also adopted
a Fisher kernel representation based on a Gaussian mixture
model. Such a representation generates the skeletal quads and
invokes a multilevel splitting of sequences into segments to in-
tegrate the order of subactions into the vector representation. In
(Raviteja et al.), a human skeleton was presented as points in
the Lie group. The proposed representation explicitly models
the 3D geometric relationships among various body parts us-
ing rotations and translations. Given that the Lie group was a
curved manifold, the researchers mapped all action curves from
the Lie group to its Lie algebra, and the temporal evolutions
were modeled with DTW.
Our proposed method is di↵erent in many aspects over the pre-
viously published methods. To more explicitly examine these
issue, we now include the comparison in terms of number of
joints used, choice of classifier, computation complexity and
dataset variability.
In term of number of joints, several techniques such as [ (Yang
and Tian, 2012; Hussein et al., 2013; Raviteja et al.; Evangelidis
et al., 2014; Ohn Bar and Trivedi, 2013; Wang and Lee, 2009)]
adopted all skeleton joints for feature extraction. Whereas, our
method adopted only nine joints. For the classification task,
we used ELM which provides a very high recognition accuracy
with very fast training time compared to many other classifica-
tion methods such as :

• (SVM) used (Hussein et al., 2013),
• (NBNN) used in (Yang and Tian, 2012) and (Seidenari et al.,
2013).
• (AdaBoost ) used in (Bloom et al., 2012),
• (HHM) used in (Xia et al., 2012).

The calculation of our features are computationally light than
many previous works which try to classify a large 3D point,
such in (Raptis et al., 2011), (Raviteja et al.), (Ohn Bar and
Trivedi, 2013), (Zhu et al., 2013), and (Li et al., 2010). More-
over, in our method, we perform the evaluation on a variety
of datasets compared to many approaches ((Xia et al., 2012),
(Yang and Tian, 2012), and (Seidenari et al., 2013)).
The main contribution of our work was to reveal the potential
of features that can be extracted from the 3D joint locations,
without requiring the additional processing of the entire depth
maps of a sequence, as in (Yang and Tian, 2012), (Zhu et al.,
2013), and (Ohn Bar and Trivedi, 2013).

Fig. 1. Plots of the spherical harmonic basis functions. Blue indicates posi-
tive values and red indicates negative values.(Top), SHs for frequency l=3,
and order m=2.(Bottom), frequency l=4, and order m=3.

Fig. 2. 3-dimensional coordinates corresponding to a human body skeleton.
(left) real world coordinate , (right) body reference coordinate transforma-
tion.

3. Methodology

3.1. Overview of Spherical Harmonics

SHs are Fourier series defined on the basis of a 2-sphere.
Given that a Fourier series is a set of mathematical tools for
expanding trigonometric functions, SHs are used to organize
unit-sphere functions by angular frequency in terms of spheri-
cal coordinates. An illustration of a basis functions by means
of their harmonics is configured into a set of rows as shown in
Fig. 1. The colors in the Fig. 1 represent positive and negative
values of SHs.
SHs are adopted in various fields to solve specific types of dif-
ferential equations, such as the representation of gravitational
fields and the modeling of geoscience computational problems.
SHs have also been adopted to solve various problems in the
context of computer vision applications. Such as, face recogni-
tion under unknown lighting challenge was adopted by (Zhang
and Samaras, 2006), as well as 3D object retrieval (Bustos et al.,
2005), and volumetric descriptors (Vranic, 2003).
In this section, we briefly explain SH theory. For a general in-
troduction to SH transform, see (Freeden and Michael, 2009;
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Silverman, 1972), which present the classical material on SHs.
Let (r, ✓, �) : r 2 R+, ✓ 2 [0, 2⇡], � 2 [0, ⇡] be the spherical co-
ordinates, and f (✓, �) be the homogeneous harmonic functions
on R3. In this study, we aim to determine the homogeneous
solutions of Laplaces equation, r2 f = 0, in spherical coordi-
nates. Likewise, we intend to explain how these solutions corre-
spond to the decomposition of eigenfunctions in space L2(S 2),
S 2 = (✓, �, r) 2 R3. In this case, SH is the generalization of
Fourier series to 2-sphere by projecting the square-integrable
function S 2 onto Hilbert space L2(S 2). However, for the spher-
ical coordinates:

x = r sin ✓ cos �
y = r sin ✓ sin �
z = r cos ✓.

