

Identification of Potential Gene Markers and Insights into the Pathophysiology of Pheochromocytoma Malignancy

Erwan Thouennon, Abdel G. Elkahloun, Johann Guillemot, Anne-Paule Gimenez-Roqueplo, Jérôme Bertherat, Alice Pierre, Hafida Ghzili, Luca Grumolato, Mihaela Muresan, Marc Klein, et al.

▶ To cite this version:

Erwan Thouennon, Abdel G. Elkahloun, Johann Guillemot, Anne-Paule Gimenez-Roqueplo, Jérôme Bertherat, et al.. Identification of Potential Gene Markers and Insights into the Pathophysiology of Pheochromocytoma Malignancy. Journal of Clinical Endocrinology and Metabolism, 2007, 92 (12), pp.4865 - 4872. 10.1210/jc.2007-1253 . hal-01706427

HAL Id: hal-01706427 https://normandie-univ.hal.science/hal-01706427

Submitted on 20 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Identification of Potential Gene Markers and Insights into the Pathophysiology of Pheochromocytoma Malignancy

Erwan Thouënnon, Abdel G. Elkahloun, Johann Guillemot, Anne-Paule Gimenez-Roqueplo, Jérôme Bertherat, Alice Pierre, Hafida Ghzili, Luca Grumolato, Mihaela Muresan, Marc Klein, Hervé Lefebvre, L'Houcine Ouafik, Hubert Vaudry, Pierre-François Plouin, Laurent Yon, and Youssef Anouar

Institut National de la Santé et de la Recherche Médicale U413 (E.T., J.G., A.P., H.G., L.G., H.L., H.V., L.Y., Y.A.), Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (Institut Fédératifde Recherche Multidisciplinaires sur les Peptides 23), University of Rouen, 76821 Mont-Saint-Aignan, France; Genome Technology Branch (A.G.E.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Genetics (A.-P.G.-R.), Hôpital Européen Georges Pompidou, 75015 Paris, France; Department of Endocrinology (J.B.), Institut National de la Santé et de la Recherche Médicale U567, Institut Cochin, 75014 Paris, France; Department of Endocrinology (M.M., M.K.), Hôpital de Brabois, 54511 Nancy, France; Equipe Mixte Institut National de la Santé et de la Recherche Médicale EMI 0359 (L.O.), Laboratory of Experimental Cancerology, Université de la Mediterranée, Aix-Marseille II, 13015 Marseille, France; and Hypertension Unit (P.-F.P.), Hôpital Européen Georges Pompidou, AP-HP, University of Paris-5, 75015 Paris, France

Context: Pheochromocytomas are catecholamine-producing tumors that are generally benign but that can also present as or develop into malignancy. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions.

Objectives: We conducted a gene expression profiling of benign and malignant tumors to identify a gene signature that would allow us to discriminate benign from malignant pheochromocytomas and to gain a better understanding of tumorigenic pathways associated with malignancy.

Design: A total of 36 patients with pheochromocytoma was studied retrospectively. There were 18 (nine benign and nine malignant) tumors used for gene expression profiling on pangenomic oligonucleotide microarrays.

Results: We identified and validated a set of predictor genes that could accurately distinguish the two tumor subtypes through unsu-

pervised clustering. Most of the differentially expressed genes were down-regulated in malignant tumors, and several of these genes encoded neuroendocrine factors involved in prominent characteristics of chromaffin cell biology. In particular, the expression of two key processing enzymes of trophic peptides, peptidylglycine α -amidating monooxygenase and glutaminyl-peptide cyclotransferase, was reduced in malignant pheochromocytomas.

Conclusion: The gene expression profiling of benign and malignant pheochromocytomas clearly identified a set of genes that could be used as a prognostic multi-marker and revealed that the expression of several genes encoding neuroendocrine proteins was reduced in malignant compared with benign tumors.

PHEOCHROMOCYTOMAS ARE CATECHOLAMINEproducing tumors that occur from chromaffin cells of

adrenal medulla or extra-adrenal locations, leading to paroxysmal or persistent hypertension in most patients. They are mainly sporadic tumors but familial forms resulting from mutations of the oncogene RET or the oncosuppressors von Hippel-Lindau (VHL), neurofibromatosis 1 (NF1), and succinate dehydrogenase subunits are increasingly recognized (1–4). Familial pheochromocytomas represent approximately 25% of cases, and are observed as part of multiple endocrine neoplasia type 2, VHL and NF1 syndromes, and as paraganglioma tumors (5). Measurement of the concentrations of plasma free metanephrines or urinary fractionated metanephrines represents the test of choice for the diagnosis of pheochromocytomas (6).

Pheochromocytoma generally occurs as a benign tumor, but 10–25% of cases are malignant at the first surgery or at recurrence, with metastasis development at lymph node, bone, liver, or lung (7). Unlike benign tumors that can be diagnosed and surgically treated, there is currently no method to identify, predict, or cure malignant pheochromocytomas. Malignancy of pheochromocytoma can be diagnosed only after metastasis appearance. Therefore, malignancy development and the underlying molecular pathways remain poorly understood.