(1)

where the Laplacian of a harmonic function on two-sphere
using the spherical coordinates is given by

�S2 f =
1

sin ✓
@

@✓

 
sin ✓
@ f
@✓

!
+

1
sin2 ✓

@2 f
@�2 . (2)

The final solution of Laplacian in R3 ( the detailed solution
can be found in (Silverman, 1972) ) is a set of Legendre func-
tion and eigenfunctions expressed as follows:

f (✓, �) = Q(Zm
n (cos✓))(exp( jm�)). (3)

where Q is a constant. The first term in Eq. 3 is a set of Legen-
dre polynomials, and the second term is the eigenfunctions of
the Laplacian on a sphere with an eigenvalue of n(n + 1). The
notation of the preceding equation represents the SHs in com-
plex form. In this context, we adopt the notion of real SHs with
the degree of n and order of m > 0. Thus, we set

ym
n (✓, �) =

p
2Qm

n cos(m�)Zm
n (cos ✓). (4)

Qm
n are the scaling factors expressed as

Qm
n =

s
(2n + 1)(n � |m|)!

4m(n + |m|)! . (5)

(Silverman, 1972) specified that any function of the form
f (✓, �) can be represented by a set of expansion coe�cients
on the unit sphere. The complete harmonic basis functions
are indexed by two integer constants (i.e., the degree n and
the order m). The sampling frequencies of the basis functions
over the unit sphere are defined by the values of the order
�n  m  n. In general, there are 2n + 1 bases. As an
illustration example, the visual representations of the real SHs
for the azimuth and elevation directions are shown in Fig. 1.
The blue portions represent the positive harmonic functions,
while the red portions depict the negative ones. The distance
of the surface from the origin (rows) indicates the value of
harmonics in angular direction (✓, �).

3.1.1. Modified spherical harmonics ( MSHs)
this section presents a proposed feature extraction frame-

work, in which the modified real part notation of SHs is used to
represent the spatiotemporal features of skeleton joints and im-
prove human action recognition. The notation cos(m�) denotes
the real part of SHs. For the special case of degree m = 2, the
modified SHs can be computed given that cos(2�) is explicitly
expressed as:

cos(2�) = 2 cos2 � � 1. (6)

Substituting Eq. 6 in Eq. 4 and rearranging the terms in the
latter establish the modified real SHs as follows:

ym
n = Qm

n [2 cos2 � � 1]Zm
n cos ✓. (7)

The quadratic term in 6 captures the angular velocity of joint
displacement. This velocity is useful to di↵erentiate the actions
involved in a curved motion, such as waving or shape drawing.
Thus, for a given action, the angular quantities (e.g., relative
angular speed and changes in directions of these joints) can be
more stable across objects than their actual 3D positions.
However, the MSHs of the local 3D skeleton joints capture dis-
criminant information about di↵erent actions. In other words,
the quadratic term in MSHs describes the direction and angu-
lar speed of joint motions. Experiments reported in section 6.2
have proven that introducing the quadratic angular velocity and
direction of joint dynamics significantly improves the use of the
standard SHs.

3.2. 3D Skeleton Coordinate
The raw data (3D coordinates of the joints) contain useful in-

formation about the motion sequence of a human. To estimate
the skeleton features, a depth sensor is generally used to easily
develop a skeleton model consisting of K joints. To make the
3D joint locations invariant to sensor parameters, the joint po-
sitions must be mapped into a unique coordinate system.
However, Since only the global 3D coordinates of the skele-
ton joints are available. Thus, to align the body skeleton with
the reference coordinate system, we consider the origin of body
coordinates indicated by the hip center and set the horizontal
reference vector as the vector directed from the left hip to the
right hip. Moreover, the 3D subject coordinates comprise three
orthogonal vectors (�, ⇢, �) as depicted in Fig. 2. The first axis �
(horizontal axis) is from the right hip to the left one. The second
axis (perpendicular axis) ⇢ is always directed toward the head
and aligned with the vertical dimension of the torso. The sec-
ond vector is computed by rotating � vector by 90�. The third
axis stems from the cross product of the two bases (� = � ⇥ ⇢).
The selection of the hip�centerand Right/Le f thip joints en-
sures an acceptable approximation of the subject coordinates
along the joint movement. At this preprocessing stage, a sig-
nificant reduction of joints is usually performed because these
joints are not involved in the final action representation.

3.3. Features Extraction
Body pose and local joint displacement must be incorporated

into the 3D skeleton-based action descriptor. Therefore, we ap-
propriately organize the skeleton joints in a manner where both
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static pose and joint displacement can be reliably handled at a
specific instance in time. In this context, the skeleton joints are
represented in terms of the spherical angles relatively measured
with respect to the fixed coordinates, which are more accurate
than the joint coordinates or joint di↵erence.
To characterize the body pose properties, the spherical angles
are quantified in the spherical coordinate. All angles are com-
puted corresponding to the origin reference (i.e., the origin of
the spherical coordinate system is placed at the hip � center
joint coordinate). Only a primitive set of the supported joints is
used for the 3D pose representation. In this case, only the joints
that correspond to Right/Left elbow, Right/Left wrist, Right/Left
knee, Right/Left foot, and Head are selected. For every selected
joint Ji, the following spherical angles are estimated over the
action sequence:

✓(t) = arctan( �⇢ )

�(t) = arccos
 

�p
(⇢2+�2+�2)

!
.

(8)

where t is the frame index, and ✓i and �i are the estimated spher-
ical angles.

3.4. Spatiotemporal-based skeleton joint representation

To further analyze the 3D skeleton joints in terms of their
spatiotemporal domain, we propose a new joint representa-
tion using MSHs which it is an extension of SHs. SHs are a

Fig. 3. Spherical harmonics basis are computed for local joints. The tem-
poral motion of each local joint is mapped onto a unit sphere. The unit
spheres in the plot represent individual joint of a person performs a ten-
nis swing action. (Top panel, left to right):Elbow R/L, Wrist R/L, Knee
Right. (Bottom panel, left to right ) Knee left, Foot R/L , and Head Joints
respectively

frequency domain basis for characterizing homogeneous func-
tions defined over a two-sphere. They are the extension of
the 1D Fourier series on spherical coordinates. As previously
explained, SH defines a set of harmonic functions by solving
the angular Laplace equation in spherical coordinates. In our
method, we separately project the time series of the spherical
angle vector f (✓, �) of local joints and the spatial pose onto a
two-sphere.

Let the entire skeleton body be represented by J joints (i.e.,
J = (1, 2, , j), and the action be performed over T frames. Also,
let xt(⇢, ✓, �) 2 R3 denote the spherical coordinates of the skele-
ton joints in the human body at each frame. The spherical angle
system of the entire action sequence can be constructed as a
spatiotemporal system expressed below.

Fs2A(✓, �) = Pose
?????????y

J1
J2
...

Jk

2
6666666666666664

(✓, �)1,1 (✓, �)1,2 . . . (✓, �)1,T
✓, �)2,1 (✓, �)2,2 . . . (✓, �)2,T
...

...
. . .

...
(✓, �)J,1 (✓, �)J,2 . . . (✓, �)J,T

3
7777777777777775
.

(9)
where s is the specific action, T is the total number of frames
in the action sequence, and J is the number of joints in skeleton
sequence.
The spatiotemporal system in 9 combine the spherical angles
for temporal displacement(row) and spatial distribution (col-
umn) of local join, and pose in the action sequence, respec-
tively.