Here, we used pangenomic human oligonucleotide arrays to profile the gene expression of benign and malignant pheochromocytomas, to identify a set of genes that could distinguish the two types of tumors on the one hand, and to gain insights into the mechanisms underlying the occurrence of malignancy on the other hand.

Materials and Methods

Tumor samples

Tumor specimens were collected during surgery (≤15 min after the operation) from patients with pheochromocytoma and immediately frozen in liquid nitrogen. Nine benign and nine malignant tumors, classified based on the absence or presence of metastatic lesions, were used for microarray analysis. The average duration of the follow-up of the patients with benign tumors was 41 ± 28 months (range 1–84). Tumors used for microarray analysis were collected in two Hospital Centers of the COritco and MEdullo-surrénales Tumeurs Endocrines (COMETE) network (COMETE-2 network, PHRC AOM 02068), according to standardized guidelines of tumor collection established by contributing teams of the network. Of these tumors, 14 (nine benign and five malignant) were without evidence of a hereditary disease, *i.e.* sporadic tumors, whereas three malignant tumors had an succinate dehydrogenase B mutation, and one malignant tumor had a VHL mutation. Pheochromocytoma genetic testing has been performed as previously described (1). Among the benign tumors, seven were located in the adrenal, and two were at an extra-adrenal site. Among the malignant tumors, five were located in the adrenal, three at an extra-adrenal site, and one was located at both the adrenal and an extra-adrenal site. Malignant tumors used in microarray analysis were from the primary tumoral site. An additional five malignant (three familial, one sporadic, and one not genotyped) and 13 benign (three multiple endocrine neoplasia type 2, two NF1, one sporadic, and seven not genotyped) tumors were used for quantitative PCR analysis. These tumor samples were provided by the Rouen (Hôpital C. Nicolle, Rouen, France), the Nancy (Hôpital de Brabois, Nancy, France), and the Lausanne (Hôpital Vaudois, Lausanne, Switzerland) University Hospital Centers.

RNA extraction

Total RNA was extracted using the Tri-Reagent (Sigma-Aldrich, Saint Quentin Fallavier, France), further purified on RNeasy mini Spin Columns (QIAGEN, Courtaboeuf, France), and analyzed on a denaturing agarose gel.

Microarray processing and data analysis

The oligo microarray chips were generated from 34,580 longmer probes set obtained from the QIAGEN Human Genome Oligo Set version 3.0 (QIAGEN, Valencia, CA). The set corresponds to approximately 25,400 Unigene nonredundant human genes and covers 85% of the human genome. The gene description and annotation of these oligonucleotides were based on the Ensembl database (Cambridge, UK) dated from December 2006. The details of the whole protocol can be accessed through the web site: http://research.nhgri.nih.gov/nhgri_cores/ microarray.html. Briefly, fluorescence-labeled cDNA from each tumoral sample was hybridized to a microarray slide concomitantly with fluorescence-labeled reference cDNA prepared from normal human adrenal medulla (BD Biosciences Clontech, Palo Alto, CA). Each tumoral RNA was used in two independent labeling and hybridization experiments. Microarrays were subsequently scanned with a laser confocal scanner (Agilent Technologies, Palo Alto, CA), and the fluorescence intensities were measured in the spots and their surrounding areas. The values were filtered through quality control variables, analyzed, and quantified using the DEARRAY IPLab image processing package (Scanalytics, Fairfax, VA). A dye bias analysis was performed on the reference and six tumoral samples when sufficient RNA was available. All the protocols are Minimum Information About a Microarray Experiment compliant.

The data were subjected to a set of filtering criteria, statistical analysis, and gene selection based on a difference in P value as described elsewhere (3). First, the average spot quality score (which ranges from zero,

being worst, to one, best) over all samples in the study was required to be at least 0.5 (8). Second, the normalized ratio to reference RNA was required to be above two or less than 0.5 in three or more experiments. The averaged duplicate ratios were log transformed, and a T-statistic/ F-statistic algorithm was applied. The resulting data were analyzed by generation of a weighted list of genes followed by 10,000 random permutation analysis, as described elsewhere (9). The tools and statistical methods used for this particular analysis are available at http://arrayanalysis.nih.gov/.

Real-time PCR

PCR amplification was performed using the SYBR Green I Master Mix Buffer (Applied Biosystems, Courtaboeuf, France) in an ABI PRISM 7000 Sequence Detector (Applied Biosystems). PCR results were analyzed using the qBase program (10).