However, using the system in equation (9 and MSHs concept,
the static pose description can be calculated by projecting each
column in equation 9 onto the basis function of MSHs (Silver-
man, 1972).

f (!q) =
infX

l=0

lX

m=�l

f m
n , Ym

n (!q). (10)

where f (!p) 2 R is the real valued spherical angle vector. Re-
call that !q, q 2 {0, ..., j�1} is the vector pointing at the angle of
colatitude ✓q 2 [0, ⇡] measured down from the upper pole, and
the angle of longitude � 2 [0, 2⇡] is the argument of the S 2 in
spherical coordinates. The expansion coe�cients are calculated
using

f m
n = 4⇡/n

n�1X

↵=0

f (!q) Ym
n (!q). (11)

where Ym
n (!q) is the modified real SH basis function defined as

Ym
n (!q) =

p
2Qm

n [2 cos2 � � 1]Zm
n (cos ✓), m = 2. (12)

In Eq. (12), Q is the scaling factor, and Z is the associated
Legendre polynomials given as.

Zm
n (x) =

�1m

(2nn!)
(1 + x2)

m
2

(dn+m)
(dxn+m)

(x2 � 1)n. (13)

The estimated MSHs for the body pose at time t (col-
umn of Eq. 9) represent the spatial features of static pose.
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Fig. 4. A 3-level representation of Temporal construction of the SHs,
SHsl j is the jth Spherical harmonics in the lth level of the hierarchy

The collection of the estimated MSHs for all poses of a spe-
cific action defines the spatial distribution feature vector of
Hs = [P1,P2, ....,PT]. Similar to defining static pose, the MSHs
of the local joint displacement are calculated by projecting each
row of Eq. 9 onto the basis function of MSHs. In this case, the
individual MSH of each local joint displacement is calculated
over the entire row. To compute the MSH feature vector of the
local joints for a given action segment, we collect the individual
motion vectors Hm = [M1, ,MJ].
AS an illustration example, the MSHs of a subject performing
a tennis forehand action are depicted in fig. 3.2. In this figure,
each panel demonstrates the harmonic distribution of the local
joint motion displacement.

3.5. Temporal Construction of MSHs in a Hierarchical Model
In 3D skeleton-based action recognition, a compact skeleton-

based descriptor should encode the static pose information and
the temporal evolution or joint motion at a given time segment.
The static pose and joint displacement features of a given skele-
ton body sequence contain discriminative data about the human
action over a time segment.
In the previous section, the MSHs capture the spatial depen-
dency of the holistic joints (i.e., pose in frame) and the motion
of the local joint properties over the time sequence.
To e�ciently encode the temporal variation of the local joints
over time, each SH of these joints is constructed in a hierar-
chical manner. The idea of hierarchical construction is inspired
by the spatial pyramid matching introduced by (Lazebnik et al.,
2006) to achieve matching in 2D images. Relying on determin-
ing the MSHs calculated in the previous section, we construct
the MSHs of the local joints in a multi-level approach. Each
MSH covers a specific time window of the action sequence.
The MSHs are computed over the entire video sequence from
the top level and over the smaller windows at the lower levels.
Window overlapping is used to increase the ability of the pro-
posed representation to di↵erentiate multiple actions by sliding
from one window to the half of the next one, as depicted in Fig
4.
Regardless of whether the multiple levels of SHs are used, dif-
ferentiating the local temporal sequences of various action cat-
egories is a di�cult task because of numerous issues, includ-
ing the frame rate variations and the temporal independence in

each sublevel. To address these issues, DTW (Muller) is used
to compute for a distance between the multiple levels of MSHs
for each action category. DTW is a time series alignment al-
gorithm. It compute a path between two sequences by warp-
ing the time axis iteratively until an optimal match between the
two sequences is found. Similarly, DTW is used to identify the
nominal distances between the MSHs of consecutive levels for
each local joint. The distance vector for each local joint dis-
placement is then formed. The temporal model of the skeleton
joints is encoded for each action category as a concatenation of
the distance vector Dt = [T1, ,TJ] . Through the computation
of the pose and motion feature vectors of the skeleton joints, an
action sequence is represented by a combination of these vec-
tors to form a skeleton representation feature vector.

S = �Hs + Dt. (14)

where � and  are the weighting parameters.
The static pose and temporal dynamic of the harmonics con-
tain information about the spatiotemporal function over a time
sequence of an action. Therefore, this type of harmonic infor-
mation can be considered a compact representation of the body
skeleton joint and can be used to reliably classify actions.