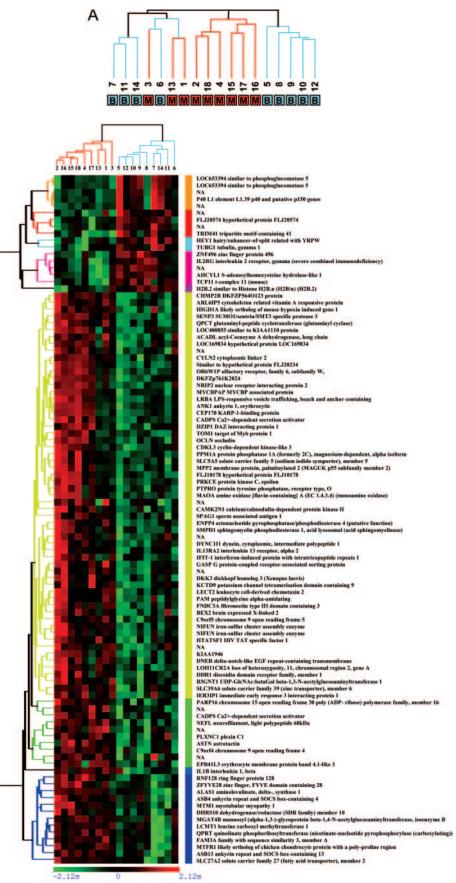
Statistical analysis

Statistical analyses were performed using the nonparametric Mann-Whitney *U* test. Data were analyzed using the Prism program (Graph-Pad Software, Inc., San Diego, CA).

Results

Gene expression profiling of benign and malignant pheochromocytomas

An unsupervised hierarchical clustering of hybridization data yielded a four-branch dendrogram: two branches for malignant tumors and two branches for the benign tumors. There was only one benign tumor (sample no. 6) that clustered with malignant ones (Fig. 1A). Interestingly, the four hereditary cases included in the present analysis exhibited a significant aggregation among the malignant tumors. We performed a T-statistic/F-statistic discriminative gene selection followed by a supervised clustering method to identify the genes that best differentiate between the malignant and benign tumors. Analysis of hybridization data revealed about 100 genes (Fig. 1B) showing a statistically significant differential expression between benign and malignant pheochromocytomas (P < 0.001, Student's t test). The differentially expressed genes were functionally categorized on the basis of known or inferred biological function of their protein product using gene ontology. Table 1 summarizes the functional clustering of the identified genes. Among these, about a third had unknown function, and, more importantly, only 16 were up-regulated in malignant pheochromocytomas.


Validation of microarray analysis

To confirm the results obtained by microarray analysis, we used real-time PCR to determine the mRNA levels of glutaminyl-peptide cyclotransferase (QPCT), peptidylglycine α -amidating monooxygenase (PAM), neuropeptide Y (NPY), and calcium/calmodulin-dependent protein kinase II (CAMKIIN α) in a collection of tumors comprising the samples used for microarray analysis, and an additional three malignant and 11 benign pheochromocytomas with different characteristics. Differential expression between malignant and benign pheochromocytomas was confirmed for the four genes: *P* = 0.0078 for QPCT; *P* = 0.0245 for PAM; *P* = 0.0292 for NPY; and *P* = 0.0302 for CAMKIIN α (Fig. 2).

Discussion

Among the main clinical challenges presented by pheochromocytomas, malignancy remains the most problematic FIG. 1. A, Unsupervised hierarchical clustering of benign (B) and malignant (M) pheochromocytoma samples based on gene expression profiling. B, Supervised hierarchical clustering of pheochromocytomas (columns) and genes identified by microarray analysis (rows) on the basis of their expression profile. Dendrograms of tumoral samples (above the matrix) and genes (at the left of the matrix) represent similarities in gene expression profiles. Genes with a relatively higher level of expression in benign compared with malignant tumors are shown in green, and those with a lower level are shown in *red* according to the color scale at the bottom. Only genes exhibiting a differential expression with P < 0.001 were included in this analysis. The name of each gene is indicated at the right of the matrix [not applicable (NA) indicates expressed sequence tags (ESTs) with no functional annotation]. The number of each tumor is indicated above the matrix. Malignant tumors correspond to the *first nine* columns, and benign ones correspond to the *last nine columns* as grouped by the clustering method described in Materials and Methods.

В

-2.120 0 2. Normalized ratio/intensity. TABLE 1. Ratios of gene expression in benign vs. malignant pheochromocytomas for differentially expressed genes

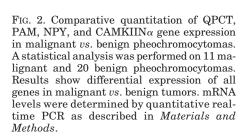
Gene name	Symbol	Ratio	Accession no.	Unigene
Cell adhesion				
Occludin	OCLN	2.13	NM_002538	Hs.519367
Discoidin domain receptor family, member 1	DDR1	1.75	NM_{013994}	Hs.423573
Astrotactin	ASTN	1.72	NM_004319	Hs.6788
Plexin C1	PLXNC1	1.63	NM_005761	Hs.286229
Cytoskeleton	1 LANCI	1.05	10101_005701	115.200223
	CEP170	2.44	NIM 014010	II. 05190
KARP-1-binding protein			NM_014812	Hs.25132
Cytoplasmic linker 2	CYLN2	2.38	NM_032421	Hs.104717
Cytoskeleton related vitamin A responsive protein	ARL6IP5	2.17	NM_{006407}	Hs.92384
Ankyrin 1, erythrocytic	ANK1	1.96	NM_020477	Hs.443711
Neurofilament, light polypeptide 68 kDa	NEFL	1.89	NM_006158	Hs.107600
Dynein, cytoplasmic, intermediate polypeptide 1	DYNC1I1	1.75	$\overline{NM}004411$	Hs.65248
Erythrocyte membrane protein band 4.1-like 3	EPB41L3	1.67	NM_012307	Hs.103839
Tubulin , γ 1	TUBG1	0.58	NM_001070	Hs.21635
Centromere protein J	CENPJ	0.44	NM_018451	Hs.513379
Ietabolism				TT (0 8 0 0 0
Tyrosine hydroxylase	TH	4.44	NM_{000360}	Hs.435609
Iron-sulfur cluster assembly enzyme	NIFUN	1.96	NM_{014301}	Hs.350702
Aminolevulinate, δ -, synthase 1	ALAS1	1.92	NM_000688	Hs.511918
Solute carrier family 27 (fatty acid transporter),	SLC27A2	1.72	$\overline{NM}003645$	Hs.11729
member 2 Solute carrier family 5 (sodium iodide	SLC5A5	1.72	NM_000453	NA
symporter), member 5	SECOND	1.12	1111_000400	1111
Amine oxidase (flavin-containing) A (EC 1.4.3.4) (monoamine oxydase)	MAOA	1.72	NM_000240	NA
(monoamine oxydase) UDP-GlcNAc:betaGal β -1,3-N-	B3GNT1	1.69	NM_006577	Hs.173203
acetylglucosaminyltransferase 1				
Acyl-coenzyme A dehydrogenase, long chain	ACADL	1.69	NM_{001608}	Hs.430108
Quinolinate phosphoribosyltransferase	QPRT	1.69	NM_014298	Hs.335116
(nicotinate-nucleotide pyrophosphorylase	QI III	1.05	NM_014258	115.000110
(carboxylating)	DAT	1.07	ND4 000107	
Fumarylacetoacetate hydrolase	FAH	1.67	NM_000137	Hs.73875
(fumarylacetoacetase)				
Chromosome 9 open reading frame 4	C9orf4	1.67	XM_{378078}	Hs.347537
Dehydrogenase/reductase (SDR family) member 10	DHRS10	1.64	NM_{016246}	Hs.18788
Solute carrier family 39 (zinc transporter),	SLC39A6	1.64	NM_012319	Hs.79136
member 6	1/17/10	1 5 1	NIM OOF115	II. 00000
Major vault protein	MVP	1.51	NM_{005115}	Hs.80680
Solute carrier family 26 (sulfate transporter), member 2	SLC26A2	1.51	NM_000112	NA
Chromosome condensation-related SMC- associated protein 1	CNAP1	1.43	NM_{014865}	Hs.5719
Mannosyl (α -1,3-)-glycoprotein β -1,4-N- acetylglucosaminyltransferase, isoenzyme B	MGAT4B	1.39	NM_{054013}	Hs.437277
Glutathione synthetase	GSS	1.35	NM 000178	Hs.82327
Aldehyde dehydrogenase 6A1	ALDH6A1	0.60	NA	Hs.293970
Similar to phosphoglucomutase 5	LOC653394	0.52	XM_372112	NA
Protein processing	1000001	0.04	111_014114	1111
Glutaminyl-peptide cyclotransferase (glutaminyl cyclase)	QPCT	2.22	NM_012413	Hs.79033
	CENDO	0.17	NIM OIFCEO	IL OFFOOD
SUMO1/sentrin/SMT3 specific protease 3	SENP3	2.17	NM_015670	Hs.255022
Peptidylglycine α -amidating monooxygenase	PAM	2.08	NM_{000919}	Hs.352733
Ring finger protein 128	RNF128	1.96	NM_{194463}	Hs.9238
Serine (or cysteine) proteinase inhibitor, clade I	SERPINI1	1.79	NM_{005025}	Hs.78589
(neuroserpin), member 1	RNF6	1.79	NM_{183044}	Hs.136885
	IVINLO		NM_014278	Hs.135554
Ring finger protein (C ³ H2C3 type) 6		1.69	NW 014210	
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile	HSPA4liter CLN3	$\begin{array}{c} 1.69 \\ 1.49 \end{array}$	NM_000086	
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease)	HSPA4liter CLN3	1.49	NM_{000086}	Hs.446747
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease) Leucine carboxyl methyltransferase 1	HSPA4liter CLN3 LCMT1	1.49 1.37	NM_000086 NM_016309	Hs.446747 Hs.411135
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease) Leucine carboxyl methyltransferase 1 Tripartite motif-containing 41	HSPA4liter CLN3	1.49	NM_{000086}	Hs.446747 Hs.411135
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease) Leucine carboxyl methyltransferase 1 Tripartite motif-containing 41 Secretion	HSPA4liter CLN3 LCMT1 TRIM41	1.49 1.37 0.68	NM_000086 NM_016309	Hs.446747 Hs.411135 Hs.51982 2
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease) Leucine carboxyl methyltransferase 1 Tripartite motif-containing 41	HSPA4liter CLN3 LCMT1	1.49 1.37	NM_000086 NM_016309	Hs.446747 Hs.411135 Hs.519822
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease) Leucine carboxyl methyltransferase 1 Tripartite motif-containing 41 Secretion Secretogranin II	HSPA4liter CLN3 LCMT1 TRIM41 SCG2	1.49 1.37 0.68	NM_000086 NM_016309 NM_201627 NM_003469	Hs.446747 Hs.411135 Hs.519822 Hs.516726
Ring finger protein (C ³ H2C3 type) 6 Heat shock protein (hsp110 family) Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease) Leucine carboxyl methyltransferase 1 Tripartite motif-containing 41 Secretion	HSPA4liter CLN3 LCMT1 TRIM41	1.49 1.37 0.68 3.13	NM_000086 NM_016309 NM_201627	Hs.446747 Hs.446747 Hs.519822 Hs.516726 Hs.209846