4. Action Classification

ELM is a multi-class classifier recently introduced for pattern
recognition. The proposed action recognition system incorpo-
rates this classifier, which is a version of the feedforward neural
network (Huang et al., 2006). Compared with other classifiers,
ELM provides significant performances, such as fast learning
time and recognition accuracy. In (Minhas et al., 2010), ELM
was adopted for human activity recognition from video data. In
recent years, this learning algorithm has been applied to solve
skeleton-based human action recognition problems (Chen and
Koskela) and many other computer vision problems. In this
section, we present a brief review of the theory underlying this
type of machine learning. For more details about the classical
materials of ELM, see (Huang et al., 2006).

4.1. Extreme Learning Machine ELM

ELM has been extensively employed for learning single-
hidden layer feedforward neural networks (Huang et al., 2006).
The hidden nodes in ELM are randomly initialized and do not
have to be iteratively tuned. In fact, these nodes remain fixed
after initialization. As such, only the input weight parameters
must be learned.
When the training sample A is given by (x j, y j), j = [1, , q], in
which x j 2 RN and y j 2 RM , the output function of ELM model
with L hidden neurons can be expressed as follows:

fl(x) =
LX

i=1

gi!i(x) = ⌦(x) G. (15)

where G = [g1, . . . , gL] is the output weight vector relating
the L hidden nodes to the m > 1 output nodes, and ⌦(x) =
[!1(x), ..!L(x)] is a nonlinear activation function (Huang et al.,
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Fig. 5. Marked skeleton joints as captured by the Kinect sensor

2006). The system⌦i(x) can be written in an explicit form pre-
sented as follows:

⌦i(x) = �(⌧i.x + ✏i), ⌧i 2 Rd, ✏i 2 R. (16)

where �(.) is an activation function with hidden layer parame-
ters (⌧, ✏). In the second stage of ELM learning, the error min-
imization between training data and output weight ⌦ is solved
by using the least square norm depicted below.

mink⌦G �Hk2,G 2 RN⇤M . (17)

where⌦ defines the system of the layer of hidden neurons given
as

⌦ =

2
66666666664

�(⌧1.x1 + ✏1) . . . �(⌧L.x1 + ✏L)
...
. . .

...
�(⌧1.xN + ✏1) . . . �(⌧L.xN + ✏L)

3
77777777775
. (18)

and H is the training data matrix denoted as

H =

2
66666666664

hT
1
...

hT
N

3
77777777775
. (19)

The optimal solution for minimizing the training error in (17)
practically assumes that the number of hidden neurons L is less
than that of the training set (i.e., L < Q). Therefore, in using
the MoorePenrose generalized inverse of matrix ⌦, the optimal
solution for (17) is (Huang et al., 2012).

G⇤ = ⌦⇤H. (20)

Where ⌦⇤ is the inverse of ⌦.

4.2. Alternative Body Skeleton Features
Alternative skeleton representations are adopted as an anther

abstraction of the skeleton features which are used for further
performance evaluation of our method. These skeleton repre-
sentations are as follows:
Joint Location ( JL): simply concatenates all joint coordinates

in one vector.
pairwise joints di↵erences ( PJDs): concatenation y f = {pi �
p j|i, j = (1, 2, ,K), i j} of all frames.
Magnitude of the Position Velocity ( MPV): the velocity be-
tween the same joints of enter frame defined as Yt1,t2 = ||pi,t1 �
pi,t2||.
These skeleton representations are fed directly into the classi-
fier to directly compare the proposed MSHs method with the
alternative representation schemes (i.e. JL, PJDs, and MPV).

5. Experimental Setup

To evaluate the e↵ectiveness of the proposed method, we
perform action recognition on the proposed feature repre-
sentation and recently published datasets (i.e., MSR-Action
3D (Li et al., 2010),G3D (Bloom et al., 2012), Florence 3D
Action (Seidenari et al., 2013), and UTKinect-Action (Xia
et al., 2012)). These datasets are used as benchmarks in the
experiment. The action complexity of these datasets varies
from simple to complex sequences. In addition to depth data,
skeleton data are also provided by these datasets using a Kinect
sensor http://msdn.microsoft.com/en-us/library/

hh855352.aspx as required.
In all experiments, an ELM classifier is used with the pro-
posed representation. For each dataset, the state-of-the-art
skeleton-based methods are extensively compared with the
proposed approach. The number of hidden neurons of ELM
is experimentally tuned for each dataset. To simplify the
computation in each experiment, we set the waiting parameters
as � = 0.5 and  = 0.5. The frequency bands of MSHs are
equal to 2. We consider the cross subject protocol for the test
setting in all datasets. In particular, half of the subjects are
used for training, and the other half for testing. We also divide
the MSR-Action dataset into further subsets, AS1, AS2 and
AS3 , similar to (Li et al., 2010). Each subset consists of eight
actions, and action recognition is separately performed on each
subset. In all experiments, we use nine joints from the body
skeletal as the initial input joints to our proposed method, as
shown in Fig 5. The features from these joints are initially used
for the skeleton feature representation. All the results in this
paper were reported in term of an average accuracy.

6. Results

6.1. Comparison with Various Skeleton Features
The performance of various skeleton representations is eval-

uated on all datasets, and the e�ciency of the proposed MSHs

Table 1. Recognition rates ( in %) for various skeletal representations on
MSR-Action3D dataset

subset JL PDJ MPV Proposed method
AS1 72.2 76.22 80.23 89.76
AS2 69.83 80.47 79.15 91.7
AS3 82.7 71.4 84.06 92.5
Average 74.91 72.36 81.14 90.98
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method is compared with the various skeleton representations.
Table 1 reports the accuracy of the proposed approach with the
corresponding results of di↵erent representation methods based
on the MSR-Action dataset. Our findings presented in this ta-
ble are achieved using three levels of MSHs, while the win-
dow overlap in the second and third levels is preserved. Com-
pared with other skeleton representations, the proposed method
provides satisfactory results. In particular, the MSHs method
improves the average accuracies over JL, PDJs, and MPV by
16.07 %, 18.62 %, and 9.84 % , respectively. These observa-
tions clearly indicate the superiority of the proposed MSHs rep-
resentation over existing skeleton representations. The experi-
ments on MSR dataset indicate that the MSHs-based method
have better performance on subsets AS1, AS2, AS3 in model-
ing complex actions and di↵erentiating similar actions.

Table 2 summarizes the recognition accuracies of various
skeleton representations on the UTKinect-Action, Florence 3D
Action, and G3D datasets. The results reveal that MSHs
method significantly outperforms the other skeleton representa-
tions on these datasets. In using UTKinect dataset, the average
accuracy of the proposed representation is 10.5. % better than
that of JL, 9.92% better than that of PJDs, and 5.42 % better
than that of MPV. In the case of the Florence dataset, the av-
erage accuracy of the proposed representation is 9.54 % better
than the average accuracy of, 15.8 % better than the average ac-
curacy of PJDs, and 2.43 % better than the average accuracy of
MPV. respectively. In the case of the G3D dataset, the average
accuracy of the MSHs-based skeleton representation is 13.83 %
better than the average accuracy of JL, 12.47 % better than the
the average accuracy of PJDs, and 10.79 % better than the av-
erage accuracy of MPV. It is interesting to note that the results
from MSHs clearly demonstrate the superiority of the MSHs-
based method over various skeleton features on Florence, and
G3D datasets.

6.2. Comparison with the state-of-the-art

The same datasets are used to compare the performance
of the proposed method with those of existing state-of-the-art
methods. For each data set, the hidden neurons are reported
separately. In all experiments, the results correspond to using
three levels of hierarchical SHs, while preserving the overlap in
the last two levels.
Several recognition results on the MSR-Action 3D dataset are
already available in the literature. Table 3 presents the recogni-
tion rate of the proposed approach along with those of the cor-
responding current methods. As indicated in this table, the pro-
posed approach obtains the best results compared with those of
most existing methods. In particular, our method provides good

Table 2. Recognition rates (in %)for various skeletal representations on
UTKinect Action, Florence3D Action, and G3D Action datasets