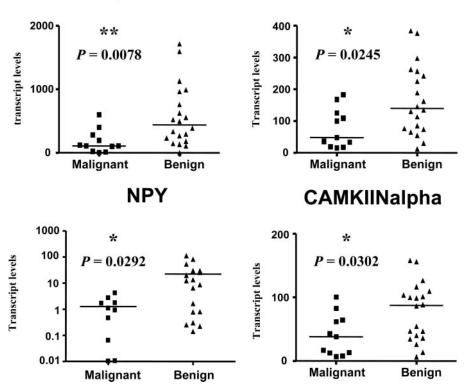
TABLE	1.	Continued
		0011111111000

Gene name	Symbol	Ratio	Accession no.	Unigene
G protein-coupled receptor-associated sorting protein	GASP	1.92	XM_377032	Hs.113082
Synaptotagmin-like 3	SYTL3	1.75	XM_087804	Hs.436977
Synaptosomal-associated protein 25	SNAP25	1.60	NM_130811	Hs.167317
Pleckstrin and Sec7 domain containing 3	PSD3	1.42	NM_015310	Hs.521426
Mal, T-cell differentiation protein 2	MAL2	1.35	NM_052886	Hs.76550
Signaling		1.00		1151100000
Protein tyrosine phosphatase, receptor type, O	PTPRO	2.77	NM_{030671}	Hs.160871
Dickkopf homolog 3 (Xenopus laevis)	DKK3	2.77	NM_{013253}	Hs.130865
IL13 receptor, α 2	IL13RA2	2.63	NM_000640	Hs.336046
Protein phosphatase 1A (formerly 2C),	PPM1A	2.56	NM_{177951}	Hs.130036
magnesium-dependent, α isoform				
Neuropeptide Y	NPY	2.38	NM_{000905}	Hs.1832
IL1, β	IL1B	2.08	NM_{000576}	Hs.126256
Leukocyte cell-derived chemotaxin 2	LECT2	2.04	NM_{002302}	Hs.512580
Membrane protein, palmitoylated 2 (MAGUK	MPP2	2.27	NM_{005374}	Hs.436326
p55 subfamily member 2)				
Calcium/calmodulin-dependent protein kinase II	CAMK2N1	1.92	NM_{018584}	Hs.197922
Sphingomyelin phosphodiesterase 1, acid	SMPD1	1.75	NM_{000543}	Hs.77813
lysosomal (acid sphingomyelinase)				
Protein kinase C, ϵ	PRKCE	1.75	NM_005400	Hs.155281
Target of Myb protein 1	TOM1	1.72	O60784	Hs.474705
DAZ interacting protein 1	DZIP1	1.69	NA	Hs.60177
Ankyrin repeat and SOCS box-containing 4	ASB4	1.67	NM_{145872}	Hs.413226
(ASB4), transcript variant 2	DEDO	1 50		TT (10000
Period homolog 2 (Drosophila)	PER2	1.59	NM_022817	Hs.410692
HIV TAT specific factor 1	HTATSF1	1.52	NM_014500	Hs.204475
Low-density lipoprotein receptor (familial	LDLR	1.49	NM_{000527}	Hs.213289
hypercholesterolemia)				TT 000000
Ankyrin repeat and SOCS box-containing 13	ASB13	1.47	NM_024701	Hs.300063
IL2 receptor, γ (severe combined	IL2RG	0.63	NM_000206	Hs.84
immunodeficiency) Hairy/enhancer-of-split related with YRPW	HEY1	0.59	NM_012258	Hs.234434
motif 1	111211	0.00	11m_012256	115.204404
Immediate early response 3	IER3	0.59	NA	Hs.591785
Colony stimulating factor 2 (granulocyte-	CSF2	0.56	NM_000758	Hs.1349
macrophage)	0012	0.00	1111_000190	113.1040
Zinc finger protein 496	ZNF496	0.51	NA	Hs.22051
Unknown		0.01		110.22001
MYCBP associated protein	MYCBPAP	3.33	NM_032133	Hs.398196
Hypothetical protein FLJ10178	FLJ10178	2.94	NA	Hs.274267
δ-Notch-like EGF repeat-containing	DNER	2.44	NM_139072	Hs.234074
transmembrane				
KIAA1946	KIAA1946	2.17	NP 803237	Hs.172792
Similar to hypothetical protein FLJ20234	NA	2.13	BC008091	NA
Chromosome 14 open reading frame 1	C14orf1	2.13	NM_007176	Hs.15106
TPR domain containing STI2	STI2	2.08	NA	Hs.376300
Similar to KIAA1110 protein	LOC400855	2.04	XM_375928	NA
DKFZP564O123 protein	CHMP2B	1.92	$\overline{NM_{014043}}$	Hs.11449
Fibronectin type III domain containing 3	FNDC3A	1.92	$\overline{NM}014923$	Hs.103329
DKFZp761K2024 protein	NA	1.89	$\overline{AL161983}$	Hs.21415
Ectonucleotide	ENPP4	1.89	XM_{376503}	Hs.54037
pyrophosphatase/phosphodiesterase 4			—	
(putative function)				
Brain expressed X-linked 2	BEX2	1.85	NM_032621	Hs.398989
Interferon-induced protein with	IFIT-1	1.85	NA	Hs.20315
tetratricopeptide repeats 1				
DKFZP434F2021 protein	C3orf17	1.85	NM_015412	Hs.377974
Nuclear receptor interacting protein 2	NRIP2	1.82	NM_{031474}	NA
Loss of heterozygosity, 11, chromosomal region	LOH11CR2A	1.82	NM_{014622}	Hs.152944
2, gene A			—	
Cyclin-dependent kinase-like 3	CDKL3	1.79	NM_{016508}	Hs.105818
Likely ortholog of mouse hypoxia induced gene 1	HIGD1A	1.75	$\overline{NM}014056$	Hs.7917
Olfactory receptor, family 6, subfamily W,	OR6W1P	1.75	NR_{002140}	NA
member 1 pseudogene			NA	Hs.292056
Zinc finger, FYVE domain containing 28	ZFYVE28	1.72	INA	115.202000
Zinc finger, FYVE domain containing 28 Potassium channel tetramerization domain	ZFYVE28 KCTD9	$\begin{array}{c} 1.72 \\ 1.72 \end{array}$	AA_H68518	Hs.72071
Zinc finger, FYVE domain containing 28 Potassium channel tetramerization domain containing 9	KCTD9	1.72	AA_H68518	
Zinc finger, FYVE domain containing 28 Potassium channel tetramerization domain				