Dataset JL PDJ MPV Proposed
UTKinect 82.5 83.08 87.58 93.0
Florence3D 76.59 70.33 83.7 86.13
G3D 79 80.36 82.04 92.89

Table 3. Comparison of recognition rates (in %) with the state-of-the-art
results on MSR-Action3D dataset

Approaches Accuracy
HO3DJ Xia et al. (2012) 78.97
EigenJoints Yang and Tian (2012) 82.30
Joint angles similaritiesOhn Bar and Trivedi (2013) 83.53
Fusion spatiotemporal Zhu et al. (2013) 90.90
Covariance Descriptor Hussein et al. (2013) 90.53
Skeletal Quads Evangelidis et al. (2014) 89.86
Lie Group Raviteja et al. 92.46
SHs Al Alwani and Chahir (2015) 90.94
proposed approach 90.98

results in line with those of some existing methods but outper-
forms the others. Moreover, The proposed approach generates
the best results over the stat-of-the-arts reported in[Xia et al.
(2012); Yang and Tian (2012); Ohn Bar and Trivedi (2013);
Evangelidis et al. (2014)]. We can see that our result is in
line with recent stat-of-the-arts such as [Zhu et al. (2013); Hus-
sein et al. (2013); Al Alwani and Chahir (2015)], but is infe-
rior to Raviteja et al.. This is probably because these methods
either, incorporates a spatiotemporal skeleton joints structures
with huge numbers of trees in the classification stage as in Zhu
et al. (2013), or incorporates geometry relation between local
joints in order to models the rotation and translation invariants
of the features as lie groups as in Raviteja et al.. Some skeleton
based methods like Yang and Tian (2012) use skeleton features
based on pairwise di↵erences between joints. However, results
obtained on MSR Action 3D dataset show that integrating the
evolution of the whole skeleton during the sequence is more dis-
criminative than taking into consideration the joints separately.
In addition, the methods proposed in Yang and Tian (2012);
Xia et al. (2012); Ohn Bar and Trivedi (2013) have the lack
of information about temporal nature of the action,making the
recognition less e↵ective compared to our method. In this case,
780 hidden neurons are observed in ELM.

For further evaluation, the proposed approach is applied to
the skeleton sequences from UTKinect-Action, Florence, and
G3D Action datasets. The performance of the proposed ap-
proach in this experiment is also compared with those of the
corresponding methods. Table 4 compares our method with
various state-of-the-art skeleton-based human action recogni-
tion approaches on the UTKinect dataset. The proposed ap-
proach gives comparable results. The average accuracy of the
proposed representation is 5.10% better than that given in (Zhu
et al., 2013) and 2.08% better than that in (Xia et al., 2012).
The number of hidden neurons in this experiment is 640.

Table 5 reports the average recognition accuracies in the case
of the Florence dataset. The results reveal that the accuracy
of the proposed method is slightly higher than that citepd in
(Seidenari et al., 2013). In particular, the performance of the
proposed approach is superior over that of the state-of-the-art
methods by 4.13%. Our results in this table correspond to 500
hidden neurons for ELM.
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Table 4. Comparison of Recognition rates (in %)with the state-of-the-art
results using UTKinect dataset

Fusion spatiotemporal Zhu et al. (2013) 87.90
HO3DJ Xia et al. (2012) 90.92
Space-time pose Rep. Devanne et al. (2013) 91.5
SHs Al Alwani and Chahir (2015) 91.65
Proposed approach 93.0

Table 5. Comparison of recognition rates (in %) with the state-of-the-art
results, using Florence dataset

Multi-part bagSeidenari et al. (2013) 82.00
SHs Al Alwani and Chahir (2015) 87.50
Proposed approach 86.13

Table 6. Comparison of recognition rates (in %) with the state-of-the-art
results, using G3D dataset

Bloom et al. (2012)2012 71.04
Alwani et al. (2014) 80.55
SHs Al Alwani and Chahir (2015) 92.30
Proposed approach 92.89

The performance of the proposed method is also assessed based
on the G3D-Action dataset. Table 6 demonstrates the results,
which indicate that our method evidently outperforms the ex-
isting skeletal joint-based state-of-the-art methods by achiev-
ing better accuracy by 0.59%. In this experiment, 700 hidden
neurons exist in the ELM.