Gene name	Symbol	Ratio	Accession no.	Unigene
Chromosome 9 open reading frame 5	C9orf5	1.64	NM_032012	Hs.418097
Hypothetical protein LOC169834	LOC169834	1.64	XM_{095965}	NA
Immediate early response 3 interacting protein 1	IER3IP1	1.64	NM_016097	Hs.406542
Chromosome 15 open reading frame 30 poly	PARP16	1.61	NM_{017851}	Hs.30634
(ADP-ribose) polymerase family, member 16				
Sperm-associated antigen 1	SPAG1	1.59	NM_{172218}	Hs.408747
RUN domain containing 1	RUNDC1	1.56	NM_{173079}	Hs.218182
Hypothetical protein FLJ32954	FAM82A	1.56	NA	Hs.9905
Likely ortholog of chicken chondrocyte protein with a poly-proline region	MTFR1	1.56	NM_{014637}	Hs.170198
Family with sequence similarity 3, member A	FAM3A	1.47	NM_{021806}	Hs.289108
KIAA0476	KIAA0476	0.69	XM_375806	Hs.6684
S-adenosylhomocysteine hydrolase-like 1	AHCYL1	0.61	NM_006621	Hs.485365
L1 element L1.39 p40 and putative p150 genes	NA	0.61	U93574	NA
Similar to histone H2B.n (H2B/n) (H2B.2)	H2B.2	0.58	XM 373001	NA
T-complex 11 (mouse)	TCP11	0.54	NM_018679	Hs.435371
Hypothetical protein FLJ20574	FLJ20574	0.54	NA	Hs.123427