6.3. Benefit of modified SHs

Table 7 demonstrates that the addition of dynamic features
expressed by the second-order term of the real SHs dramatically
increases the recognition accuracy compared with the standard
SHs (Al Alwani and Chahir, 2015). The e�ciency of using
MSHs becomes evident when we compare them with the stan-
dard SH descriptors. In Table 4, the recognition accuracies of
MSHs are used and compared with those of the standard SHs
given in (Al Alwani and Chahir, 2015). The explicit estimation
of angular speed and directions in terms of the second-order
function presents a significant performance. For example, in
the MSR-Action 3D dataset, the use of the quadratic term in
MSHs improves the recognition accuracy by a substantial .04%
margin over the standard SHs. In the case of the UTKinect
and G3D datasets, the MSHs add a significant improvement of
1.35% and 0.59% to their recognition accuracies respectively.
Contrarily, in the Florence dataset, the recognition rate is de-
creased from 87.5% for SHs to 86.13% for MSHs.
Our findings a�rm that the angular speed component of the
quadratic function in MSHs model is extremely important for
action representation with curved displacement. Such a dis-
placement cannot be fitted by the spatiotemporal features of the
standard real SHs.

Table 7. Comparison of recognition rates (in %) with the SHs-based state-
of-the-art results

Datasets SHs MSHs
MSR Action 3D 90.94 90.98
UTKnect 91.65 93.00
Florence 87.50 86,13
G3D 92.30 92.89

Table 8. Recognition rate (in %)for di↵erent classifiers
Dataset SVM ELM
MSR-action 86.36 90.98
UTKinect 89.94 93.0
Florence3D 79.06 86.13
G3D 91.5 92.89

6.4. Comparison with other Classifier

To further asses the performance of the proposed approach,
we also compare the performance of ELM with that of a sup-
port vector machine (SVM) classifier and report the obtained
recognition accuracies on the same datasets. We simply use a
linear SVM (Chang and Lin, 2011) to compare the recognition
algorithms.
The recognition accuracies corresponding to ELM and SVM
are reported in Table 8. Our finding indicates that ELM per-
forms better than SVM based on the MSR dataset, achieving
a recognition accuracy of 90.98% (as opposed to the 86.36 %
attained by SVM). Nonetheless, both classifiers exhibit distinc-
tive results in the case of the UTKinect dataset. The perfor-
mance of SVM based on the Florence dataset is slightly lower
than that of ELM; the recognition rate of the latter is 6.07%
higher than that of the former. For the G3D dataset, the result
of ELM conforms to that of SVM.

7. Conclusion

In this study, we introduced a novel framework for action
recognition based on an explicit model of 3D skeleton joints in
a spatiotemporal domain. SH transform was used to explicitly
model the angular speed and direction of joints. A novel MSH
was also proposed based on the quadratic function of the real
part of SHs. According to our framework, all body joints were
registered into a body coordinate system to extract the spher-
ical angles of joints expressed in 3D body coordinates. The
spatiotemporal system of human action was then constructed
and encoded by a set of MSHs of static poses and local joint
displacement over time. The temporal evolution of the skeleton
joints was characterized in a hierarchical manner. An appro-
priate skeleton representation of an action was formulated as a
vector of combined poses and joint motion features. For the
action recognition, ELM was used. The performance of the
proposed method was evaluated based on recent 3D skeleton-
based datasets. We compared the proposed method with the ex-
isting state-of-the-art methods either by adopting pure skeleton
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data or by directly relying on depth data. The experimental re-
sults revealed that depending on the used datasets, the proposed
method can obtain results similar to those of the extant methods
or outperform them. The findings also indicated that MSHs are
well suited for action representation with curved movement and
angular direction changes.
In summary, our newly proposed method is in line with the re-
cently presented methods for 3D skeleton-based pose represen-
tation. The angular direction estimated from skeleton data and
its derived SHs are relevant for action recognition and can be
successfully used to capture temporal changes in action and ob-
tain a high recognition rate.
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