The functional clustering, the name, symbol, ratio of their expression in benign and malignant tumors, GenBank accession no., and Unigene cluster are indicated for each gene. Genes overexpressed in malignant tumors are indicated in *bold* with a ratio lower than one. The ratios were calculated from values of gene expression in benign and malignant tumors reported to the reference values measured in normal adrenal medulla. Only gene expression differences exhibiting a statistical significance at P < 0.001 (Student's *t* test) are presented. DAZ, Deleted in azoospermia; EGF, epidermal growth factor; FAM, family with sequence similarity; FYVE, Fab1-YOTB/ZK632.12-Vac1-EEA1; KARP-1, Ku86 autoantigen related protein-1; LPS, lipopolysaccharide; MAGUK, membrane-associated guanylate kinases; MYCBP, c-myc binding protein; NA, not applicable; RUN, RPIP8-UNC-14-NESCA; SMC, structural maintenance of chromosomes; SMT, S-adenosyl-methionine-sterol-C-methyltrans-ferase; SOCS, suppressor of cytokine signalling; SUMO, small ubiquitin-related modifier; TAT, transactivating regulatory protein; TPR, tetratricopeptide repeat.


aspect of this disease because of a lack of a reliable diagnostic tools or an effective therapeutic treatment. Gene expression profiling appeared as an attractive approach to gain insights into malignancy of this disease. Therefore, several studies have been initiated to compare the transcriptomes of benign and malignant pheochromocytomas using different tumor collections (11, 12). Analysis of our series of tumors using pangenomic microarrays revealed that the differential expression of a set of approximately 100 genes may distinguish the two tumor types.


Several observations indicate the validity of the microarray results obtained. First, differential expression was confirmed by quantitative PCR for a selection of genes. Second, unsupervised clustering clearly distinguished the two types of tumors based on differential gene expression and aggregated the malignant hereditary cases. Third, although we included mainly sporadic tumors in our initial analysis, the genes selected for validation were found to be differentially expressed in a larger sample collection (31 tumors), further adding a measure of confidence in the data presented here.

One of the most important findings of the present study is that the expression of the 100-gene set could discriminate benign and malignant pheochromocytomas, as revealed by unsupervised clustering of microarray data, while blinded to clinical information. This result indicates that gene expression profiling of pheochromocytoma may represent a potentially useful test to evaluate the prognosis of tumors at the primary site and before metastasis occurrence, and to guide preventive treatment in the case of malignant neoplasms. The case of patient no. 6 is very interesting because this benign tumor was classified by unsupervised clustering among malignant, but close to benign, tumors. This finding suggests that this tumor may have a potential malignant genotype/phenotype and, therefore, that microarray analysis may allow a more accurate classification of pheochromocytoma subtypes. Unsupervised clustering also revealed two groups of benign tumors that segregated separately. Because only sporadic benign tumors have been included in the present study, this segregation is not due to any known hereditary disease. The reason for this separate clustering of benign tumors remains to be identified.

A high number (>80%) of differentially expressed genes was underexpressed in malignant pheochromocytomas. Among these, several encode neuroendocrine factors involved in prominent characteristics of chromaffin cell biology such as catecholamine metabolism, e.g. fumarylacetoacetate hydrolase and monoamine oxidase, hormone secretion, like synaptotagmin-like 3 and secretogranin II, and peptide processing, such as QPCT and PAM. The synthesis and release of biologically active peptides are some of the most important features of the neuroendocrine phenotype, and adrenochromaffin cells are known to produce a wide range of such peptides (13). The present study revealed lower expression of three key genes encoding peptide processing and activation factors, i.e. PAM, QPCT and neuroserpin, in malignant pheochromocytomas. The instrumental role of PAM in the amidation and, therefore, the activity of peptides regulating adrenal medulla and pheochromocytoma cells, such as NPY, is well known (14). Interestingly, increased expression of PAM and target peptides has been linked to neuroendocrine differentiation in human prostate cancer (15). The expression of the enzyme responsible for cyclization of N-terminal glutaminyl residues in peptides, QPCT, is also down-regulated in malignant tumors, further indicating that malignant transformation of pheochromocytoma is associated with reduced bioactive peptide processing compared QPCT

PAM

with benign tumors. Finally, the transcripts of neuroserpin, a serine-protease inhibitor whose expression is associated with neuroendocrine differentiation (16), were also less abundant in malignant pheochromocytomas.

Besides, the expression of characteristic cytoskeleton genes is altered in malignant compared with benign pheochromocytomas. For instance, the γ -tubulin gene, which encodes a constituent of centrosomes overexpressed in different cancers (17), was more highly expressed in malignant pheochromocytomas. Conversely, the expression of astrotactin and plexin C1, which are involved in cell adhesion (18, 19), was down-regulated in malignant tumors. Finally, the gene expression of occludin, a major component of tight junctions (20), was also repressed in malignant tumors, suggesting a possible diminution of cell-to-cell contacts and an increased permeability in malignant pheochromocytomas.

In conclusion, we have made use of a pangenomic microarray to identify a gene set that may represent a valuable prognostic classifier of pheochromocytomas. This work provides leads for new diagnostic and prognostic markers, and potential therapeutic strategies. The findings have also provided insights into the biology of pheochromocytomas, showing that numerous genes encoding neuroendocrine proteins were less expressed in malignant compared with benign tumors.

Acknowledgments

Received June 5, 2007. Accepted September 10, 2007.

Address all correspondence and requests for reprints to: Dr. Y. Anouar, Institut National de la Santé et de la Recherche Médicale U413, Laboratory of Cellular and Molecular Neuroendocrinology, Institut Fédératif de Recherche Multidisciplinaires sur les Peptides 23, University of Rouen, 76821 Mont-Saint-Aignan, France. E-mail: youssef.anouar@univ-rouen.fr.

This work was supported by Institut National de la Santé et de la Recherche Médicale (U413), Conseil Régional de Haute-Normandie, Fédération des Maladies Orphelines, Ligue de Recherche Contre le Cancer de Haute-Normandie, Association pour la Recherche sur le Cancer, and the grant PHRC AOM 02068 from Institut National de la Santé et de la Recherche Médicale and Ministère Délégué à la Recherche et aux Nouvelles Technologies for the COMETE Network.

Disclosure Statement: The authors have nothing to disclose.

References

- Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, Chamontin B, Delemer B, Giraud S, Murat A, Niccoli-Sire P, Richard S, Rohmer V, Sadoul JL, Strompf L, Schlumberger M, Bertagna X, Plouin PF, Jeunemaitre X, Gimenez-Roqueplo AP 2005 Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 23:8812–8818
- Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, Klein-Franke A, Klose P, Schmidt H, Maier-Woelfle M, Peczkowska M, Szmigielski C, Eng C 2002 Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466
- Eisenhofer G, Huynh TT, Pacak K, Brouwers FM, Walther MM, Linehan WM, Munson PJ, Mannelli M, Goldstein DS, Elkahloun AG 2004 Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 11:897–911
- Woodward ER, Maher ER 2006 Von Hippel-Lindau disease and endocrine tumour susceptibility. Endocr Relat Cancer 13:415–425
- Koch CA, Pacak K, Chrousos GP 2002 The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors. J Clin Endocrinol Metab 87:5367–5384
- Lenders JW, Eisenhofer G, Mannelli M, Pacak K 2005 Phaeochromocytoma. Lancet 366:665–675
- Manger WM 2006 Diagnosis and management of pheochromocytoma-recent advances and current concepts. Kidney Int 70(Suppl 1):S30–S35
- 8. Chen Y, Kamat V, Dougherty ER, Bittner ML, Meltzer PS, Trent JM 2002

Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 18:1207–1215

- Allander SV, Nupponen NN, Ringner M, Hostetter G, Maher GW, Goldberger N, Chen Y, Carpten J, Elkahloun AG, Meltzer PS 2001 Gastrointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile. Cancer Res 61:8624–8628
- Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F 2002 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034
- Anouar Y, Yon L, Guillemot J, Thouennon E, Barbier L, Gimenez-Roqueplo AP, Bertherat J, Lefebvre H, Klein M, Muresan M, Grouzmann E, Plouin PF, Vaudry H, Elkahloun AG 2006 Development of novel tools for the diagnosis and prognosis of pheochromocytoma using peptide marker immunoassay and gene expression profiling approaches. Ann NY Acad Sci 1073:533–540
- Brouwers FM, Elkahloun AG, Munson PJ, Eisenhofer G, Barb J, Linehan WM, Lenders JW, De Krijger R, Mannelli M, Udelsman R, Ocal IT, Shulkin BL, Bornstein SR, Breza J, Ksinantova L, Pacak K 2006 Gene expression profiling of benign and malignant pheochromocytoma. Ann NY Acad Sci 1073:541–556
- 13. Ait-Ali D, Turquier V, Grumolato L, Yon L, Jourdain M, Alexandre D, Eiden L, Vaudry H, Anouar Y 2004 The proinflammatory cytokines tumor necrosis factor-α and interleukin-1 stimulate neuropeptide gene transcription and secretion in adrenochromaffin cells via activation of extracellularly regulated

kinase 1/2 and p38 protein kinases, and activator protein-1 transcription factors. Mol Endocrinol 18:1721–1739

- Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE 1993 Peptidylglycine α-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci 2:489–497
- Rocchi P, Boudouresque F, Zamora AJ, Muracciole X, Lechevallier E, Martin PM, Ouafik L 2001 Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines. Cancer Res 61:1196–1206
- de Groot DM, Martens GJ 2005 Expression of neuroserpin is linked to neuroendocrine cell activation. Endocrinology 146:3791–3799
- Kronenwett U, Huwendiek S, Castro J, Ried T, Auer G 2005 Characterization of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability. Br J Cancer 92:389–395
- Zheng C, Heintz N, Hatten ME 1996 CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272:417–419
- Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM 1999 Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell [Erratum (2001) 104: following 320] 99:71–80
- Li Y, Fanning AS, Anderson JM, Lavie A 2005 Structure of the conserved cytoplasmic C-terminal domain of occludin: identification of the ZO-1 binding surface. J Mol Biol 352:151–164